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Initial stress and additional effective stress distributions in soil greatly influence the degree

of ground consolidation when calculating one-dimensional soft clay ground consolidation

in deep soil. The one-dimensional non-linear consolidation governing equations of soft

ground under uniform load are derived and solved with the finite difference method.

This method is based on the assumptions that the initial stress in soil varies with the

ground depth and that the additional effective stress caused by external loads changes

with both the ground depth and consolidation time and the hyperbolic model of the soil

stress–strain relationship. Formulas for the degree of consolidation and the settlement

of the ground are presented. A case study shows that the degree of consolidation in

the ground calculated with the finite difference method agrees well with the traditional

analytical solution, and the computational efficiency of the finite difference method can

be effectively improved when the segmental calculation method is used throughout the

consolidation process. The results of another example show that the settlement of the

ground calculated with the finite difference method agrees with the in situ data. The

suggested method can greatly simplify the consolidation calculation and has a high

application value in engineering.

Keywords: soft clay, one-dimensional consolidation, non-linearity, finite difference method, uniform load,

hyperbolic model

INTRODUCTION

The traditional Terzaghi one-dimensional consolidation theory assumes that external loads are
applied instantaneously and does not take into account that external loads are often linear,
graded, or cyclic in practical engineering. Additionally, the non-linear characteristics of the stress–
strain relationship of the soil itself are not considered. Therefore, many scholars have carried
out improvement studies. Schiffman (1958) first analyzed the problem of the one-dimensional
consolidation of a foundation under variable loads. Later, Wilson and Elgohary (1974), Favaretti
and Mazzucato (1994), Xie and Pan (1995), and Zhao and Shi (1996) conducted further research
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on this problem and obtained many useful conclusions. Lai and
Song (2005) conducted soil consolidation and drainage tests
under special stress paths, and the stress–strain relationship
of soil obtained was consistent with the fitting results of the
log-curve non-linear model, sinusoidal non-linear model, and
traditional hyperbolic model. Yu et al. (2008) used a modified
hyperbolic model to fit the quantitative relationship between
the secondary consolidation coefficient and the pressure of soil
under normal consolidation and proposed a modified method
for calculating the secondary consolidation settlement of the
normal consolidated soil. He and Jiang (2009) proposed a
hyperbolic prediction model that reflects the semicubic non-
linear relationship between the settlement rate and the remaining
settlement. In addition, in the study of one-dimensional non-
linear consolidation theory, Davis and Raymond (1965), Barden
and Berry (1965), and Xie et al. (2006) considered the physical
non-linear characteristics of soil based on the relation e –
lgσ

′

. However, the value of the initial consolidation pressure
is crucial to the calculation of the foundation settlement by

the e – lgσ
′

model. In view of this, Wei (1987) believed that,
if the initial pressure and repressure could not be reasonably
distinguished, then the hyperbolic model could be used to
calculate the foundation settlement, and the calculation result
was better than that of the e – lgσ

′

model. Xu (1987) also
experimentally proved that the hyperbolic model could better
simulate the constitutive relationship of soft clay. On this basis,
Shi et al. (2001) obtained the one-dimensional consolidation
theory of the hyperbolic model at the time of instantaneous
loading, and the calculated results were in good agreement
with the laboratory test. Xie et al. (2010, 2016) obtained
the analytical solution for the one-dimensional consolidation
of clayey soils and double-layered structured soils with a
threshold gradient. Lo et al. (2016) presented a one-dimensional
consolidation theory in unsaturated soils under cyclic loading.
Wang et al. (2017), Liu et al. (2018), Zou et al. (2018), and
Zhao et al. (2020), respectively, obtained analytical solutions for
the one-dimensional consolidation of clayey soils considering
different load and boundary conditions. When considering
time-dependent loading, Deng et al. (2019) presented closed-
form solutions for one-dimensional consolidation in saturated
soils, Moradi et al. (2019) analyzed the one-dimensional
consolidation of a multilayered unsaturated soil under partially
permeable boundary conditions, and Zhou et al. (2020) obtained
an analytical solution for a classical one-dimensional thaw
consolidation model.

