
ORIGINAL RESEARCH
published: 16 June 2020

doi: 10.3389/feart.2020.00202

Frontiers in Earth Science | www.frontiersin.org 1 June 2020 | Volume 8 | Article 202

Edited by:

Teng Xu,

Hohai University, China

Reviewed by:

Xiaodong Luo,

Norwegian Research Institute

(NORCE), Norway

Andrea Zanini,

University of Parma, Italy

*Correspondence:

Dan-Thuy Lam

dan-thuy.lam@outlook.fr

Specialty section:

This article was submitted to

Hydrosphere,

a section of the journal

Frontiers in Earth Science

Received: 03 February 2020

Accepted: 18 May 2020

Published: 16 June 2020

Citation:

Lam D-T, Kerrou J, Renard P,

Benabderrahmane H and Perrochet P

(2020) Conditioning Multi-Gaussian

Groundwater Flow Parameters to

Transient Hydraulic Head and

Flowrate Data With Iterative Ensemble

Smoothers: A Synthetic Case Study.

Front. Earth Sci. 8:202.

doi: 10.3389/feart.2020.00202

Conditioning Multi-Gaussian
Groundwater Flow Parameters to
Transient Hydraulic Head and
Flowrate Data With Iterative
Ensemble Smoothers: A Synthetic
Case Study
Dan-Thuy Lam 1*, Jaouher Kerrou 1, Philippe Renard 1, Hakim Benabderrahmane 2 and

Pierre Perrochet 1

1Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland, 2 French National

Radioactive Waste Management Agency (ANDRA), Châtenay-Malabry, France

Over the last decade, data assimilation methods based on the ensemble Kalman

filter (EnKF) have been particularly explored in various geoscience fields to solve

inverse problems. Although this type of ensemble methods can handle high-dimensional

systems, they assume that the errors coming from whether the observations or the

numerical model are multivariate Gaussian. To handle existing non-linearities between

the observations and the variables to estimate, iterative methods have been proposed. In

this paper, we investigate the feasibility of using the ensemble smoother and two iterative

variants for the calibration of a synthetic 2D groundwater model inspired by a real nuclear

storage problem in France. Using the same set of sparse and transient flow data, we

compare the results of each method when employing them to condition an ensemble of

multi-Gaussian groundwater flow parameter fields. In particular, we explore the benefit of

transforming the state observations to improve the parameter identification performed by

one of the two iterative algorithms tested. Despite the favorable case of a multi-Gaussian

parameter distribution addressed, we show the importance of defining an ensemble size

of at least 200 to obtain sufficiently accurate parameter and uncertainty estimates for the

groundwater flow inverse problem considered.

Keywords: inverse problem, transient groundwater flow, parameter identification, iterative ensemble smoother,

data assimilation, uncertainty

1. INTRODUCTION

Since the ensemble Kalman filter (EnKF) (Evensen, 1994) has been introduced as a computationally
efficient Monte Carlo approximation of the Kalman filter (Kalman, 1960; Anderson, 2003),
ensemble methods for data assimilation have been widely used for high-dimensional estimation
problems in geosciences (Evensen, 2009b). In all these methods, an initial ensemble of realizations
which should capture the initial uncertainty of the state or parameter variables of interest is
first generated. Then, thanks to the assimilation of available uncertain observations, an updated
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ensemble of realizations that are conditioned by the observations
is obtained. However, a main limitation is that ensemble Kalman
methods assume multivariate Gaussian error statistics in the
distributions involved in the computation of the update. As a
result, departures from this multi-Gaussian assumption can lead
to an important loss of optimality in the estimated ensemble
mean and variance.

EnKF is for example extensively applied in meteorology
in order to estimate the current state of the atmosphere in
real time (Anderson, 2009). In such atmospheric applications,
newly obtained observations of the atmosphere are assimilated
sequentially in order to update the initial conditions of weather
predictions models. In reservoir modeling, ensemble methods
have also become a standard tool with the use, more particularly,
of smoother algorithms for inverse modeling (Evensen, 2018).
Still with the aim of improving model forecasts, time series of
state observations collected during the production of a reservoir
are with smoother methods processed all simultaneously in order
to update the static parameters of reservoir simulation models.

EnKF has also been applied in surface and groundwater
hydrology for the estimation of both the parameter and
state variables of a system (Moradkhani et al., 2005;
Hendricks Franssen and Kinzelbach, 2008). In particular, it
has been shown that the increased degree of freedom introduced
by the larger number of unknowns can make the estimation of
EnKF particularly unstable, especially in the presence of non-
linear dynamics (Moradkhani et al., 2005). When the problem is
non-linear, such joint estimation can also result in inconsistent
predicted data after the update and physical inconsistencies
between the updated states and parameters (Gu and Oliver, 2007;
Chen et al., 2009). These issues have particularly motivated the
development of iterative EnKF methods based on the iterative
minimization of a cost function for each iteration of the standard
EnKF (Gu and Oliver, 2007; Emerick and Reynolds, 2012b).

Because of the need of restarting the dynamic model multiple
times in the context of non-linear parameter estimation with
EnKF, the simultaneous assimilation of all the data set in the
ensemble smoother method (van Leeuwen and Evensen, 1996)
has been considered a suitable alternative to EnKF in reservoir
applications. Instead of having to update the variables at each
assimilation time step, the ensemble smoother can process all
the data of the time series in one single update step. Similarly to
the iterative EnKF, successive updates can also be applied using
iterative forms of the ensemble smoother in order to improve the
data fit in non-linear problems (Chen and Oliver, 2012; Emerick
and Reynolds, 2012a; Luo et al., 2015). (Chen and Oliver, 2012;
Emerick and Reynolds, 2012a; Luo et al., 2015).

This paper focuses on the performance of two existing
iterative forms of ensemble smoother for a synthetic groundwater
flow application. Although the model is synthetic, it is inspired
by the real hydraulic perturbation observed at the Andra’s
Meuse/Haute-Marne site since the construction and operation of
the Underground Research Laboratory (Benabderrahmane et al.,
2014; Kerrou et al., 2017). In particular, the problem considers
a transient flow induced by one vertical shaft, and transient
observations at points located in a restricted region of the model.
Note that these situations of sparse and unevenly distributed

data are very common in real groundwater modeling studies
and makes the problem of subsurface characterization by inverse
modeling more difficult.

