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In this work, we investigated the microseism recorded by a network of broadband
seismic stations along the coastline of Eastern Sicily. Microseism is the most continuous
and ubiquitous seismic signal on Earth and is mostly generated by the ocean–solid earth
interaction. On the basis of spectral content, it is possible to distinguish three types of
microseism: primary, secondary, and short-period secondary microseism (SPSM). We
showed how most of the microseism energy recorded in Eastern Sicily is contained in
the secondary and SPSM bands. This energy exhibits strong seasonal patterns, with
maxima during the winters. By applying array techniques, we observed how the SPSM
sources are located in areas of extended shallow water depth: the Catania Gulf and a
part of the Northern Sicily coastlines. Finally, by using the significant wave height data
recorded by two buoys installed in the Ionian and Tyrrhenian Seas, we developed an
innovative method, selected among up-to-date machine learning techniques (MLTs),
able to reconstruct the time series of sea wave parameters from microseism recorded
in the three microseism period bands by distinct seismic stations. In particular, the
developed model, based on random forest regression, allowed estimating the significant
wave height with a low average error (∼0.14–0.18 m). The regression analysis suggests
that the closer the seismic station to the sea, the more information concerning the sea
state are contained in the recorded microseism. This is particularly important for the
future development of an experimental monitoring system of the sea state conditions
based on microseism recordings.

Keywords: microseism, machine learning, sea waves, array techniques, random forest

INTRODUCTION

Microseism is the most continuous and ubiquitous seismic signal on Earth and is mostly generated
by the ocean–solid earth interaction (Tanimoto et al., 2015). On the basis of its source mechanism
and spectral content, it is classified as: primary microseism (hereafter referred to as PM), secondary
microseism (SM), and short-period secondary microseism (SPSM) (Haubrich and McCamy, 1969).
Concerning PM, it shares the same spectral content as the ocean waves (period band 13–20 s)
and its source is associated with the energy transfer of ocean waves breaking/shoaling against
the shoreline (Hasselmann, 1963; Ardhuin et al., 2015). As for SM, it is likely to be generated by

Frontiers in Earth Science | www.frontiersin.org 1 May 2020 | Volume 8 | Article 114

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.00114
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2020.00114
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.00114&domain=pdf&date_stamp=2020-05-05
https://www.frontiersin.org/articles/10.3389/feart.2020.00114/full
http://loop.frontiersin.org/people/463715/overview
http://loop.frontiersin.org/people/238085/overview
http://loop.frontiersin.org/people/912037/overview
http://loop.frontiersin.org/people/803659/overview
http://loop.frontiersin.org/people/911445/overview
http://loop.frontiersin.org/people/912000/overview
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00114 May 1, 2020 Time: 12:39 # 2

Moschella et al. Insights Into Microseism Sources by Array and MLTs

FIGURE 1 | (a) Bathymetric and topographic map (EMODnet Bathymetry Consortium, 2018), with the locations of the seismic stations (black dots), used to perform
spectral and amplitude analysis of the microseism and to investigate its relationship with significant wave height, recorded by Catania and Cetraro buoy stations
(gray squares). (b) Digital elevation model of Mt. Etna, with the locations of the seismic stations (black dots), used to perform array analysis.

interactions between waves of the same frequency traveling in
opposite directions, has roughly twice the frequency of ocean
waves (period band 5–10 s), and generally shows a higher
amplitude than does PM (Longuet-Higgins, 1950; Oliver and
Page, 1963; Ardhuin et al., 2012, 2015). Finally, SPSM is
characterized by a period shorter than 5 s and is generated by
local nearshore wave–wave interaction (Bromirski et al., 2005).

Because of its source mechanism, microseism has been used
to make inferences on climate changes (e.g., Grevemeyer et al.,
2000; Aster et al., 2008; Stutzmann et al., 2009). For instance,
Grevemeyer et al. (2000) analyzed a 40-year-long record of
wintertime microseism and observed an increase in the number
of monthly days with strong microseism activity, hence inferring
an increase over time in surface air temperatures and storminess
of the northeast Atlantic Ocean.