However, due to the small sample used in the test, the
applicability of this theory in the calculation of deep soft clay
could not be verified. Zhang and Sun (2007) established the
one-dimensional consolidation theory of foundations under
variable loads based on the hyperbolic model, and Zhou
et al. (2013) presented a finite difference model for a one-
dimensional electro-osmotic consolidation. However, the theory
assumed that the initial effective stress and the additional
stress of soil remained unchanged along the depth, which
was different from the actual situation. Therefore, this paper
combines previous research results with the hyperbolic model

of the stress and strain of soil as a starting point. This
method assumes that the initial stress changes along the
depth of the foundation, and at the same time, the load
caused by the additional effective stress changes with time
and depth. Additionally, the uniformly distributed load is
derived via the control equation of the one-dimensional
consolidation of soil, and the finite difference method is
introduced into the degree of consolidation and settlement
calculation formula.

ONE-DIMENSIONAL CONSOLIDATION
GOVERNING EQUATION

Basic Assumptions
The basic assumptions are as follows: the soft soil is saturated,
the thickness of the compressed soil layer is H, the surface
of the soft soil is permeable, and the drainage conditions
of the bottom surface can be divided into permeable and
impermeable. Considering the simulation of vehicle load, the
impulse load and simple harmonic load, which varies with
time, can be selected. When the vehicle load is transferred to
the embankment, the impulse load and simple harmonic load
could be uniformed. Besides, the embankment is filled step by
step, and the embankment load, which can be simulated to
multiple graded loads, also varies with time. All these loads above
can be simplified into the uniform load qtop(t), which varies
with time.

The distribution of the water pressure in the foundation is
shown in Figure 1, where γw(h1 + H – z) is the hydrostatic
pressure at depth z, pw is the total water pressure, and u is the pore
water pressure generated by the evenly distributed embankment
load qtop(t) in the soil.

FIGURE 1 | Schematic diagram of the one-dimensional consolidation model

of the foundation.
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a. The stress–strain relationship of the soil satisfies the
hyperbolic model:

σ ′

ε
= E0 +mσ ′ (1)

where σ ′ is the effective stress, E0 is the initial compression
modulus of the soil, ε is the strain, and m is the slope of the
σ ′/ε ∼ σ ′ curve.

b. Let the permeability coefficient k be proportional to the
compression coefficient av:

k

av
=

γwcv

1+ e0
= const (2)

where γw is the unit weight of water, γw = ρwg. The
parameter ρw is the density of water, cv is the consolidation
coefficient, e0 is the initial void ratio, and const is
a constant.

c. The initial effective stress of the soil σ 0
′(z) changes with

depth z.
d. Considering the change in the external load with time (as

shown in Figure 2A), the additional stress of the soil caused
by the external load also changes with time, and the additional
stress will change along the depth, so the additional stress can
be expressed by q(t,z) (shown in Figure 2B).

Derivation of the Consolidation Governing
Equation
Based on basic assumptions a and b, the one-dimensional
consolidation governing equation can be obtained as:

−cvE0

[

1

(E0 +mσ ′)2
∂2u

∂z2
−

2m

(E0 +mσ ′)3
∂σ ′

∂z

∂u

∂z

]

=
E0

(E0 +mσ ′)2
∂σ ′

∂t
(3)

According to the effective stress principle, the stress expression at
depth z is

σ ′ (t, z) + u (t, z) = q (t, z) + σ ′
0 (z) (4)

The two sides of Equation (4) are opposite and partial derivatives,
and we obtain:

∂σ ′

∂z
=

∂q

∂z
+

∂σ ′
0

∂z
−

∂u

∂z
(5)

∂σ ′

∂t
=

∂q

∂t
−

∂u

∂t
(6)