The main objective of this synthetic application is to assess
the benefit of assimilating different types of flow data, namely
hydraulic heads and flow rates, for the identification of multi-
Gaussian log hydraulic conductivity (log K) fields. In particular,
the effects of increasing the ensemble size on the accuracy
of the mean estimate and its associated uncertainty captured by
the ensemble will be compared for both methods. In addition,
similarly to the work of Schoniger et al. (2012) which introduced
the benefit of using a normal-score transform on the state
variables prior to updating multi-Gaussian log K fields with
EnKF, we will also assess in this study the benefit of using a
similar transformation approach but in the specific context of
one of the tested smoother algorithms. Indeed, it has been shown
that such state transformations could improve the accuracy of
the updates computed by EnKF thanks to a pseudolinearization
between the multi-Gaussian parameter field and the transformed
states variables (Schoniger et al., 2012). As a matter of fact, the
normal-score transform approach has already been applied in the
context of iterative ensemble smoothing in the recent work of
Li et al. (2018). However, in that study, the proposed approach
specifically aimed at addressing the problem of identifying
non-Gaussian parameter fields. Hence the approach required
transforming not only the state variables but also the parameters
in order to perform the update in both the transformed
parameter and data spaces. The main motivation for the normal-
score transform in that particular context was to get closer
to the assumption of multi-Gaussian variables which underlie
ensemble Kalman methods. However, unlike the normal-score
transform approach introduced by Schoniger et al. (2012), one
main drawback of transforming both the parameter and state
variables is that it can actually increase the non-linearity between
those variables (Zhou et al., 2011).

Hereinafater, we first present in section 2 the ensemble
smoother and the two iterative ensemble smoother considered
in this study: LM-EnRML (Chen and Oliver, 2013) and ES-
MDA (Emerick and Reynolds, 2012a). Both are the main
iterative variants currently used for inverse modeling in reservoir
applications (Evensen, 2018). The synthetic case including the
model set up and the generation of the initial ensemble are
presented in section 3. The performance used to analyze our
results on the synthetic case are presented in section 4. Finally,
the results are discussed in section 5.

2. GENERAL BACKGROUND ON THE
ENSEMBLE SMOOTHER AND ITERATIVE

The ensemble smoother (ES) introduced by van Leeuwen and
Evensen (1996) is an extension of the ensemble Kalman filter.
Both are similar in that a set of N realizations {mpr

i , ...,m
pr
N } is

used to represent a presumed multi-Gaussian distribution, and
is updated by the assimilation of measurements in order to form
a new conditional distribution. When using either ES or EnKF
for the inverse modeling of parameters based on observations
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of state variables, each conditioned parameter realization m
post
i

of the ensemble is calculated from the unconditioned realization
m

pr
i according to the following equation

m
post
i = m

pr
i + K(dobs,i − g(m

pr
i )) (1)

with

K = C
pr
MD(C

pr
DD + Cerr)

−1

The matrix K represents an approximation of the so-called
“Kalman gain” in the Kalman filter update equation, derived so
as to minimize the error covariance of the posterior estimate. It
is here computed based on approximations from the ensemble
of the cross-covariance matrix between the vector of prior
parameters and the vector of predicted data, noted C

pr
MD,

the auto-covariance matrix of predicted data C
pr
DD, and the

covariance matrix of observed data measurement errors Cerr .
By evaluating the relative uncertainty of the measurements and
prior estimate, the Kalman gain weights the contribution of each
conditioning observation relatively to the prior estimate m

pr
i for

the computation of the update. More precisely, it weights the
contribution from each component of the mismatch between
the vector of perturbed observations dobs,i, i.e., the observations
corrupted with noise zobs,i ∼ N(0,Cerr), and the corresponding

vector of predicted states g(m
pr
i ) using the forward operator g.

Unlike EnKF however, ES does not assimilate the data
sequentially in time. Instead, it assimilates all the available
observations simultaneously in a single conditioning step. Hence
the prediction step in ES prior to the single update will be longer
than each recursive one in EnKF since the ensemble of prior
realizations need to be forwarded in time until the time of the
last conditioning observation. Evensen and van Leeuwen (2002)
showed that when the prior realizations are multi-Gaussian and
the forward model is linear, ES and EnKF at the last data
assimilation will give the same result. In this special case, they
will converge to the exact solution in the Bayesian sense as the
ensemble size increases to infinity (hence the subscripts pr and
post used in the previous equations to denote the unconditioned
and conditioned realizations respectively). In non-linear cases,
EnKF has been shown to outperform ES (Crestani et al.,
2013). Indeed, the sequential processing of fewer data in EnKF
effectively allows the computation of smaller updates than the
single global update of ES. This fact particularly allows EnKF to
better match the measurements than ES in non-linear problems.

Even so, if the whole data set for the parameter estimation
is already acquired, the assimilation with ES of the whole set
of data in a global update step may seem more convenient to
implement. Indeed, the additional computations of intermediate
conditional ensembles over time with EnKF can be avoided.
For non-linear problems, iterative versions of the ES have
been especially developed in order to improve the insufficient
data match obtained with ES. Like ES, these iterative variants
assimilate the complete data set during the conditioning step.
However, the assimilation is performed multiple times on the
same data set in order to reach the final solution. In the following
sections, we introduce two existing iterative ensemble smoother

algorithms which are particularly used in reservoir applications
(Evensen, 2018), namely the simplified version of the Levenberg-
Marquardt Ensemble Randomized Maximum Likelihood (LM-
EnRML) of Chen and Oliver (2013) and the Ensemble smoother
with Multiple Data Assimilation (ES-MDA) of Emerick and
Reynolds (2012a).

2.1. Levenberg–Marquardt Ensemble
Randomized Likelihood (LM-EnRML)
LM-EnRML is an iterative ensemble smoother based on a
modified form of the Levenberg-Marquardt algorithm (Chen
and Oliver, 2013). By modifying the Hessian term, LM-EnRML
avoids the explicit computation of the sensitivity matrix of the
predicted data to the model parameters using the ensemble at
each iteration as in the original LM-EnRML formulation. This
allows LM-EnRML to reduce the numerical instability usually
observed with the original method for large-scale problems
where the ensemble size becomes smaller than the number of
parameters to estimate (Chen and Oliver, 2013). For our study,
we will use a simplified version of LM-EnRML referred as LM-
EnRML (approx.) in Chen and Oliver (2013) which neglects the
contribution to the update of the mismatch between the updated
and the prior realization. Indeed, Chen and Oliver (2013) showed
that using this simpler variant did not significantly affect the
results obtained with an ensemble of 104 realizations for a
large-scale estimation problem involving 165000 parameters and
4000 observations.

Assuming a prior multi-Gaussian distribution of realizations
m

pr
i with i = 1, ...,N, the algorithm aims to generate a posterior

ensemble of N realizations mi that each individually minimizes
an objective function

O(mi) =
1

2
(g(mi)− dobs,i)

TC−1
err (g(mi)− dobs,i)

+
1

2
(mi −m

pr
i )

TC−1
M (mi −m

pr
i ) (2)

which measures the distance between mi and the realization
m

pr
i sampled from a prior distribution and the distance between

the noisy observations dobs,i and the corresponding vector of
predictions, noted g(mi), which results from the application of
the forward operator g tomi.

