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Plio-Pleistocene silt/clay-rich deposits and paleo-karst fissure sediments from sites of

the northern and southern parts of the Carpathian Basin were investigated. These

materials were supposed to be mixed during transport before being captured in karstified

fissures. Evidence that the eolian fissure sediments of Plio-Pleistocene age in the

older Triassic–Cretaceous limestones are derived from eolian silt and clay includes

compositional and textural matches, especially decreasing grain-size trends observed

downwards from the paleo-surface of the former landscape. Various environmental

factors could be recognized by the statistical evaluation of grain-size distribution curves

of fissure fillings sediments, such as the effects of eolian transport, parent rock type,

weathering, and other sediment transport processes. Grain-size distribution curves with

a single maximum in the silt size range are typical for the overlying siltstone debris, for

the redeposited loess and red paleosol underlying the loess. Red clay fissure fillings yield

bimodal grain-size distribution curves with maxima both in the clay and silt fractions. The

research reported in this paper identifies for the first time the presence of eolian deposits

in karst fissures of the Carpathian Basin and investigates the characteristics and origin.

Keywords: eolian sedimentation, clay, paleosol, karst, Pliocene, Pleistocene, Carpathian basin

INTRODUCTION

Granulometry based on laser diffraction is a fundamental technique widely used in eolian sediment
research (Tsoar and Pye, 1987). Substantial accumulations of silty wind-blown dust require a
source of silt and clay particles, transport media (prevalent winds of adequate energy), climate, and
sediment traps (Tsoar and Pye, 1987; Evans and Reed, 2007; Kok et al., 2012; Újvári et al., 2016). The
rate and distance of eolian transportation strongly depend on grain ability and availability (grain-
size and shape), terrain and wind strength (Evans and Reed, 2007; Varga et al., 2011; Kok et al.,
2012; Vandenberghe, 2013; Újvári et al., 2016). Allochthonous karst depression, cave and fissure-
fill sediments are mostly believed to be originated from local sources (Pickford and Mein, 1988;
Atalay, 1997; Evans and Reed, 2007; Peresani et al., 2008; Evans and Soreghan, 2015; Muttoni et al.,
2017), and considered to be derived from the terrain directly overlying the fracture networks on
carbonates (Bosch and White, 2007; Costantini et al., 2009; Mikulčić Pavlaković et al., 2011; Gil
et al., 2013; Al-Farraj et al., 2014; Peng et al., 2019; Soriano et al., 2019). Only a few studies have
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recognized the link between cave and fissure sediments andwind-
blown dust (Coude-Gaussen et al., 1984; Villa et al., 1995; Evans
and Reed, 2007; Merino and Banerjee, 2008; Rellini et al., 2013;
Evans and Soreghan, 2015; Andreucci et al., 2017; Kovács et al.,
2017; Bosák and Zupan Hajna, 2018; Durn et al., 2018; Ge et al.,
2020). As stated by Musgrave and Webb (2004), Merino and
Banerjee (2008) the reddish terra rossa and other cave sediments
on carbonates are mostly originated from mineral dust. Evans
and Soreghan (2015) found that the “wind-driven deposits in
karst fissures and subterrane networks are sole data provider
of continental-scale information about local and distant source
areas, land-atmosphere transfer processes, surface depositional
processes, erosion, transport, and resedimentation into karst
networks.” The physics of silt and clay particle mobilization,
transport and deposition are discussed in detail by Újvári et al.
(2016). Since grains bigger than 20µm are generally transported
by low-level winds, dust trapping is more effective in the leeward
of topographic obstacles (Tsoar and Pye, 1987; Evans and Reed,
2007). The accumulated eolian dust may be reactivated by wind
or wore away by surface and subsurface (groundwater) water
which can be a key process of sediment redistribution (Bal
and Buursink, 1976). The red siliciclastic (clay/silt) deposits of
the Carpathian Basin are recognized from both exposures and
boreholes (Fekete, 2002, 2014; Viczián, 2002, 2011; Kovács, 2008;
Kovács et al., 2011, 2013). Previous work identified the red
clays in the Carpathian Basin as a variety of loess, sediment
formed by the deposition of wind-borne silt or formed by the
weathering of volcanic material or even as a bauxite related
sediment (Kovács, 2008 and references therein). The eolian
origin of the Plio-Pleistocene red clay in the Carpathian Basin
was proposed by Kovács (2008). The provenance of dust found
in red clay and loess in the region is a source of considerable
debate (Kovács, 2008; Újvári et al., 2010, 2012). As highlighted
by Kovács (2008) and Újvári et al. (2012), earlier researches
“described glacial sources for the loess to the north-northwest
of the Carpathian Basin, while others inferred a dominantly
local source for the loess and red clay such as Miocene flysch
and molasse, Miocene–Pliocene sands.” According to Smalley
et al. (2009), loess was originating from the Alps, Carpathians,
and Sudeten. Recent works based on geochemistry and loess
accumulation rates identify mountain sources such as the Alps
and the Carpathians (Buggle et al., 2008; Újvári et al., 2010;
Stevens et al., 2011; Marković et al., 2015). A recent dust
provenance study based on clay mineralogy, Sr-Nd isotopes
and zircon U-Pb ages by Újvári et al. (2012) suggest that “the
Danube loess in the Carpathian Basin was derived from two
major sources: alluvial fans of the Danube River and local
rocks exposed in the surrounding mountains of specific loess
sites.” A North African influence as a source of fine dust in
red clays and loess is unlikely based on clay mineralogical and
granulometric considerations (Újvári et al., 2012; Kovács et al.,
2013). This research aimed at better understanding the origin of
Upper Pliocene and Pleistocene allochthonous fissure deposits
in Triassic and Cretaceous limestones in the Carpathian Basin
(Kovács et al., 2017). These fissure deposits can be linked to
the overlying silty (loessic) deposits, with long-distance (Alpine
realm, Western Europe, Carpathian foreland) or short-distance