Substituting Equations (5) and (6) into Equation (3),
the one-dimensional non-linear consolidation governing

equation of the foundation under uniformly distributed
load is

cv
∂2u

∂z2
+

2mcv

E0 +m(q+ σ ′
0 − u)

∂u

∂z

(

∂u

∂z
−

∂q

∂z
−

∂σ ′
0

∂z

)

=
∂u

∂t
−

∂q

∂t
(7)

Boundaries and Initial Conditions
a. At the initial moment, the upper load is conveyed by the pore

water pressure, and its mathematical expression is

u(0, z) = q(0, z) (t = 0, 0 ≤ z ≤ H) (8)

b. After loading, when the ground surface is a permeable
layer, the pore water pressure on the bottom surface
is zero.

u(t,H) = 0 (t > 0, z = H) (9)

c. When the ground surface is an impermeable layer after
loading, the surface pore water pressure is zero, and its
mathematical expression is

u(t, 0) = 0 (t > 0, z = 0) (10)

d. When the top surface of the foundation is permeable and the
bottom surface is impermeable, the pore water pressure of the
soil is equal to that of the underlying layer.

DIFFERENTIAL METHOD FOR THE
GOVERNING EQUATIONS

Difference Method Format
According to the basic principle of the finite difference
method, with depth z as the vertical axis and time t as the
horizontal axis, a calculation area for foundation consolidation
analysis is established. The depth z is divided into M equal
divisions, the time t is divided into N equal divisions,
and a difference method calculation grid is established. As
shown in Figure 3, the grid node represents the pore water
pressure u, where ua ,b represents the value of the pore
water pressure at depth b in the ground at the moment of
time a.

The initial and boundary conditions in the difference equation
can be expressed as















u
0,b

= qb
ua,M = 0

ua,1 = 0 (permeable bottom surface)

ua,1 = ua,−1 (impermeable bottom surface)

(11)
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FIGURE 2 | Distribution of the additional stress in soil when the external load increases linearly. (A) External load function curve. (B) Curve of the additional stress in

the compressed soil layer.

For the governing Equation (7), the Crank–Nicolson format is
used to discretize the following difference format:

u
a+1,b

− u
a,b

1t
−

q
a+1,b

− q
a,b

1t
= cv

(

u
a+1,b+1

− 2u
a+1,b

+ u
a+1,b−1

2h2
+

u
a,b+1

− 2u
a,b

+ u
a,b−1

2h2

)

+

cvm

E0 +m(q
a,b

+ (σ ′
0)b − u

a,b
)

{ (

u
a+1,b+1

− u
a+1,b−1

2h

)

(

u
a+1,b+1

− u
a+1,b−1

2h
−

q
a+1,b+1

− q
a+1,b−1

2h
−

(

σ ′
0

)

b+1
−
(

σ ′
0

)

b−1

2h

)

+

(

u
a,b+1

− u
a,b−1

2h

)

(

u
a,b+1

− u
a,b−1

2h
−

q
a,b+1

− q
a,b−1

2h
−

(

σ ′
0

)

b+1
−
(

σ ′
0

)

b−1

2h

)

}

(12)

where 1t = T/N , h = H/M , T is the total consolidation
time, and M and N are the number of grids of the depth and
consolidation time, respectively.

To simplify the calculation, Equation (12) is linearized; then,

u
a+1,b

− u
a,b

1t
−

q
a+1,b

− q
a,b

1t
= cv

(

u
a+1,b+1

− 2u
a+1,b

+ u
a+1,b−1

2h2

+
u
a,b+1

− 2u
a,b

+ u
a,b−1

2h2

)

+
cvm

E0 +m(q
a,b

+ (σ ′
0)b − u

a,b
)

{ (

u
a+1,b+1

− u
a+1,b−1

2h

)

(

u
a,b+1

− u
a,b−1

2h
−

q
a+1,b+1

− q
a+1,b−1

2h
−

(

σ ′
0

)

b+1
−
(

σ ′
0

)

b−1

2h

)

+

(

u
a,b+1

− u
a,b−1

2h

)