Each minimization of the ensemble of objective functions is
performed iteratively, so that for each ensemble member, the
updated realization at iteration k+1 is computed using the results
of the previous iteration k as follows

mk+1
i = mk

i − C1/2
sc 1me

kV
PD
D WPD

D ((1+ λk)IPD +WPD
D

2
)−1

UPD
D

T
C−1/2
err (g(mk

i )− dkobs,i) (3)

where Cerr is the covariance of measurement errors, Csc, a
scalingmatrix for themodel parameters. AlthoughCsc is typically
defined diagonal with its diagonal elements equal to the variance
of the prior distribution in the general form of LM-EnRML,
Csc can simply be the identity matrix in the approximate
version LM-EnRML as it allows the algorithm to converge more

Frontiers in Earth Science | www.frontiersin.org 3 June 2020 | Volume 8 | Article 202

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Lam et al. Conditioning Parameters With Iterative ES

quickly (Chen and Oliver, 2013).1me represents an ensemble of
deviations from the mean of the parameters vectors, computed as

1me
k = −C−1/2

sc (me
k −me

k
)/
√
N − 1 (4)

with me the ensemble of N parameter vectors and me the
ensemble mean. As for the terms UPD

D ,WPD
D , and VPD

D , they result
from the truncated singular value decomposition, based on a
number PD of singular values, of the ensemble of deviations from
the mean of the vectors of predictions, noted1de, so that1de =
UPD
D WPD

D VPD
D

T
. This ensemble of predicted data deviations is

calculated as

1dek = −C
−1/2
D (dek − de

k
)/
√
N − 1 (5)

with de the ensemble of N prediction vectors and de the
ensemble mean. Finally, λ is a damping parameter, also known
as the Levenberg-Marquardt regularization parameter (Chen and
Oliver, 2013), and is adjusted by the algorithm. This parameter
is critical for the convergence of the algorithm as it affects the
search direction and length of each update step. The LM-EnRML
algorithm as proposed by Chen and Oliver (2013) adjusts λ after
each parameter update computation according to whether the
updated parameters lead to a decrease or increase of the objective
function. If the objective function is decreased, the update is
accepted and the parameter search continues with a decreased
λ. Otherwise, λ is increased until an update that decreases the
objective function is found. LM-EnRML will stop iterating either
after a maximum number of iterations allowed is reached, or the
relative decrease of the objective function or the magnitude of
the realization update falls below a defined threshold. To allow
a convergence toward a sufficiently low value of the objective
function, we set for our synthetic problem the initial value of λ
to 100 and defined a factor for either decreasing or increasing
the damping parameter equal to 4. Indeed, after testing different
initial values of λ, we found that lower values such as 1× 10−3

did not allow a significant change of the results in terms of
convergence and final data match. However, we noticed that
values larger than 1× 105 could result to very small changes in
the objective function and consequently to the termination of the
algorithm before a good data match could be reached.

2.2. Ensemble Smoother With Multiple
Data Assimilation (ES-MDA)
Thanks to its simple formulation, ES-MDA of Emerick and
Reynolds (2012a) is perhaps the most used iterative form of
the ensemble smoother in geoscience applications. The standard
algorithm consists simply in repeating a predefined number
of times the standard ensemble smoother (ES) (Emerick and
Reynolds, 2012a). However, unlike in the ES update, the
covariance of the measurement errors in ES-MDA is inflated so
that each realizationmi of the ensemble of sizeN at iteration k+1
is updated as follows

mk+1
i = mk

i + Ck
MD(C

k
DD + αk+1Cerr)

−1(dkobs,i − g(mk
i )) (6)

where dk
obs,i

= dobs +
√
αk+1C

1/2
err zd,i with zd,i ∼ N(0, Id).

The purpose of inflating the Gaussian noise, sampled at every
iteration, via the coefficient α > 1 is to limit the confidence given
to the data as they will be assimilated multiple times (Emerick
and Reynolds, 2012a). In so doing, the parameter covariance
reduction which occurs after each data assimilation is also
limited. The inflation factors used to inflate the covariance matrix
of the measurement errors need to satisfy the following condition

Na∑

k=1

1

αk
= 1 (7)

where Na is the number of times we repeat the data assimilation.
Indeed, this condition has been derived in order to make the
single update by ES and multiple data assimilation by ES-MDA
equivalent for the linear Gaussian case. For all our tests using
ES-MDA, we set for simplicity the inflation coefficients equal
to the predefined number of assimilations, as varying them in a
decreased order do not lead to a significant improvement of the
data match (Emerick, 2016).

ES-MDA effectively improves the data fit obtained by ES
in the non-linear case because ES is in fact equivalent to one
single iteration of the Gauss-Newton procedure to minimize the
objective function (2) when using a full step length and an average
sensitivity matrix calculated from the ensemble (Emerick and
Reynolds, 2012a; Le et al., 2016). The motivation for applying
ES-MDA in non-linear problems is that it would be comparable
to several Gauss-Newton iterations with an average sensitivity
matrix which is updated after each new data assimilation. By
calculating smaller updates than one single potentially large ES
update, ES-MDA is expected to lead to better results than ES.

The quality of the final data fit achieved with ES-MDA
will particularly depend on the predefined number of data
assimilations. The standard ES-MDA algorithm is therefore not
an optimized procedure as it requires some amount of trial before
finding a number of iterations which allows an acceptable match.
Although we did not consider them in this synthetic study,
implementations of ES-MDA which allow to adapt the inflation
coefficients and the number of iterations as the history match
proceeds have been proposed (Emerick, 2016; Le et al., 2016).