(Carpathian Basin) source areas (Újvári et al., 2010, 2012; Kovács
et al., 2013; Marković et al., 2015; Obreht et al., 2019).

SAMPLING SITES

The sampling sites in Hungary and Slovakia were chosen
according to their geological and geographical settings
(Figure 1). As stated in Újvári et al. (2010), “diverse eolian
accumulation and sedimentation are expected under different
physiographic situations.” All sites are karst areas on Triassic
and Cretaceous limestones and situated in the Danube loess
belt (Marković et al., 2015). The two sites in Slovakia are on the
foothills of the Carpathians while the Hungarian sites are in a
low-elevated hilly region in the southern part of the basin, far
away from the Alps and the Carpathians (Figure 1).

Beremend Limestone Quarry (Hungary)
Beremend site is located 10 km south from the Villány Hills
and the city of Villány, in Southern Hungary (Figure 1C). The
flat limestone hill is covered by loess-paleosol succession and
its altitude is 174m. Pliocene-Pleistocene mammalian faunas
were discovered from the karst cavities (with red clay infilling)
of Lower Cretaceous limestone (Pazonyi et al., 2016). This
carbonate rock suite (Nagyharsány Limestone) is a 400–500m
thick Urgon facies limestone (Császár, 2002). The karst processes
of the area are described in detail by Erőss et al. (2020).

Csarnóta Limestone Quarry (Hungary)
This site is found at Cser Hill, about 1.5 km south from
the municipality of Csarnóta in the Villány Hills, in South
Hungary (Figure 1D). Some parts of the quarry (Csarnóta
1–3) are typical red clay sequences which are fissure infills in
Triassic limestone, while another part (Csarnóta 4) consists of
reddish cave deposits (Jánossy, 1986). The Triassic limestone
(Lapis Limestone) is 300m thick with features similar to those
of the “Wellenkalk” facies of the Germanic Triassic (Török,
1998). Based on mammalian fossils, the Csarnóta 1–3 fissure
infills may have formed during the early Late Pliocene and
are correlated with the MN 15-16A “Mammals Neogene” (MN)
zones (Szentesi et al., 2015).