(

u
a,b+1

− u
a,b−1

2h
−

q
a,b+1

− q
a,b−1

2h
−

(

σ ′
0

)

b+1
−
(

σ ′
0

)

b−1

2h

)

}

(13)

Linearization will inevitably bring errors. Tominimize the errors,
the difference grid can be refined. Assume























α(a, b) =
cvm

E0 +m(q
a,b

+ (σ ′
0)b − u

a,b
)

(

u
a,b+1

− u
a,b−1

2h
−

q
a+1,b+1

− q
a+1,b−1

2h
−

(

σ ′
0

)

b+1
−
(

σ ′
0

)

b−1

2h

)

β(a, b) =
cvm

E0 +m(q
a,b

+ (σ ′
0)b − u

a,b
)

(

u
a,b+1

− u
a,b−1

2h
−

q
a,b+1

− q
a,b−1

2h
−

(

σ ′
0

)

b+1
−
(

σ ′
0

)

b−1

2h

)

(

u
a,b+1

− u
a,b−1

2h

)
(14)

Then, the formula for calculating the difference method under
two boundary conditions can be written as follows:

Au = B (15)

When the bottom surface is permeable, A is an (M – 1) × (M –
1) order matrix, u is an (M – 1)× 1 order matrix, and B is an (M
– 1)× 1 order matrix. When t = a1t, then
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























A1,1 A1,2 0 0 · · · 0 0

A2,1 A2,2 A2,3 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · A
b,b−1

A
b,b

...
...

...
...

...
...

...
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0

0
0
...

A
b,b+1
...
0
0

· · ·

· · ·

...
· · ·

...
· · ·

· · ·

0
0
...
0
...

AM−2,M−3

0

0
0
...
0
...

AM−2,M−2

AM−1,M−2

0
0
...
0
...

AM−2,M−1

AM−1,M−1























































u1
...
...
...
ub
...

uM−1































=































B1
...
...
...
Bb
...

BM−1































(16)

where A
b,b

= −
cv
h2

−
1
1t

Ab,b+1 =
cv

2h2
+

1

2h
α(a, b)

(

b < M − 1
)

Ab,b−1 =
cv

2h2
−

1

2h
α(a, b)

(

b > 1
)

Bb = −
cv

2h2
ua,b+1 +

(

cv

h2
−

1

1t

)

ua,b

−
cv

2h2
ua,b−1 −

1

1t

(

qa+1,b − qa,b

)

− β(a, b)

B1 = −
cv

2h2
ua,2 +

(

cv

h2
−

1

1t

)

ua,1

−
1

1t

(

qa+1,1 − qa,1
)

− β(a, 1)

BM−1 = −
cv

2h2
ua,M−2 +

(

cv

h2
−

1

1t

)

ua,M−1

−
1

1t

(

qa+1,M−1 − qa,M−1

)

− β(a,M − 1)

When the bottom surface is impermeable, A is an M × M order
matrix, u is an M × 1 order matrix, and B is an M × 1 order
matrix. When t = a1t, then




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


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



A1,1 A1,2 0 0 · · · 0 0
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...
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0 0 0 0 · · · A
b,b−1

A
b,b
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0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0

0
0
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A
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0
0

· · ·
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· · ·

· · ·

0
0
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0
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
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







=






























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(17)

where A
b,b

= −
cv
h2

−
1
1t

Ab,b+1 =
cv

2h2
+

1

2h
α(a, b)

(

b < M
)

Ab,b−1 =
cv

2h2
−

1

2h
α(a, b)

(

1 < b < M
)

AM,M−1 =
cv

h2
−

1

h
α(a, b)

Bb = −
cv

2h2
ua,b+1 +

(

cv

h2
−

1

1t

)

ua,b

−
cv

2h2
ua,b−1 −

1

1t

(

qa+1,b − qa,b

)

− β(a, b)

B1 = −
cv

2h2
ua,2 +

(

cv

h2
−

1

1t

)

ua,1

−
1

1t

(

qa+1,1 − qa,1
)