2.3. Normal-Score Transform of State
Variables With ES-MDA
Considering that the forward model g can be non-linear due
to the physical process being modeled and/or the influence
of imposed boundary conditions on the predicted states, the
assumption of multi-Gaussian dependence among state variables
in ensemble Kalman methods is generally not justified in
subsurface flow modeling even in the case of multi-Gaussian log
hydraulic conductivity fields (Schoniger et al., 2012). In addition
to the linearization around the ensemble mean introduced by
the use of an ensemble gradient, the derivation of the ES
update equation (6) particularly involves a linearization of the
forward model around the local estimate mk

i (Luo et al., 2015;
Evensen, 2018). Hence ES-MDA, which is based on the repeated
application of ES using inflated measurement errors, also applies
such a local linearization at each update step (Evensen, 2018).
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Because of this aforementioned local linearization in the
update step, we are here interested in assessing the effects
of a normal-score transform in order to apply the ES-
MDA update to locally Gaussian state distributions. In a
previous study, (Schoniger et al., 2012) observed an improved
performance of EnKF for the identification of multi-Gaussian
log hydraulic conductivity fields when assimilating normal-
score transformed state variables such as hydraulic heads. They
attributed this improvement to an “implicit pseudolinearization”
of the relationship between the multi-Gaussian log hydraulic
fields and the transformed predicted data which benefited the
“linear updating step” of EnKF. In addition to this statement, we
conjecture here that it is more specifically the local linearization
highlighted by Evensen (2018), rather than the linearization
around the ensemble mean introduced by the approximated
gradient, which will benefit from such a normal-score transform
performed locally at the data points. The “pseudolinearization”
observed by Schoniger et al. (2012) would then allow a
better approximation of the forward model from the local
linearization applied at each update step, thereby yielding more
accurate updates.

The effects of the ES-MDA update in the transformed space
will be tested as follows

mk+1
i = mk

i + Ck
MD̂

(Ĉk
DD + αk+1Ĉerr)

−1(d̂k
obs,i

−̂g(mk
i )) (8)

where

dkobs,i = dobs +
√
αk+1C

1/2
err zd,i

with

zd,i ∼ N(0, Id)

where the hat indicates either transformed variables or
covariances calculated based on transformed variables. A
normal-score transform (NST) function denoted ψk, for each
data type, is calculated based on the time series of state variables
predicted at each one of the k observation locations (Figure 1)
which we perturb with noise beforehand. Indeed, we perturb
the predicted data using the same inflated measurement errors
added to the observations dobs in (8). This NST function maps
the p-quantile of the ensemble distribution of original perturbed
predicted values at one location to the p-quantile of a standard
normal distribution. In order to evaluate properly the data
mismatch in the transformed space, the predicted data g(mk

i )

without added noise and the perturbed observations dk
obs,i

are
transformed using the same NST functions defined depending on
the location of the data. Note that CMD̂ is the cross-covariance
between the parameters and the normal-score transform of the
predicted data without added measurement errors.

To transform the term Ck
DD + αk+1Cerr , Schoniger et al.

(2012) suggested to calculate the covariance using directly the
transformed perturbed predicted data from which we built the
NST functions. In this way, the terms Ck

DD and Cerr don’t need
to be transformed separately. However, unlike in EnKF where
the inversion of the matrix Ck

DD + αk+1Cerr is fast thanks to
the generally small number of data at each observation time

(Liu and Oliver, 2005), the assimilation of a large data set here
with ES-MDA will require the use of the subspace inversion
procedure of Evensen (2004). Consequently, the calculation of

the transformed terms Ĉk
DD and Ĉerr will be needed in any case to

compute the pseudo-inverse of ̂Ck
DD + αk+1Cerr in (8). In the end,

Ĉk
DD can be calculated simply on the basis of the normal-score

transform of the predicted data without added measurement
errors, while the transformed measurement error covariance Ĉerr

will be determined so as to respect the following ratio

Ĉerr(Cerr)
−1 = ̂CD′D′ ,diag(CD′D′ ,diag)

−1 (9)

where Cerr is the untransformed measurement error covariance
which is often assumed diagonal, ̂CD′D′ ,diag is the diagonal
matrix constructed from the diagonal elements of the covariance
of the transformed perturbed predicted data, and CD′D′ ,diag is
the untransformed equivalent. It is worth pointing out that
transforming properly the measurement error covariance is
particularly critical in this proposed application of ES-MDA in
the transformed space as the data mismatch reduction with ES-
MDA will rely on the inflation of Ĉerr . Moreover, to better taking
into account the data of different orders of magnitude in the
update, Emerick (2016) suggested using the measurement error
covariance to rescale the predicted data before calculating the
truncated singular value decomposition (SVD) in the subspace
inversion procedure.

3. A SYNTHETIC INVERSE PROBLEM
INSPIRED BY THE ANDRA’S SITE

A synthetic case inspired by the hydraulic situation encountered
at the Andra’s Meuse/Haute-Marne site during the construction
and the operation of the Underground Research Laboratory
(Benabderrahmane et al., 2014; Kerrou et al., 2017) was created.
The model represents a two-dimensional vertical cross-section
of a multilayered aquifer system and is inspired by previous
modeling studies on the Andra’s site (Bourgeat et al., 2004;
Deman et al., 2015). The model was designed to mimic the
hydraulic behavior of the Oxfordian limestone multi-layered
aquifer above the Callovo-Oxfordian clay host formation which
is not included in the model. It will be used to analyze the
performance of the ensemble smoother and the two iterative
ensemble smoother algorithms presented previously for the
identification of multi-Gaussian parameter fields. We present
hereinafter the inverse problem set up, the assumptions for the
application of the methods, and the performance criteria.

3.1. Model Set Up
The synthetic model is two-dimensional over a vertical domain
of 5,000 m along the west-east direction and 500m in depth.
In order to solve the groundwater flow equation, the domain is
discretized by 50 × 500 square elements of 10m wide. Along the
top boundary, constant heads are imposed. The head values vary
from 267.5m on the west side to 284m on the east side according
to a small hydraulic gradient observed in the shallow aquifers
which we did not represent in our model. At depth, between 150
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FIGURE 1 | The two-dimensional vertical domain modeled of 5,000 m length and 500m depth. The thin rectangles indicates the location of nodes with a boundary

condition applied. The dots indicates the head observation nodes. Not shown here, the seepage boundary is divided into 5 zones where the produced flowrates are

measured. Reprinted from Lam et al. (2020) with permission.

and 500m, a constant head of 280m is imposed on the east side to
maintain a continuous east-west flow in the system (Figure 1).
To mimic the hydraulic perturbation created by one vertical
shaft to the underground research laboratory at the Andra’s site,
a subsequent transient flow simulation is calculated by adding
from time zero a seepage condition over the nodes corresponding
to the first 300 m of the western boundary starting from the
bottom (Figure 1). The nodes over the remaining 200m toward
the surface do not contribute to the production of water as they
model the isolated upper part of the shaft as in the real case.
Since the produced flowrates at the shaft are unknown prior to
the computed head solution at each time step, using a seepage
boundary condition instead of a pumping well with a prescribed
extraction rate seems indeed more appropriate here. Note that
in exploratory simulations, a sensitivity analysis was carried out
on different levels of the finite element mesh refinement and the
solver parameters, as well as on various types of flow boundary
conditions and hydraulic property values. This was in order to
ensure robust numerical solutions and optimized CPU time, and
also to avoid bias from boundary effects.