Microseism amplitudes show strong seasonal modulation.
Indeed, at temperate latitudes, microseism shows periodicity,
with maxima during the winter seasons, when the oceans are
stormier, and minima during the summers (Aster et al., 2008).
This modulation is different along the coastlines of the Glacial
Arctic Sea and the Southern Ocean where, during the winters,
because of the sea ice, the oceanic waves cannot efficiently excite
seismic energy (Aster et al., 2008; Stutzmann et al., 2009; Tsai and
McNamara, 2011; Cannata et al., 2019).

Concerning the source location, microseism signals are non-
impulsive, and the sources are generally diffuse and variable in

time (e.g., Bromirski et al., 2013). Hence, the classical location
algorithms, used in earthquake seismology and based on the
picking of the different seismic phases, cannot be applied to locate
microseism sources. Array processing techniques can overcome
the above-mentioned difficulties and provide information on
the microseism source areas that generally coincide with coastal
regions and/or oceanic storm systems (e.g., Chevrot et al.,
2007; Juretzek and Hadziioannou, 2017; Pratt et al., 2017;
Lepore and Grad, 2018).

The link between microseism amplitudes and the ocean wave
height has been empirically explored by several authors (e.g.,
Bromirski et al., 1999; Bromirski and Duennebier, 2002; Ardhuin
et al., 2012; Ferretti et al., 2013, 2018). For instance, Bromirski
et al. (1999) determined site-specific seismic-to-wave transfer
functions in the San Francisco Bay area (California). Ferretti et al.
(2013, 2018) found empirical relations to predict the significant
wave height along the Ligurian coast (Italy). In addition, other
authors have derived physics-based models of the generation of
the different kinds of microseism from the sea state (e.g., Gualtieri
et al., 2013; Ardhuin et al., 2015; Gualtieri et al., 2019).

Microseism investigations and, more generally, seismological
studies are currently undergoing a rapid increase in dataset
volumes (e.g., Kong et al., 2018; Jiao and Alavi, 2019). For this
reason, nowadays, applications of machine learning techniques
(hereafter referred to as MLTs) on seismological data are
increasing in number day by day. Such techniques are used
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FIGURE 2 | Significant wave height time series recorded by the Catania (A) and Cetraro (B) buoys.

to extract information directly from data using well-defined
optimization rules and help unravel hidden relationships between
distinct parameters, as well as to build predictive models (e.g.,
Kuhn and Johnson, 2013; Kong et al., 2018). Examples of the
applications of MLTs to seismology include earthquake detection
and phase picking (e.g., Wiszniowski et al., 2014) and earthquake
early warning (e.g., Kong et al., 2016).

In spite of the availability of seismic and buoy data in the
Ionian and Tyrrhenian Seas and coastlines, the link between sea
waves and microseism has never been explored in such areas.
Furthermore, although the spectral features of the microseism
recorded in this area have been studied (e.g., De Caro et al.,
2014), the locations of its sources have never been constrained.
In this work, we will study the microseism recorded along the
coastline of Eastern Sicily in terms of spectral content, amplitude
seasonal pattern, and source location. In addition, we will present
a novel algorithm, based on up-to-date MLTs, able to reconstruct
significant wave height time series in points located in both the
Ionian and the Tyrrhenian Seas from the microseism recordings.

MATERIALS AND METHODS

Data
In order to investigate microseism, seismic signals recorded
from 2010 to 2014 by the vertical component of six stations,
belonging to the seismic permanent network run by Istituto
Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo –
Sezione di Catania (INGV-OE), were used (Figure 1a).
These stations are equipped with broadband three-component
Trillium 40-s seismometers (NanometricsTM) recording at a
sampling rate of 100 Hz.

Moreover, to carry out array analysis, seismic signals recorded
in January 2010–February 2012 by the vertical component of
the seven stations (equipped with the same sensors as above),
composing the summit ring of the Mt. Etna permanent seismic
network, were used (Figure 1b). These stations were chosen
because of: (i) the availability of continuously recorded data
during the time interval 2010–beginning of 2012 (in February–
March 2012, EBEL and ETFI stations were destroyed by lava
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FIGURE 3 | (A) Spectrograms of the seismic signal recorded by the vertical component of the six considered stations. (B) Median spectra of the seismic signal
recorded by the vertical component of the six considered stations. The acronyms PM, SM, and SPSM indicate primary microseism, secondary microseism, and
short-period secondary microseism, respectively.
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FIGURE 4 | RMS amplitude time series of the seismic signal recorded by the vertical component of the six considered stations and filtered in the bands (A) 2.5–5.0 s
(SPSM, short-period secondary microseism); (B) 5–10 s (SM, secondary microseism); and (C) 13–20 s (PM, primary microseism).

flows); (ii) the ring-shaped geometry; and (iii) the distance from
the coastline (and then from the prospective closest microseism
sources associated with the nearshore wave–coast or wave–
wave interaction).