− β(a, 1)

BM = −
cv

h2
ua,M−1 +

(

cv

h2
−

1

1t

)

ua,M

−
1

1t

(

qa+1,M − qa,M
)

− β(a,M)

Calculation Formula of the Consolidation
Degree
According to the uniaxial compression theory, the calculation
formula of the ground settlement is

S(t) =

∫ H

0

σ ′ (t)

E0 +mσ ′ (t)
dz −

∫ H

0

σ ′
0

E0 +mσ ′
0
dz (18)

The formula for calculating the average consolidation degree of a
foundation defined by settlement can be written as
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FIGURE 3 | Schematic diagram of meshing by the difference method.

TABLE 1 | Average consolidation degree of the foundation.

Time, t (days) Average consolidation, U (%) Relative error (%)

Analytical solution Difference method

0 0 0 0

100 0.295992 0.2960 0.0027

200 0.453752 0.4538 0.0106

300 0.56707 0.5671 0.0053

400 0.655737 0.6557 0.0056

500 0.726098 0.7261 0.0003

700 0.826585 0.8266 0.0018

900 0.890204 0.8902 0.0004

1,100 0.930484 0.9305 0.0017

1,300 0.955987 0.956 0.0014

1,500 0.972134 0.9721 0.0035

1,700 0.982357 0.9824 0.0044

1,900 0.988829 0.9888 0.0029

Us(t) =
S(t)

Sf
=

∫ H
0

σ ′ (t)

E0 +mσ ′ (t)
dz −

∫ H
0

σ ′
0

E0 +mσ ′
0
dz

∫ H
0

σ ′
max

E0 +mσ ′
max

dz −
∫ H
0

σ ′
0

E0 +mσ ′
0
dz

(19)

In addition, the average consolidation degree of the foundation,
as defined by the average pore pressure, can also be expressed as

Up =

∫ H
0

[

q(t, z)− u
]

dz
∫ H
0 qmaxdz

(20)

FIGURE 4 | External load curve.

FIGURE 5 | Ground settlement curve.

Theoretical Verification
Examples are cited in the literature (Zhu and Yin, 1998) for
verification. The calculation parameters are as follows: the
thickness of the compressed soil layer is 5m, and the bottom
surface is a permeable layer; the load time linearly increases from
qa = 0 kPa to qa = 300 kPa after 50 days and then remains
unchanged; the consolidation coefficient of the soil is cv = 5.7888
× 10−3 m2/day, and the initial compression modulus is E0 =

1,687 kPa.
The analytical solution in Zhu and Yin (1998) assumes that the

additional stress caused by the external load is linearly distributed
with time and depth, and the stress–strain relationship of the
soil is a linear elastic model. Corresponding to the special case
of the difference method solution in this article, which is m = 0,
Equation (1) can be written as

σ ′ = E0ε (21)
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In the following, the finite difference method (hereinafter
referred to as the method in this paper) proposed earlier is used
to calculate the average consolidation degree of the foundation.
To improve the calculation efficiency, the difference calculation is
divided into two sections in the time dimension: the first section
is 100 days in length, which is divided into 500 parts, 1t =

0.2 day; the length of the second period is the remaining 1,800
days, which is divided into 1,800 parts, 1t = 1 day. The average
consolidation degree of the foundation calculated by this method
and the analytical solution calculation results in Zhu and Yin
(1998) are summarized in Table 1.

From Table 1, it can be seen that the maximum relative
error of the calculation results of the method in this paper and
the analytical solution in Zhu and Yin (1998) is only 0.0106%,
indicating that the method in this paper is reasonable and feasible
and can meet the calculation accuracy requirements.