For simplicity, the groundwater flow equation was solved
numerically under saturated conditions. All the groundwater
flow simulations in the framework of this study were performed
with the simulator GroundWater (GW) (Cornaton, 2014). This
numerical code uses the standard Galerkin Finite Element and
the Control Volume Finite Element methods, and has been
validated on the basis of a series of standard benchmarks by
comparison with analytical solutions as well as with commercial
numerical simulators.

3.2. Synthetic Data Set
Since we intend in this synthetic study to apply ensemble Kalman
methods to an initial ensemble of multi-Gaussian parameter
realizations, a reference field of values of decimal logarithm
of hydraulic conductivity (log K) with mean −5 and variance
0.49 was generated with a multi-Gaussian simulation technique
(Figure 2). To generate the synthetic data set of the inverse
problem, a steady state groundwater flow was first simulated
prior to the activation of the seepage boundary condition. The
computed heads were then used as initial conditions for a

subsequent transient flow simulation after the activation of the
seepage condition at time zero. A constant specific storage value
of 10−6 m−1 was assumed over the whole domain as they will
not be considered in the inverse modeling. In the end, the data
set for the inversion is composed of simulated heads collected
every 1,200 s from t = 0 to t = 43, 200s, hence at 37 time
steps, at the ten observation points shown in Figure 1, and of
the flowrates produced every 300s in five defined zones of nodes
spread along the seepage boundary during the first 6,000 s of
the time series. As a result, the data set will be composed of at
most 570 observations in our experiments. Note that the final
time step of the flow simulation was chosen so as to capture
approximatively the drawdown before its stabilization, similarly
to the situation observed at the Andra’s site in Meuse/Haute
Marne (Kerrou et al., 2017).

3.3. Initial Ensemble of Parameters and
Assumptions for the Update Step
In this synthetic case, an initial multi-Gaussian distribution of the
variables to condition was considered to respect the underlying
multivariate Gaussian assumption of ensemble Kalman methods.
The initial ensemble is composed of multi-Gaussian realizations
of mean −5 of log hydraulic conductivity (log K) values
generated using a fast Fourier transform method. This mean
corresponds to the one used for the reference field as we
assume this value to be known in our case. Although different
variogram models could have been considered for the generation
of the initial ensemble, Wen and Chen (2005) showed that the
covariance model was not critically important to reproduce the
main heterogeneity features from the assimilation of flow data
with an ensemble Kalman method. Interestingly, Jafarpour and
Khodabakhshi (2011) concluded in a study which addressed
variogram uncertainty that the direct estimation of the variogram
model parameters with an ensemble Kalman method was made
difficult due to an insufficient strength of the linear correlation
between the flow data and those parameters. Ultimately, we
chose to simply assume a known variogram and hence used
the same variogram model as the one used for the reference
to describe the spatial variability of the ensemble of log K
fields, i.e., an exponential variogram of variance 0.49 and
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FIGURE 2 | Reference field of decimal logarithm of hydraulic conductivities (m/s).

correlation lengths of 120 gridblocks in the horizontal direction
and 10 gridblocks in the vertical direction. We assumed longer
ranges in the horizontal direction to mimic the presence of
the elongated porous horizons “HP” observed in the real field
case. In the vertical direction, we assumed the existence of five
horizons, hence a correlation length was set to one fifth of the
vertical dimension of the model. The realizations generated are
considered quite heterogeneous since the correlation lengths are
shorter with respect to the domain size, namely about one fifth of
each dimension.

One practical issue of ensemble methods is that the finite
number ofmembers, usually nomore thanO(100) in applications
(Wen and Chen, 2005; Gillijns et al., 2006; Anderson, 2009;
Evensen, 2009a), can cause spurious covariances between widely
separated components of the parameter vector and between
components of the vector of parameters and vector of predicted
data. Since these long-range spurious correlations are non-
physical, they can bring an undesirable response in the
update computed. In general, they cause an underestimation
of the ensemble variance which can potentially lead to “filter
divergence” (Evensen, 2009a). This term refers to the situation
where the assimilation of newmeasurements stops being effective
because the spread of the ensemble has overly reduced or has
“collapsed” to take them into account.

Considering that the observations are spatially restricted
to the modeled domain (Figure 1) and that the hydraulic
perturbation from the shaft is local relatively to the horizontal
extension of the model, such long range correlations will be
inevitable in this synthetic case. Therefore, it is necessary to
try to filter them out as much as possible before computing
the update. To this end, we will use a simple approach which
consists in “localizing” the Kalman gain matrix so that only the
parameters located within a certain distance of an observation
will be influenced by this observation during the update (Chen
and Oliver, 2017). We will multiply the Kalman gain element-
wisely with a “localization matrix” of the same size, i.e., number
of parameters by number of data, which each entry will be a factor
between 0 and 1 calculated by the correlation function defined by
Gaspari and Cohn (1999)

ρ =
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−1,

if L ≤ δ ≤ 2L

0, if δ > 2L

(10)
where δ denotes the distance between each couple of parameter
and data variable and L is a predefined “critical length” beyond

which the contribution of the data to the parameter update will
be negligible. In this way, long-range spurious correlations will
be partly removed from the Kalman gain and the performance
of the ensemble method will be improved. To avoid potential
discontinuities in the localized parameter update between the
two columns of data points (Figure 1), we set L to 1,600 m,
hence over a little larger distance than the distance separating the
points horizontally, in all tests. In this synthetic case, this distance
is consistent with the domain of the model that is identifiable
given our data set, namely the region influenced by the observed
hydraulic perturbation.

The ensemble smoother, LM-EnRML and ES-MDA all
consider the vector of observations in their update equation as
a random vector with the addition of a random noise vector
sampled from the measurement error covariance Cerr . For all
tests performed, we assumed a diagonal covariance matrix of
independent measurement errors of 0.05m2 for every head
observation. When flowrate data were assimilated in addition
to the hydraulic heads, Cerr also included independent flowrate
measurement errors set equal to the square of 20% of the flowrate
value. For the application of ES-MDA with transformed state
variables, Cerr was transformed as described in section 2.3.

4. PERFORMANCE CRITERIA

Ideally, the application of ensemble Kalman methods for our
parameter estimation problem aims to satisfy the following two
criteria: (1) to reproduce the dynamic observations of state
variables with the final ensemble of conditioned realizations, and
(2) to obtain a final ensemble of conditional realizations which
variations around the mean correctly quantify the uncertainty.
As we assumed in this synthetic case no model errors or errors
in the choice of the prior distribution used to sample the
parameter space, meeting both these criteria should ensure that
the ensemble-based uncertainty in the model predictions will be
well-represented.