Ivanovce Limestone Quarry (Slovakia)
The Ivanovce locality (Figure 1A) was discovered by Fejfar
(1961). The site is situated in western Slovakia ∼12 km south-
west from the municipality of Trenčín. It consists of reddish silty
clay sediment fill within horizontal and vertical karst fissures in
tectonically deformed Triassic limestone (Bronger et al., 1984).
Based on the micro-mammalian fauna, the age of sediments
at this locality was assigned to the late Early Pliocene (Late
Ruscinian, MN 15b) (Fejfar et al., 2012).

Včeláre Limestone Quarry (Slovakia)
The site is a limestone quarry situated in the south-eastern part
of the Slovak Karst on the Dolny’ Vrch Range, south of the
village of Včeláre (Figure 1B). The quarry is opened on a Middle
Triassic limestone with a network of karst fissures filled with terra
rossa (red clay) sediments along with fragments of limestone. The
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FIGURE 1 | Map of the study area in the Carpathian Basin. Study sites are: (A) Ivanovce; (B) Včeláre; (C) Beremend; (D) Csarnóta. The white arrows show the

sampling points (Original map: DEM map of the Pannonian Basin, © Dept. of Geophysics, Eötvös University).

fissures are several meters wide and could also have been natural
traps for various animals (Sabol et al., 2008). Fossil assemblages
from Včeláre 3 represent a Villanyian fauna (Early Pleistocene,
MN17), whereas the fossiliferous fissure fillings of the Včeláre 4
assemblage are dated to Early Biharian (mid-Pleistocene, MQ1)
(Fejfar and Horáček, 1983).

METHODS

Sampling
At every site, well-developed vertical fissures (opening from the
recent surface) was chosen for sampling. The fissures are not
from deep karst systems. Kubiëna-type zinc boxes were used to
collect undisturbed samples from the fissures for thin-section
analyses. Disturbed samples for grain-size analysis were taken
from the surroundings of the undisturbed sampling spots. The
samples are from fine-grained, homogeneous units of the fissure
fillings. The reddish sediments from the fissures were described
as red clays and silts at every location, except for Včeláre, where
the material was characterized as terra rossa.

Laser Diffraction Particle Sizing
Before the laser diffraction measurements, red clay samples
(n = 75) were pretreated with (10ml, 30%) H2O2 to oxidize
the organic material and (10ml, 10%) HCl to remove the
carbonate, 10ml of 3.6% Na4P2O7·10H2O was added to disperse
particles (Konert and Vandenberghe, 1997; Kovács, 2008; Újvári
et al., 2016). Grain-size of the samples was made using a
Malvern Mastersizer 3000 laser scattering device. With the
wet dispersion unit (Hydro LV), particle size distributions
are given as volume percentage of particles classed into 101
logarithmically distributed (log-spaced) size bins from 0.01 to
2,100µm (Varga et al., 2018, 2019). Laser light scattering features
of this instrument are discussed in detail in Varga et al. (2018,
2019). In this study, values of 1.54 for the refractive index and
0.1 for the absorption coefficient (1.54-i0.1) were applied, while
1.33 for the refractive index was used for the dispersant water.
Reported refractive indices of soil-forming minerals generally
fall within a relatively narrow range, in overlap with the value
adopted in this study (Varga et al., 2018, 2019). However, the
exact value of the absorption coefficient is also dependent on
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particle shape and surface roughness beside the mineralogical
composition (Varga et al., 2018, 2019). As stated by Varga et al.
(2019), “to get an overview on the effects of optical settings
on particle size distributions, sensitivity tests were made with
the combination of various refractive indices (Ri: 1.45–1.6) and
absorption coefficients (Ac: 0.01–1).”