Finally, to make quantitative comparisons between the
microseism and wave height time series in the Ionian and
the Tyrrhenian Seas, significant wave height data, recorded
from 2010 to 2014 with a 30-min sampling step by two
stations (Catania and Cetraro; see Figure 1A) belonging to
the Italian Data Buoy Network, managed by Istituto Superiore
per la Protezione e la Ricerca Ambientale (ISPRA), were used
(Bencivenga et al., 2012; Figure 2). The significant wave height
is defined as:

Hs = 4
√
M0 (1)

where M0 is the 0-moment of the auto-spectral correlation of
the Fourier transformations of the buoy displacements in the
frequency/time domain (Steele and Mettlach, 1993):

M0 =

fu∑
fl

(S(f )d(f )) (2)

where the sum of the spectral density S(f ) is over all
frequency bands, from the lowest frequency fl to the highest

frequency f u of the non-directional wave spectrum (calculated
only for the elevation of the sea surface), and d(f ) is the
bandwidth of each band.

Spectral and Amplitude Analysis
The spectral content of the seismic data, recorded by the vertical
component of the six seismic stations shown in Figure 1a, was
analyzed as follows: (i) spectra over non-overlapping 81.92-s-
long sliding windows were computed; (ii) to obtain daily spectra
(that is, spectra representing the frequency features of the signal
acquired during a given day), all the spectra computed in (i)
falling on the same day were averaged by Welch’s segment
averaging estimator (Welch, 1967); (iii) all the daily spectra were
collected and visualized as spectrograms, which are 3D plots with
time on the x-axis, frequency on the y-axis, and power spectral
density (PSD) indicated by a color scale (Figure 3A).

Besides, to obtain information on the spectral features of
the seismic signals recorded by the different stations during
the whole investigated period, all the daily spectra composing
the spectrograms were averaged. Hence, spectra showing the
general spectral features of the 5-year-long seismic signals were
shown (Figure 3B).

In addition, the time series of the root mean square (RMS)
amplitude of the seismic signal, filtered in three period bands
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FIGURE 5 | RMS amplitude time series smoothed by a 90-day-long moving median, split into 1-year-long windows, stacked, and normalized for all the considered
seismic stations (see the legends on the bottom right corner of (A). In particular, regarding the period bands (A) 2.5–5 s (SPSM), (B) 5–10 s (SM), and (C) 13–20 s
(PM). The time on the x-axis of (A–C) indicates the window onset of the 90-day-long moving median.

FIGURE 6 | Array response functions of the seven stations composing the summit ring of the Mt. Etna seismic permanent network (see Figure 1b) for a unit
amplitude incident wave with slowness of 0 s deg-1 at periods of 2.5 s (A), 5 s (B), and 13 s (C).
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FIGURE 7 | (A,B) Time series of significant sea wave height recorded by the Catania and Cetraro buoys (red lines) and the RMS amplitude computed in the period
band 2.5–5.0 s (SPSM) by EPOZ and MSRU stations (blue lines) in 2011. (C,F) Maps of a portion of the Mediterranean Sea showing the spatial distribution of the
significant wave height on 26/04/2011 at 12:00 and on 18/12/2011 at 12:00, respectively (MEDSEA_HINDCAST_WAV_006_012 product from
http://marine.copernicus.eu/services-portfolio/access-to-products/). (D,G) Digital elevation models of Eastern Sicily with rose diagrams, located at the center of the
seismic summit ring of Mt. Etna (see Figure 1b), showing the distribution of the back azimuth values on 26/04/2011 and 18/12/2011, computed by f–k analysis.
(E,H) Maps showing the bathymetry of portions of Sicily coastlines (EMODnet Bathymetry Consortium, 2018).
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(PM, 13–20 s; SM, 5–10 s; and SPSM, 2.5–5.0 s), were computed
with both daily and hourly rates. The daily RMS amplitude
time series (Figure 4) were smoothed by a 90-day-long moving
median, split in year-long windows, stacked, and rescaled
between 0 and 1 (Figure 5).