To assess the quality of the fit between the simulated g(mi) and
observed data dobs using either LM-EnRML or ES-MDA with or
without transformed data, we will consider the evolution of the
sum of squared errors

D(mi) = (g(mi)− dobs)
T(g(mi)− dobs) (11)

Note that this sum of squared errors does not correspond to the
data mismatch term of the objective function which is actually
minimized by each algorithm considered (cf. section 2). Indeed,
dobs here denotes the vector of the original observations even
in the case of ES-MDA when considering transformed data. In
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this manner, we will be able to more easily compare the data
mismatch results obtained using LM-EnRML, ES-MDA with
or without transformed data. Note also that in this defined
sum of squared residuals, no normalization by the observation
error is considered. Therefore, when assimilating both heads and
flowrates, this sum will be dominated by the head data.

In addition, to compare the efficiency of ES-MDA when
using transformed vs. untransformed data, we will also compute
for each case the data mismatch term of the different cost
functions being minimized at each iteration. Indeed, Evensen

(2018) noted that each updated estimate mk+1
i of ES-MDA

actually corresponds to an estimation of the minimum of a cost
function written as

D(mk+1
i ) =

1

2
(g(mk+1

i )− dobs −
√
αkzd,i)

T(αkCerr)
−1

× (g(mk+1
i )− dobs −

√
αkzd,i)

+
1

2
(mk+1

i −mk
i )
T(Ck

M)−1(mk+1
i −mk

i )

(12)

where mk=1
i = m

pr
i and Ck=1

M = C
pr
M with C

pr
M the prior model

covariance approximated from the ensemble around the prior

ensemble meanmpr = m
pr
i .

Once an acceptable data match has been reached during
the conditioning procedure, the uncertainty based on the
variability of the final ensemble of conditioned realizations can
be assessed. In practice, ensemble-based Kalman methods are
known to particularly overestimate the uncertainty reduction
when they are not applied in sufficiently optimal conditions.
In particular, the use of a finite ensemble inevitably introduces
sampling errors in the approximated covariances which can lead
to an overly reduced variance of the conditioned ensemble.
Moreover, the solution space spanned by the ensemble when
computing the update will likely be under-sampled (Evensen,
2009a) and the estimated uncertainty will not be reliable. To
reduce these sampling errors, a natural solution is to increase
the ensemble size. However, because the Monte Carlo sampling
errors decrease proportionally to 1/

√
N, with N the ensemble

size, the improved performance of the ensemble method can
come at a significant computational cost. For example, Chen and
Zhang (2006) noted that an ensemble size of 1,000 allowed EnKF
to obtain an accurate uncertainty estimation for their synthetic
case, but ultimately concluded that an ensemble size of 200 was
sufficient to achieve results with both accuracy and efficiency.
When applying iterative ensemble smoothers, the choice of the
ensemble size will be particularly constrained by the time needed
to run all the forward predictions of the ensemble during one
iteration. Consequently, larger ensemble sizes than O(100) are
generally not affordable if the available computational resources
are not sufficient to efficiently parallelize the prediction step of
every ensemble member. For these practical reasons, we will
discuss the performance of the different ensemble methods based
on tests involving ensemble sizes of the order of O(102) at most.

To assess the accuracy of the uncertainty captured by the
final conditioned ensemble, a common approach consists in
comparing the error between the ensemble mean of log K
realizations and the known reference to the ensemble mean

error that was obtained by the ensemble method, also called the
“ensemble spread” (Houtekamer andMitchell, 1998). For the first
error mentioned, we will simply compute the root-mean-squared
error (RMSE) as follows

RMSE =

√√√√ 1

Nm

Nm∑

i=1

(mi
true −mi

e)
2 (13)

whereNm is the number of gridblocks,mtrue is the reference logK
field, andme stands for the mean of the ensemble of log hydraulic
conductivity fields.

The ensemble spread, here noted Sens, corresponds to an
average uncertainty on the log K property calculated from
the ensemble

Sens =

√√√√ 1

Nm

Nm∑

i=1

σ 2
ens,i (14)

where σ 2
ens,i corresponds to the variance estimated from the

ensemble of log K realizations at one gridblock i. For our
uncertainty analysis, we will systematically evaluate these average
errors by considering the gridblocks of the model located within
a certain distance from the seepage boundary which includes all
the data points. In particular, we will set this distance equal to
the “critical length” used for the localization of the update (cf.
section 3.3). In this way, the comparison between the RMSE and
the ensemble spread will be based on the set of parameters which
are the most informed by the observations and hence which
uncertainty will decrease the most during the assimilation.

One goal of this analysis will be to illustrate how the spread
between ensemble members updated using either LM-EnRML,
ES-MDA with or without transformed data is representative of
the difference between the ensemble mean and the reference
(RMSE) depending on the ensemble size. Indeed, as the size
of the ensemble increases, the discrepancy between the final
conditioned ensemble and the RMSE should reduce thanks to
the reduced sampling errors. However as previouslymentioned, a
trade-off between accuracy of the uncertainty and computational
efficiency will need to be found. In the end, if the ensemble spread
is not overly underestimating the RMSE, we will consider that
the ensemble method has performed correctly given its intrinsic
limitations. In addition, although the inverse problem is ill-
posed, i.e., there are more parameters to infer than data to inform
them in a unique way, we expect for this synthetic case that the
information contained in the data set (i.e., hydraulic heads and
flowrates) is sufficient in order to yield after the data assimilation
estimates that are closer to the reference than initially in the
most updated region of parameters. Therefore, the performance
of the smoother will also be assessed in its ability to decrease the
RMSE value.
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FIGURE 3 | Predicted hydraulic head at four different locations, before (in gray) and after (in blue) the assimilation with ES of the head data without normal-score

transform. The red dots are the observed data; The ensemble size is 100.

5. RESULTS AND DISCUSSION

5.1. Ensemble Smoother and Benefit of
Data Transformation
As expected in a non-linear case, the application of a non-
iterative ensemble method such as the ensemble smoother (ES)
results in an insufficient match between the final ensemble of

predicted data, i.e., computed from the ensemble of updated
realizations, and the observations. Figure 3 shows for three

locations at different depths 1 km away from the producing

shaft the simulated heads before and after the update of 100
realizations with ES. By using the same initial ensemble, the
evolution of the data mismatch obtained from the assimilation

of the head data only and both the head and flowrate
data simultaneously are shown respectively in Figures 4A,C.
Because the represented data mismatch does not include the
inflated measurement error in the observed data and hence the
normalization by the error variance, as defined in section 4, the
additional contribution to the mismatch from the flowrates in
Figure 4C is not visible. Even so, compared to Figure 4A), we
can observe that the assimilation of the flowrates in addition to
the heads allows the data mismatch to decrease thanks to a better
match of the head data.