RADIUS—Rapid Particle Analysis of
Digital Images
The particle analysis method RADIUS [Rapid Particle Analysis of
digital Images by ultra-high-resolution scanning of thin sections,
Seelos and Sirocko (2005)] was developed to analyze and identify
the different sediment structures in sediment cores (Sirocko et al.,
2005). “This method allows the detection of climate-controlled
sedimentation processes like storm events under cold and dry
conditions or fine laminated sequences related to warm periods,
as well as spontaneous events such as volcanic eruptions, slumps
and turbidities” (Seelos et al., 2009). The procedure is based on
digital image analysis of single particles in a 200µm interval.
Each measurement provides a set of particle size and shape
parameters like ECD (Equivalent Circle Diameter), perimeter,
elongation, and roundness (surface roughness). The detection
limit is around 2µm. In this study, the thin sections were
scanned with 20× magnification under cross-polarized light.
Digital image analysis does not allow measuring and specifying
PSDs as a percentage by weight but as an area ratio.

Heavy Mineral Separation
For quantitative heavy mineral analysis, the samples were treated
with diluted HCl (10%) and ultrasonic agitation to eliminate the
carbonates while iron coatings were removed by oxalic acid. The
0.040–125mm size fraction was studied because it is the most
representative overview of the bulk sample. The heavy mineral
fraction (HMF) was separated using fast float liquid (methylene
iodide, CH2I2) at a density of 3.32 g mL−1. Lastly, a Frantz
L-1 magnetic separator was used to remove the paramagnetic
minerals. TheHMFs (250–300 grains) were examined in reflected
and transmitted light (Nikon Eclipse E600POL) microscopy for
qualitative and semi-quantitative analysis and the percentage of
each mineral was calculated following the method of Mange and
Maurer (1992).

Statistics
Grain-size distribution curves of laser diffraction measurements
were partitioned by parametric curve-fitting (Equation 1).
The polymodal size distributions were separated into three
unimodal Weibull-functions, and this way the measured grain-
size distribution can be interpreted as a sum of these functions
representing three sediment populations.

GSD=
3

∑

i=1

Wi=ci×

(

αi

β
αi
i

)

×xαi−1
×e

−

(

x
βi

)αi

(1)

Here, the shape (αi), location (βi) and weighting (ci) parameters
of the three Weibull-functions were modified by an iterative
numerical method as a least-squares problem by assessing the

goodness of fit of measured data and calculated size distributions
of constructed subpopulations (Varga et al., 2019).

RESULTS AND DISCUSSION

Radius
A representative sample (BER3, Figure 2 first column) from the
Beremend site (Figure 1C) was chosen to demonstrate RADIUS
results. This 50mm long thin-section image has a maximum
resolution of 2µm in particle-diameter. The thin-section sample
is vertically oriented to the depositional process. In theory, it is
possible to detect clay particles at this resolution. In practice,
luckily, the clay/fine silt fractions in the sample have specific
colors that allow a precise detection by color separation.

The amount of four different sedimentary phases is shown in
the second column (Figure 2A). The upper part of the sample
is characterized by a quartz content of ∼10% embedded in
brownish and red clay/fine silt. The amount of red clay increases
significantly up to 80% in the lower part of the section. At the
same time, the quartz content decreases but remains visible.
The abundance of Fe-Mn stains seems to co-vary with the
content of red clay. Figure 2B shows the mean values of particle
roundness/elongation: the curves are stable from top to bottom of
the section—an indication of sediment homogeneity. The dataset
demonstrates that the roundness of quartz is not influenced by
and linked with brownish/red clay content. The particle size
distribution curve for quartz (Figure 2D) shows the same. So,
quartz particle size distributions seem to be independent of the
clay fractions implying that it is not transported together with
the clay fractions over longer distances. The quartz grains are
from proximal, the silt/clay particles are frommore distal sources.
Looking at particle sizes of quartz (Figure 2C), the smooth curve
of the mean values (being in a narrow range from 40 to 50
micron) suggests one transport mechanism. These grain-size
values are typical for loess sediments. The sediments are well-
sorted, which is seen in Figure 2D: lines showing the inner
50% (between percentile 25 and 75) are close to each other,
implying symmetrical and narrow distributions as indicators of
eolian sediments.