Array Analysis
To get an idea on the locations of the main microseism sources
surrounding the Eastern Sicilian coastlines, the seven stations
composing the summit ring of the Mt. Etna seismic permanent
network were used as a roughly circular array (Figure 1b). The
array response functions (ARFs) were computed for the PM,
SM, and SPSM for a plane wave arriving with a slowness of
0 s deg−1 (Figure 6). Such ARFs exhibit that only the SPSM
case shows a fairly good resolution. This is due to the very
long wavelength of PM and SM compared to the array aperture
(∼5 km). Indeed, taking into account a velocity of the S-waves
(Vs) in the first kilometers of the crust equal to ∼2 km/s (e.g.,
Hirn et al., 1991; Patanè et al., 1994), the wavelengths of PM,
SM, and SPSM are ∼26, 10, and 5 km, respectively. When the
wavelength is much greater than the array aperture (as in the
case of PM and SM), the array behaves like a single station (e.g.,
Schweitzer et al., 2012).

The portions of the Ionian and Tyrrhenian coastlines, where
the microseism sources closest to the array could supposedly be
located, are characterized by a minimum distance of ∼20 and
∼45 km, respectively, from the array center. Such distances are
greater than two to three times the array aperture, and hence,
on the basis of the synthetic tests performed by Almendros et al.
(2002), the Etna summit ring array should be able to locate the
microseism sources with a planar wavefront assumption.

Then, to apply array analysis, the following processing
steps were carried out on the seismic signals: demeaning and
detrending, correction for the instrument response, filtering
within a 0.2- to 0.40-Hz band by a second-order Butterworth
filter, and subdivision in 60-s-long windows, tapered with a
Tukey window. The filter is also used to exclude volcanic
tremor, whose energy at Mt. Etna is mainly radiated in the band
0.5–5.0 Hz (Cannata et al., 2010). Successively, the STA/LTA
technique (acronym for short time average over long time
average; e.g., Trnkoczy, 2012) was applied to detect prospective
amplitude transients that could be related to volcano activity
(i.e., long period events and very long period events). Windows
containing amplitude transients were excluded from the array
analysis. Finally, the frequency–wavenumber (f –k) analysis was
carried out, allowing to calculate the power distributed among
different slownesses and back azimuths (e.g., Capon, 1973;
Rost and Thomas, 2002).

The array analysis was performed in January 2010–February
2012 on specific time intervals characterized by one of the
following two conditions: (i) intense wave activity in the Ionian
Sea, as shown by the Catania buoy data and/or by the high RMS
amplitude values at EPOZ station; or (ii) intense wave activity in
the Tyrrhenian Sea, as suggested by the Cetraro buoy data and/or
by the high amplitude RMS values at MSRU station. Examples
of the results for the days 26/04/2011 and 18/12/2011, exhibiting
conditions (i) and (ii), respectively, are shown in Figures 7, 8.

FIGURE 8 | Histograms showing the apparent velocity estimated by f–k
analysis on 26/04/2011 (a) and on 18/12/2011 (b).

To evaluate the error associated with the back azimuth
estimation, the jackknife technique (Efron, 1982) was employed
as follows. Firstly, the signal window was analyzed by the f–k
technique by using all the seven stations composing the array.
Successively, the analysis was repeated seven times, leaving one
station out at a time, so providing further seven back azimuth
values. An arithmetic mean of these estimates was assessed by the
following equation:

P̄ =
1
n

n∑
i=1

Pi (3)

where Pi is the back azimuth value computed by omitting the
i-th station and n is the number of stations composing the array.
Then, it is possible to estimate the i-th so-called pseudovalue as:

Ji = nP̂ − (n− 1)Pi (4)

where P̂ is the back azimuth value computed by considering all
the seven array stations. The jackknife estimator of parameter P
is given by:

J(P̂) =
1
n

n∑
i=1

Ji = nP̂ − (n− 1)P̄ (5)

The standard error of the jackknife estimates is given by:

δJ(P̂) =

√√√√ 1
n(n− 1)

n∑
i=1

(Ji − J(P̂))2 (6)

Finally, median error estimations were calculated separately for
the back azimuths oriented toward the Ionian Sea and the
Tyrrhenian Sea [the above-mentioned conditions (i) and (ii)].
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FIGURE 9 | Scheme of the modeling analysis to obtain the time series of significant wave height in the Catania and Cetraro buoy locations by using the microseism
(see text for details). MLT, machine learning technique; MAE, mean absolute error; “σMAE”, standard deviation computed on the mean absolute error; SVM support
vector machine.
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FIGURE 10 | Results of the machine learning analysis. (A,B) Average (blue bars) and standard deviation (red bars) of the mean absolute error (MAE), estimated by
k-fold cross-validation, for the Catania and Cetraro buoy data, respectively. (C,D) Index of importance for all the input taken into account to model the Catania and
Cetraro buoy data, respectively. (E,F) Aggregation through a summation of the input importance allowing to rank the microseism bands for the Catania and Cetraro
buoy data prediction, respectively. (G,H) Aggregation through a summation of the station importance for the Catania and Cetraro buoy data prediction plotted versus
the distance from the Catania and Cetraro buoys, respectively.
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FIGURE 11 | Measured (blue line) and predicted (red line) significant wave height time series of the Catania buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D).

Regression Analysis by Machine
Learning
Modern MLTs have been tested to build reliable predictive models
able to calculate the time series of significant wave height from
microseism data. The method, similar to the one proposed by
Cannata et al. (2019) to spatially and temporally reconstruct the
sea ice distribution around Antarctica based on the microseism
amplitudes, is composed of four main steps (summarized in
Figure 9): (a) data preparation; (b) training; (c) cross-validation;
and (d) testing.

Step (a) consisted of centering and scaling the predictor
variables (Kuhn and Johnson, 2013), that is, the 18 time series
of the microseism hourly RMS amplitudes from January 2010
to August 2014 (six stations by three frequency bands). The
remaining data (September–December 2014) is used for testing
step (d). To center the microseism predictor, the average is
subtracted from all the values. Successively, to scale the data,
each value of the microseism predictor is divided by its standard

deviation. Hence, all the time series of the microseism RMS
amplitudes share a common scale.

As for step (b), we made use of the following four MLTs to
build predictive models: (i) random forest (RF) regression; (ii)
K-nearest neighbors (KNN) regression; (iii) linear regression;
and (iv) support vector machine (SVM) regression.

As for the RF technique, it is based on decision trees often
used for classification and regression (Ho, 1995). One of the main
problems with decision trees is the need to increase accuracy and
avoid overfitting at the same time (Ho, 1998). RF overcomes such
a limitation by generating many decision trees and aggregating
their results (Liaw and Wiener, 2002). Recently, RF has had
many applications in geosciences, such as geochemical mapping
(Kirkwood et al., 2016) and the lithological classification of
underexplored areas by geophysical and remote sensing data
(Kuhn et al., 2018).

K-nearest neighbors is a non-parametric technique applied
for both classification and regression tasks (Altman, 1992). KNN
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FIGURE 12 | Measured (blue line) and predicted (red line) significant wave height time series of the Cetraro buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D).

regression simply predicts a new sample using the K-closest
samples from the training set (Altman, 1992; Kuhn and Johnson,
2013). Hence, for a new input, the output is the average of
the values of its K-nearest neighbors in the feature space of
the training set. Such a method has been extensively used
to classify remote sensing images (e.g., Li and Cheng, 2009;
Noi and Kappas, 2018).