The strategy of transforming the data prior to each update
of ES-MDA, as described in section 2.3, was also tested here
with ES using the same initial ensemble. Indeed, ES is equivalent
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FIGURE 4 | Evolution of the decimal logarithm of the data mismatch when assimilating with ES: (A) the head data, (B) the transformed head data, (C) both the head

and flowrate data, (D) both the transformed head and transformed flowrate data. The blue curve is the median, the blue area corresponds to the region between the

percentiles P5 and P95 of the ensemble of values, and the black curve is the values computed for the ensemble member no. 0.

to ES-MDA with only one iteration and hence applies once a
local linearization of the model around the initial parameter
estimate to compute its single update. As shown in Figures 4B,D,
whether only the head data are assimilated or both the head
and flowrate data, the data mismatch is reduced in both cases
with a slightly lower mismatch in the case mentioned last.
Therefore, compared to the case where only untransformed head
are assimilated (Figure 4A), the data transformation seems to
have a positive impact on the decreased data mismatch which,
we remind, considers the original data even for the transformed
case. The improved history match can be observed for example
by comparing Figure 3 with Figure 5. In particular, we note that
when data transformation is used, the ensemble of predicted
values better tracks the observations, most certainly as a result
of a more accurate update of each ensemble member. Indeed,
the comparison of the RMSE and the ensemble spread in Table 1

for each one of the cases considered in Figure 4 shows that the
assimilation of the transformed heads instead of the original
data results in a more accurate estimation of the ensemble mean
and spread thanks to a decrease of the RMSE which reduces
the discrepancy with the reduced ensemble spread. As for the
assimilation of both the head and flowrate data simultaneously,
we can see that compared to when the data are transformed, the
assimilation is less efficient with a less reduced ensemble spread
and a RMSE that has almost not reduced. Based on both the
evolution of the RMSE and the “coverage”, which we defined as
the percentage of true values of the reference captured by the final
ensemble spread in the most updated region of the model, we can

conclude from Table 1 that transforming the data clearly benefits
the performance of ES. However, we note that the assimilation
of both the transformed head and flowrate data with ES does
not allow to further reduce the RMSE compared to when using
the transformed heads only, although the ensemble spread is
further reduced.

5.2. Comparing the Accuracy of
LM-EnRML and ES-MDA Estimates
Although ES-MDA and the LM-EnRML were developed with
the aim of improving the data match obtained with ES in the
non-linear case, the iterative updates will likely cause a more
important underestimation of the uncertainty than with ES.
Indeed, at each iteration, the sampling errors in the approximated
covariances of the Kalman gain will affect the estimates of the
method, and more particularly the ensemble uncertainty. Seeing
as how the Monte Carlo sampling errors decrease according
to 1/

√
N where N is the ensemble size (Evensen, 2009a),

we tested for our synthetic case the effect of increasing N
on the performance of ES-MDA and LM-EnRML when only
assimilating the head data. Table 2 shows the evolution of the
RMSE and the ensemble spread when applying ES-MDA with 4
arbitrarily defined iterations. Whether we consider an ensemble
of 100, 200, or 400, hence of the order of O(102) to remain
computationally efficient, we note that starting from the first
update, the ensemble spread measuring the variability between
the ensemble members systematically underestimates the RMSE
whichmeasures the error between the reference and the ensemble
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FIGURE 5 | Predicted hydraulic head at four different locations, before (in gray) and after (in blue) the assimilation with ES of normal-score transformed head data. The

red dots are the observed data; The ensemble size is 100.

mean. This discrepancy with the RMSE further increases with
each iteration as the spread keeps decreasing while the RMSE
remains higher. Although we do not show it here, not localizing
the update resulted in a larger discrepancy between the RMSE
and ensemble spread for the different ensemble sizes tested.

Nevertheless, we note that the larger the ensemble size, the
more reduced the gap between the RMSE and the ensemble
spread becomes. As expected, the estimated uncertainty gains in
accuracy with the ensemble size. We note however that the most
significant improvement occurs when increasing the ensemble
from 100 to 200 realizations for both algorithms (Tables 2, 3).
Indeed, as indicated for ES-MDA in Table 2, the coverage,

defined as the proportion of reference values that are within
the ensemble range in the most updated region of the model,
has more than doubled with a final value of 77% after the same
number of iterations. In a similar manner, the coverage also
doubled with LM-EnRML (Table 3). Moreover, when using an
ensemble size of 100, we can see that the evolution of the RMSE
is particularly unstable for both LM-EnRML and ES-MDA. The
ensemble means estimated with LM-EnRML even lead to a final
RMSE value which is much higher than initially. In contrast,
an ensemble size of 200 allows LM-EnRML to provide a more
accurate estimation of the true uncertainty than with ES-MDA.
The results shown in Table 3 were all calculated based on the
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TABLE 1 | Influence of different types of data assimilated (transformed or not) on

the RMSE, ensemble spread, and coverage calculated with ES.

Assimilated data RMSE Ens. spread Coverage (%)

h 0.72–1.00 0.70–0.42 57

h, q 0.72–0.69 0.70–0.53 93

transf. h 0.72–0.58 0.70–0.44 91

transf. h, transf. q 0.72–0.59 0.70–0.41 88

The ensemble size was 100 for all the tests shown in this table.

TABLE 2 | Effect of increasing the ensemble size on the RMSE, ensemble spread,

and coverage after 4 predefined ES-MDA iterations.

Ens.

size

Assimilated

data

RMSE Ens.

spread

Coverage

(%)

100 h 0.72–0.71 0.70–0.19 37

200 h 0.71–0.66 0.70–0.32 77

400 h 0.72–0.57 0.70–0.40 96

TABLE 3 | Effect of increasing the ensemble size on the RMSE, ensemble spread,

and coverage with LM-EnRML at iteration 8.

Ens.

size

Assimilated

data

RMSE Ens.

spread

Coverage

(%)

100 h 0.72–0.88 0.70–0.19 49

200 h 0.70–0.60 0.70–0.34 93

400 h 0.72–0.66 0.70–0.39 94

estimates of LM-EnRML obtained after 8 iterations when the
reduction of the objective function seemed to have decreased to
a sufficiently low data mismatch value as shown in Figure 6A.
We note also from Figure 6, however, that it seems to take more
iterations for LM-EnRML to converge to the same level of data
match achieved by ES-MDA using 6 predefined iterations.