Grain-Size Analyses
The grain-size distributions were found to be diverse, with the
majority of sedimentary particles falling into the medium and
coarse silt-sized fractions to fine sands, and with a considerable
volumetric contribution of clay and fine-silt fractions. Curve-
fittings provided exceptionally high correlation coefficients
(r2 >0.99), indicating a proper fitting of parametric distribution
functions to the complex grain-size curves (Figure 3). The fitted
unimodal distribution functions covered the whole spectrum of
the measured size fractions. Modal grain-sizes of W1 populations
were relatively stable around ∼4.5–5µm, while size maxima
of the W2 (medium and coarse silt-sized fractions) and W3

(fine sand dominated fraction) populations display a more
varied picture with values scattering between ∼20 and 90µm,
and ∼95 and 300µm, respectively. In all cases, a volumetric
proportion of W2 or W3 populations were recorded as the
highest ones. The presented grain-size data and the results of
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FIGURE 2 | The RADIUS detection system of red clay samples from fissure BER (Beremend, see in Figure 1C). (A) Content of sediment phases; (B) Mean roundness

of sediment phases; (C) Particle size of quartz fraction; (D) Particle size distribution of quartz fraction.

subpopulation separations reveal that all of the investigated
sedimentary materials were deposited in complex and relatively
dynamic sedimentary environments. However, by removing the
W3 populations, we can concentrate only on the W1 and
W2 groups. This way the majority of grain-size distribution
curves have uniform shape patterns with definite positive
skewness (asymmetry into the direction of coarse fractions),
unimodality (or weakly developed bimodality), leptokurtic
kurtosis and dominant appearance of medium and coarse silt-
sized subpopulations. All of these characteristics are fairly similar
to those of eolian loess-paleosol deposits and suggest a strong
influence and admixture of windblown dust (Sun et al., 2002,
2004; Vandenberghe, 2013; Vandenberghe et al., 2018; Varga
et al., 2019). Moreover, the above-mentioned characteristics
are in good agreement with the Plio-Pleistocene red silt/clay

sediment in the Carpathian Basin (Kovács, 2008; Kovács et al.,
2008, 2011, 2013).

Heavy Mineral Composition
The heavy mineral spectra of the samples are as follows:
amphibole, apatite, corundum, epidote, garnet, kyanite,
monazite, pyroxene, rutile, spinel, staurolite, titanite, tourmaline,
and zircon (Figure 4). Garnet (28–29%), amphibole (25–26%),
and pyroxenes (25–29%) are dominant in the Slovakian samples
(Figure 4A). The heavy minerals from the Slovakian sites
are angular, subangular, less abraded showing short distance
(<200 km) transportation. According to Nemec and Huraiová
(2018), garnet and rutile minerals are from metamorphic source
rocks and granitoid rocks. Probable provenance of these rock
types includes underlying deep-seated intrusive igneous and
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FIGURE 3 | Results of parametric curve-fitting of the measured grain-size distributions (volumetric amount and modal grain-sizes of the subpopulations are also

presented). Three representative samples from the study sites are shown here. Ber, Beremend; Csa, Csarnóta; Iva, Ivanovce; Vc, Včeláre.

metamorphic basement formations or shallow basin watershed
sediments transported from the Central Carpathians (Nemec
and Huraiová, 2018). Certain garnet minerals may also be
associated with granitic host rocks that appear as gravels in
Paleogene-Neogene siliciclastics (Hurai et al., 2012; Nemec
and Huraiová, 2018; Paquette et al., 2019). Garnet (21–23%),
amphibole (26–27%), and epidote (25–27%) are dominant
in the Hungarian samples (Figure 4B). Heavy minerals from
these sites are abraded and well-rounded indicating a longer
distance (>500 km) transportation. The River Danube from
its catchment area transports garnet-dominated heavy mineral
assemblages primarily from the Alps, and the Bohemian Massif

(Grosz et al., 1985; Thamó-Bozsó and Juhász, 2002). The higher
concentration of amphiboles in the samples indicates an
additional hinterland. The Neogene calc-alkaline volcanic rocks
from the Western Carpathians are likely the primary source for
amphiboles (Thamó-Bozsó and Kovács, 2007).