Concerning linear regressions, relationships are modeled
using linear predictor functions; that is, the relationship between
predictors and responses falls along a hyperplane (Kuhn and
Johnson, 2013). Such linear relationships can be written as
(Kuhn and Johnson, 2013):

yi = b0 + b1xi1 + b2xi2 + · · · + bnxin + ei (7)

where yi is the output for the i-th sample, b0 is the estimated
intercept, bj represents the coefficient for the j-th predictor, xij
represents the value of the j-th predictor for the i-th sample,
and ei represents random error for the i-th sample. Similar to

the two previous machine learning methods, linear regressions
have been used in many fields of Earth Sciences, such as iron
mineral resource potential mapping (Mansouri et al., 2018) and
catchment-level base cation weathering rates (Povak et al., 2014).

Finally, SVMs are supervised learning models for both
classification and regression analysis (e.g., Drucker et al., 1997;
Kuhn and Johnson, 2013). As for regression, the SVM’s goal is to
find a function that deviates from each training point by a value
no greater than a chosen constant, and at the same time is as flat
as possible (e.g., Vapnik, 2000; Kuhn and Johnson, 2013). Also,
SVM has been applied in Earth Sciences, for instance to map
landslide susceptibility (Reza Pourghasemi et al., 2013) and to
classify remote sensing data (Jia et al., 2019).

Each of the four aforementioned techniques has its own
advantages and disadvantages (e.g., Kuhn and Johnson, 2013;
Yang et al., 2019). The main advantages of RF are its high accuracy
and robustness to outliers and noise; also, RF parameter tuning
does not have a drastic effect on performance. The disadvantages
are the expensive training time and overfitting in the case of small
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FIGURE 13 | Scatter plots showing the measured versus the predicted significant wave heights of the Catania buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D). The red dashed line in (A–D) is the y = x line. The
value of the determination coefficient (R2) is also reported in the bottom right corner of the plots.

datasets. KNN is effective and non-parametric, but it is not robust
in the presence of noise and it is not easy to identify the best
K value. As for linear regressions, they require short training
times, and the results are easy to visualize and understand, but
they are not suited to model non-linear relationships. Finally,
SVMs are easy to implement and show good efficiency in
training and generalization, but the tuning of parameters can be
quite difficult.

For all the above-mentioned MLTs, the 18 time series
of the centered and scaled seismic RMS amplitudes from
January 2010 to August 2014 were used as the input, while
the two time series of significant wave heights, recorded
by the Catania and Cetraro buoys, were resampled by a
sampling step of 1 h (the same rate as the seismic RMS

amplitude time series) and considered as the output to build the
regression models.

Step (c) consisted of evaluating the best MLT by carrying
out the k-fold cross-validation (Kuhn and Johnson, 2013).
The cross-validation implies partitioning the original input
and output datasets into complementary subsets, constraining
a model on one subset (called “training set”), and validating
the model performance on the other subset (called “validation
set”). In particular, in the performed k-fold cross-validation, the
microseism amplitude and significant wave height samples are
partitioned into 10 (k = 10) sets of consecutive samples. Ten
models are trained by using all samples except one subset, which
is used to validate the models. The parameters we used to estimate
the model performance are: mean absolute error (MAE) between
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FIGURE 14 | Scatter plots showing the measured versus the predicted significant wave heights of the Cetraro buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D). The red dashed line in (A–D) is the y = x line. The
value of the determination coefficient (R2) is also reported in the bottom right corner of the plots.

the observed significant wave height and the predicted one and
the corresponding standard deviation (σMAE). The former was
estimated by the following equation:

MAE =
∑n

i=1
∣∣yi − xi

∣∣
n

(8)

where xi and yi are the predicted and observed significant sea
wave height values at the i-th time sample and n is the number
of samples in x and y. The results are shown in Figures 10A,B.

The final model was trained with the whole dataset from
January 2010–August 2014 and tested on the test set from
September–December 2014 [testing step (d)]. The comparisons
between the predicted and measured significant wave heights for
the testing period are reported in Figures 11–14.

RESULTS

Microseism recorded in Eastern Sicily shows the highest
amplitude in the bands 2.5–5.0 and 5–10 s (SPSM and SM,
respectively) at all the considered stations (Figures 3, 4).
Moreover, evident amplitude seasonal modulation is shown in
Figures 4, 5, with maxima reached during the winter (December–
February) and minima during the summer (June–August).