ILLUSTRATIVE EXAMPLES

In order to verify the feasibility of the method for the calculation
of the degree of consolidation of the foundation under the
conditions of a variable load and one-dimensional non-linear
consolidation, a calculation example in Favaretti and Mazzucato
(1994) was selected for analysis. This example is a weak
foundation project located under the silo of Ca’Mello. The change
law of the load applied to the soft foundation with time is
shown in Figure 4. Favaretti and Mazzucato (1994) carried out
on-site observations of the settlement of the soft foundation
and measured the consolidation coefficient of the soil (cv =

0.1296 m2/day) and the change law of the soil stress and strain
during loading by experiments. In this paper, the compression
characteristics of the hyperbolic model of the soil (E0 = 270 kPa,
m = 0.9) are obtained by fitting the soil properties from on-site
observations in Favaretti and Mazzucato (1994). The method in
this paper is used to calculate the ground settlement, which are
compared with the one calculated by an analytical solution in
Rahal and Vuez (1998) and the one measured in Favaretti and
Mazzucato (1994). The results are shown in Figure 5.

It can be seen from Figure 5 that the fluctuation trend of
the settlement curve calculated by the method in this paper
is basically consistent with the measured results, while the
analytical solution settlement curve in Rahal and Vuez (1998)
lags behind the measured results, indicating that the method in
this paper is more reasonable and feasible.

In fact, the analytical solutions of the foundation settlement
are often derived under the standard load form, which cannot
flexibly deal with the problem of variable loads in actual
engineering. When using the theories in Rahal and Vuez (1998)
to calculate the settlement of the soft foundation, the external
load needs to be simplified to a standard simple harmonic load.
This simplification will inevitably lead to human error, which
will cause the theoretical settlement curve to be out of sync
with the measured curve. The method in this paper only needs
to input the function expression of the external load into the
program. Impulse loads, simple harmonic loads, or multiple
graded loads can be accurately simulated, which simplifies the
load form conversion step, reduces human error, and greatly

simplifies the calculation process of the degree of consolidation
and the settlement of the foundation. Besides, the accuracy can be
improved by calculating in sections in the time dimension, which
has the irreplaceable advantage than the analytical solution.

CONCLUSIONS

a. The presented method can adapt to various variable load
situations, can greatly simplify the consolidation calculation
process, and can effectively improve the calculation efficiency
via a segmented calculation in the time dimension. The
calculation results are in good agreement with the traditional
analytical solution, indicating that the method is reasonable
and feasible.

b. The method in this paper considers the case in which
the external load is a function of time and can solve the
calculation of the consolidation degree and the settlement
of the foundation under the conditions of an impulse load,
a simple harmonic load, or multiple step loading in actual
engineering. Only the function expression of the external
load is input into the program during the calculation, which
avoids the steps of other theoretical calculation methods that
need to convert the external load. Via this method, human
error is reduced, and the calculation process for the degree of
consolidation and the settlement of the foundation is greatly
simplified, with good engineering application value.

c. The application condition of the presented method is the
one-dimensional consolidation of a single-layered saturated
soil with a permeable surface. The calculation formulas
of the finite difference method should be transformed
when analyzing the one-dimensional consolidation
of the multilayered unsaturated soil under partially
permeable boundary conditions. Besides, a multidimensional
consolidation issue cannot be solved by this method.
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NOMENCLATURE

List of symbols

H Thickness of the compressed soil layer

Z Depth

qtop(t) Uniform embankment load

γ w(h1 + H – z) Hydrostatic pressure at depth z

pw Total water pressure

u Pore water pressure

σ ′ Effective stress

E0 Initial compression modulus of the soil

ε Strain

M Slope of the curve σ ′/ε ∼ σ ′

k Permeability coefficient

av Compression coefficient

γ w Unit weight of water

ρw Density of water

cv Consolidation coefficient

e0 Initial void ratio

σ 0
′ Initial effective stress

T Total consolidation time

M Number of grids of the depth

N Number of grids of the consolidation time

S(t) Ground settlement

Us(t) Average consolidation degree defined by settlement

Up Average consolidation degrees defined by the average pore

pressure

ua ,b Value of the pore water pressure at depth b in the ground at the

moment of time a
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