Eolian Origin and Provenance
Although, it has already shown that the red clay sediments
in karstified fissures are wind-blow in origin, but the
whole processes require more observations due to the karst
environment. Hypogene karstification has been reported from
Hungary (Leél-Ossy, 2017; Mádl-Szonyi et al., 2017) and
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FIGURE 4 | Heavy mineral assemblages from Slovakia (A) and Hungary (B).

Zrn, zircon; Grt, garnet; Ap, apatite; Ttn, titanite; Rt, rutile; Am, amphibole; Px,

pyroxene; Tur, tourmaline; Ky, kyanite; St, staurolite; Ep, epidote; Mnz,

monazite; Crn, corundum; Spl, spinel.

especially from the region of Beremend (Erőss et al., 2020). It
is important to be able to distinguish between allochthonous
fissure filling sediments and ghost-rock (Dubois et al., 2014;
Osborne, 2017; in-situ weathered rock, also called phantom
rock). During ghost-rock karstification processes the interstitial
flow through the fissure removes the more soluble ions while
the less soluble residual minerals remain in place (Dubois
et al., 2014). Fissure filling sediments are disconformable
with the host limestone while ghost-rock is conformable
with limestone containing host limestone structures and
textures (Osborne, 2017). In our case, there is a sharp contrast
(disconformable) between the fissure filling red sediments
and the host rock. In the last two decades comprehensive
granulometric analyses were made on the red silty clays and
the overlying loess-paleosol successions in the Carpathian Basin
(Kovács, 2008; Kovács et al., 2008, 2011, 2013; Újvári et al.,
2010, 2016; Varga et al., 2012, 2016, 2018, 2019) These red
clays show similarity in terms of their bimodal particle-size
distribution patterns with loess horizons (Kovács et al., 2008,
2011). The fine dust (<2µm) could be represented in the

fine component of the red clays. The source area of these
fines (clay- and fine silt-sized) could be linked to the North
African dust hot spots. As highlighted by Varga (2020), since
1979, ∼218 Saharan dust events have been observed in the
Carpathian Basin. Based on this, we suggest that North African
dust admixtures to red clays are likely, albeit with a very low
(5–10%) contribution.

CONCLUSIONS

Multi-proxy formal analyses provide deeper insight into red
paleosol genesis and material provenance situated in karstified
fissures in Mesozoic limestones. This study demonstrates the
presence of eolian sedimentation in paleokarst fissures located
in the Carpathian Basin. Major characteristics of the grain-
size distribution properties of wind-blown dust deposits are
represented reasonably well by all applied procedures such
as laser diffraction, high-resolution thin-section, and heavy
mineral analyses. The mean grain size of the samples is
definitely finer than eolian sand and coarser than Asian mineral
dust but is akin to silt. Moreover, evidence that the eolian
fissure sediments of Pliocene and Early Pleistocene age in
the Triassic–Cretaceous limestones are derived from wind-
driven red silt and clay includes compositional and textural
analogs; especially granulometric trends detected downwards
from the paleo-surface of the former landscape. The dust
was derived from a combination of local (Slovakian sites)
and longer-distance source areas (Hungarian sites), including
hinterland located >500 km away from the study site. The
heavy mineral assemblage indicates a very mature parent
rock. The source of the red silty clay can be attributed to
the alluvium and the wide riverbeds, the drainage basins of
the Alps and the Western/Central Carpathians. Our study
demonstrates that to develop a full granulometric report,
joint methodology-system of parametric curve-fitting and
RADIUS analyses are suggested. General vertical, bottom-
up coarsening of the grain-size values of the fissure-filling
sediments is clearly pointed-out by all of the investigated
granulometric descriptors, indicators, and proxies. We report
on the first time from Central Europe evidence for eolian
sediments captured in paleokarst fissures and characterize the
depositional signature of the red silty sediments using a novel
integration of petrographic and granulometric techniques. These
analyses enable us to specify the depositional process in an
entirely diverse environment. Thus, our discovery provides a
methodological framework for future characterization of eolian
processes. This discovery is inherently interdisciplinary and is
relevant to research into geomorphology, sedimentology, and
atmospheric sciences.
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