As for the array analysis, the summit ring of Mt. Etna seismic
permanent network turned out to be effective in locating the
microseism sources in the SPSM band (Figure 6A). During
Ionian stormy days, the back azimuth values indicate the Catania
Gulf, while during Tyrrhenian stormy days the back azimuth
rotates, pointing north–westward. In both cases, the SPSM
sources appear to be located in areas of extended shallow water
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depths (Figure 7). Concerning the median error in the back
azimuth estimations obtained by the jackknife technique, it was
equal to 21◦ and 12◦ for back azimuths oriented toward the
Tyrrhenian and Ionian Seas, respectively. As for the apparent
seismic velocity estimations, the histograms in Figure 8 show
values of∼1.5–2.0 km/s.

Finally, MLTs have been able to reconstruct the time series
of significant sea wave height on the basis of microseism data.
The technique showing the best performance was RF regression
(Figures 10A,B), allowing to get the minimum MAEs equal
to 0.14 ± 0.02 m and 0.18 ± 0.05 m for the Catania (the
Ionian Sea) and Cetraro (the Tyrrhenian Sea) data, respectively.
It has to be underlined that the RF, linear, and SVM regressions
show very similar MAE values, especially in the case of the
Catania buoy. The RF approach has the advantage of easily
supplying an index of predictor importance (Figures 10C,D),
calculated by exploiting the random permutation of out-of-
bag samples (Breiman, 2001). To get information on the
importance of the different microseism bands in the prediction,
aggregation through summation was performed (Figures 10E,F),
showing how the SPSM band has the highest weight in
reconstructing the significant wave height time series at the
two buoys. In addition, aggregation through summation was
performed also for the station importance and exhibited how
the importance tends to decrease with increasing distance of
station–buoy (Figures 10G,H).

Finally, the comparison between the measured and predic-
ted significant wave height data during the testing period
(September–December 2014; Figures 11–14) showed very similar
patterns for the two time series, as also confirmed by the
high values of determination coefficient equal to 0.7 and 0.84
for the Catania and Cetraro buoys, respectively, in the case
of RF regressions.

DISCUSSION AND CONCLUSION

We investigated the microseism recorded close to the Eastern
Sicily coasts and its relationship with the significant wave
height recorded by two buoys installed in the Ionian and
Tyrrhenian Seas. Concerning the microseism characterization,
as measured in the seismic signals acquired worldwide (e.g.,
Aster et al., 2010), most of its energy is contained in the
SPSM and SM bands (Figures 3, 4). Also, the observed seasonal
amplitude modulations (Figures 4, 5) are a common feature of
the microseism recorded at temperate latitudes, characterized
by stormier seas during the winters (e.g., Aster et al., 2008;
Stutzmann et al., 2009).

Taking into account the array analysis, performed by the
seven seismic stations in Figure 1b by the f –k array technique
in the SPSM band, we were able to obtain the slowness vector
direction and, therefore, to get an idea on the locations of the
microseism source in the SPSM band. It was observed that the
SPSM sources appear to be located in areas of extended shallow
water depths: the Catania Gulf and a part of the Northern Sicily
coastlines (Figure 7).

The array analysis results are in agreement with Chen et al.
(2011), who analyzed microseism data collected in Taiwan and
showed how a stronger excitation in SPSM takes place in the
narrow Taiwan Strait where the water depth is very shallow,
while the excitations are relatively weak in the eastern offshore
area, an open sea with water depth increasing rapidly off the
coast. Although Juretzek and Hadziioannou (2017) focused on
a different frequency band (PM), they also constrained the
source locations of the microseism recorded in Europe in regions
with extended shallow water areas, that is, Norwegian and
Scottish coasts.

It has to be noted that the error associated with the microseism
source locations is higher in the case of the Northern Sicily
coastlines compared to the Catania Gulf. It derives from both the
higher back azimuth error (21◦ for the Tyrrhenian Sea versus 12◦
for the Ionian Sea) as well as from the longer distance array–
Northern Sicily coastlines (∼45 km) compared to the distance
array–Catania Gulf (∼20 km).

The apparent seismic velocity estimations of 1.5–2.0 km/s in
the SPSM band (Figure 8) are in agreement with the Rayleigh
wave velocity calculated by using beamforming analysis, applied
on the ambient seismic noise in New Zealand, by Brooks et al.
(2009), as well as with the results obtained from investigating the
seismic noise in the northeast of the Netherlands by Kimman
et al. (2012). In addition, Rivet et al. (2015) also estimated
comparable velocities (of 1.5 km/s at 1 Hz and 2.0 km/s at 0.5 Hz)
by using a time–frequency analysis to measure the group velocity
of Rayleigh wave on noise cross-correlation.

Finally, we propose an innovative method, based on up-to-
date MLTs, able to reconstruct the time series of significant
wave height by using microseism recorded in different period
bands by distinct seismic stations. Such a method allows to
reliably compute the significant wave height in two locations,
coinciding with the two buoys in the Ionian and Tyrrhenian
Seas, with fairly low error (MAE equal to ∼0.14 m for the
Catania buoy and∼0.18 m for the Cetraro buoy; Figures 10A,B).
In particular, the MLT which showed the best performance
was the RF regression. This can be related to several factors,
such as: (i) the performance of the RF regression is not much
affected by parameter selection (e.g., Li et al., 2011; Kuhn
and Johnson, 2013); (ii) by making use of an ensemble of
decision trees, RF regression does not overfit with respect to the
source data (e.g., Li et al., 2011); and (iii) RF shows robustness
to outliers and noise (Breiman, 2001). Finally, compared to
linear regressions, RF regression is able to deal with non-linear
relationships between the input and output. Indeed, according
to Essen et al. (2003) and Craig et al. (2016), the relationship
linking microseism amplitude and significant wave height is likely
to be non-linear.

Focusing on the comparison between the highest measured
and predicted (by RF regression) significant wave height data
during the testing period, it is possible to note a slight
underestimation and overestimation of the predicted values
compared to the measured ones in the Catania and Cetraro
cases, respectively (Figures 13A, 14A). These different behaviors
could be related to the different distances between the seismic
stations and the buoys.
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Although buoys are considered the most used and reliable
instruments for in situ measurements of sea waves (Orasi et al.,
2018), the high maintenance costs, together with the recurring
damages and then lack of data, make the proposed microseism-
based method a valid complementary tool for the monitoring
of the sea state. Furthermore, once the regression model has
been determined and if the seismic data are available, such a
method could allow reconstructing the time series of sea wave
height during periods prior to the buoy installation, with wide
applications in many fields, first of all climate studies.

The RF regression also provides an index of importance of the
distinct predictor variables, which are the seismic RMS amplitude
time series. The aggregated importance of the different frequency
bands exhibits how the SPSM band contains most of the
information for the buoy data reconstruction (Figures 10E,F).
According to the literature (e.g., Bromirski et al., 2005; Chen
et al., 2011; Gualtieri et al., 2015), such a microseism band,
characterized by high frequencies and then by quick attenuation
with distance, is mostly generated by sources located in relatively
shallow water close to the shelf break, close to the seismic stations.
Such sources are likely related to local nearshore non-linear
wave–wave interaction (e.g., Bromirski et al., 2005). This is in
agreement with the location of the considered buoys, close to
the coastlines, in shallow water conditions (90 and 100 m for
Catania and Cetraro, respectively; Bencivenga et al., 2012). Both
PM and SM turned out to have a much smaller importance for
the buoy data reconstruction. Indeed, as for PM, its dominant
source regions can be located thousands of kilometers away from
the seismic stations (Gualtieri et al., 2019). Concerning SM, it has
been shown how it can also have pelagic sources in deep ocean
(e.g., Chevrot et al., 2007; Kedar et al., 2008).

In addition, the difference in the predictors with the maximum
importance for the two buoys (EPOZ-SPSM for the Catania buoy
and MSRU-SPSM for the Cetraro buoy; Figures 10C,D) reflects
the different locations of the seismic stations. Indeed, EPOZ is
very close to the coastline of the Ionian Sea, where the Catania
buoy is installed, while MSRU is placed nearby the Tyrrhenian
Sea, where the Cetraro buoy is located (Figures 1, 10G,H).
Hence, the closer the seismic station is to the sea, the more
information concerning the sea state are contained in the
recorded microseism. From a future perspective, this finding is
important to build an experimental monitoring system of the sea
conditions (mainly in terms of significant wave height) based on
microseism recordings.
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