From all these tests, it is clear that the larger the size,
the more accurate the uncertainty estimated by LM-EnRML
or ES-MDA will be. However, as can be observed in Table 2,
this improvement in the estimates comes at an increased
computational cost. For our synthetic problem, we note that an
ensemble of 400 realizations would still not allow the ensemble
to represent correctly the true error on the ensemble mean.
Since increasing the ensemble size does not seem to be a
reasonable option computationally, it seems that the application
of such ensemble methods necessarily requires to achieve a
balance between accuracy and computational efficiency. This
computational efficiency is of even more importance for large-
scale problems since the biggest constraint would often be the
long flow simulation time required to run the prediction step
for each ensemble member. Hence the larger the ensemble, the
longer it will take to complete all the predictions of the ensemble
before being able to start the update step. Indeed, we remind
that the update of each member is based on the same ensemble-
based Kalman gain matrix. It is worth mentioning that this

matter of efficiency also concerns the case where the ensemble
of predictions steps is parallelized. Indeed, it would still require
to have enough resources to efficiently run the whole ensemble of
forward simulations simultaneously after each update step.

From Tables 2, 3, it is clear that the improvement on both the
ensemble mean and spread is very significant when increasing
the size from 100 to 200 with either LM-EnRML and ES-MDA.
However, the differences in the estimated ensemble mean fields
shown in Figure 7 suggest that the twomethods converge toward
different solutions. This is confirmed by the fact that when
increasing the ensemble size from 200 to 400, the accuracy of
both the error and uncertainty estimated with ES-MDA keeps
increasing whereas for LM-EnMRL, no visible improvement
is observed as if an optimal ensemble size has been reached
around 200.

Although LM-EnRML provides the more accurate estimation
of the uncertainty compared to ES-MDA for any of the tested
ensemble sizes, ES-MDA seems to converge faster, as shown in
Figure 6. Indeed, it takes more iterations with LM-EnRML to
reach the same mismatch value which corresponds to a good
match as obtained with ES-MDA using 6 iterations. In the end,
although the estimates of ES-MDA definitely improve with an
ensemble size of 400, we will consider that using an ensemble
of size 200 with either ES-MDA or LM-EnRML in our case is
acceptable in order to achieve both accuracy and efficiency.

5.3. Assimilating Both Hydraulic Head and
Flowrate Data With LM-EnRML and
ES-MDA
As shown in Table 4, the assimilation of both head and flowrate
data with LM-EnRML yields estimates of similar accuracy to
when only the heads are assimilated. Neither the larger number
of observations nor the higher “weights” of the flowrates in the
objective function, given their much lower magnitudes, seem
to have affected the minimization process. Figure 8A shows in
fact that the mismatch associated to the flowrate data in the
objective function, i.e., the sum of squared residuals weighted
by the inverse of the measurement variance, is mostly reduced
after the first iteration so that ultimately the remaining of the
optimization deals with the reduction of the mismatch associated
to the head data (Figure 8B). Although the convergence of LM-
EnRML seems effective when assimilating different data types,
we note that the accuracy of the estimates does not improve
with the additional information coming from the assimilated
flowrates. This lack of improvement could be related to possible
over-corrections of the parameters during the first iteration
as often observed with gradient-based methods. One way to
reduce such over-corrections would be to artificially increase
the measurement errors. We did not try that however since the
parameter estimates obtained seem sufficiently accurate in terms
of the estimated uncertainty.

For the assimilation of both data types, we first note that ES-
MDA converged more rapidly, i.e., in 8 iterations, to the same
level of data match achieved with LM-EnRML after 16 iterations
(Figures 8A, 9A). For brevity, we do not show the associated
good match of the head and flowrate observations obtained with
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FIGURE 6 | Evolution of the decimal logarithm of the data mismatch when assimilating head data with: (A) LM-EnRML, (B) ES-MDA (×6). The ensemble size is 200.

FIGURE 7 | Two initial different realizations of log hydraulic conductivity being updated, respectively, with LM-EnRML (A) and ES-MDA (B) throughout the iterations.

Panels (C,D) show the corresponding ensemble mean fields at each iteration. The ensemble size is 200.

both methods. However, unlike previously with LM-EnRML, the
mean and variance estimates obtained with ES-MDA are less
accurate than those obtained by the assimilation of head data
only (Table 4). This illustrates that the different data types are not
properly taken into account with ES-MDA during the multiple
assimilations compared to LM-EnRML.

As done previously with ES in order to mitigate the effects of
non-Gaussianity on the performance of the method, we applied
a normal-score transform on the data so as to obtain ensemble
distributions of predicted variables which are locally Gaussian,
for each data type, before performing each update step of ES-
MDA in the transformed data space. As shown in Figure 10,
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the proposed state transformation allows ES-MDA to achieve an
acceptable match of the head and flowrate observations after 8
iterations.Table 4 shows the estimates obtained after assimilating

TABLE 4 | Effect of assimilating the flowrate data in addition to the hydraulic

heads on the RMSE, ensemble spread, and coverage with LM-EnRML and

ES-MDA with or without transformed data.

Algorithm Assimilated

data

RMSE Ensemble

spread

Coverage (%)

LM-EnRML h 0.72–0.60 0.70–0.34 93

LM-EnRML h, q 0.71–0.60 0.69–0.34 93

ES-MDA(×6) h 0.72–0.65 0.69–0.29 72

ES-MDA(×8) h, q 0.72–0.70 0.70–0.20 58

ES-MDA(×8) transf. h 0.72–0.66 0.69–0.31 80

ES-MDA(×8) transf. h, q 0.70–0.63 0.70–0.30 82

The ensemble size was 200 for all the tests shown in this table. The corresponding number

of iterations was chosen so as to obtain an acceptable and comparable data match for

all the results.

only the transformed heads resulted in a slight improvement. The
coverage has slightly increased, which indicates that the estimated
uncertainty, although still underestimated, has improved a
little. A much more significant improvement, however, can be
observed when both the head and flowrate data are assimilated in
the transformed space. Compared to when no transformation is
applied, the assimilation of both transformed data types is much
more efficient given the larger variability of the ensemble and the
smaller RMSE.

Figure 9 shows that when both data types are transformed,
the decrease of the cost functions minimized for each iteration
of ES-MDA (Evensen, 2018) is more stable than when no
transformation is applied. In the case without transformation,
the larger range of the initial ensemble of values reflects the
differences of magnitude of the mismatch associated to the
flowrate data on the one hand, and the one associated to
the heads on the other hand. As shown in Figure 11A, the
distribution is spread around two distinct modes. Hence the less
stable reduction observed is probably related to the contribution
of the flowrate data which dominates the cost function to

FIGURE 8 | Evolution of the decimal logarithm of the data mismatch when assimilating both head and flowrate data with LM-EnRML: (A) With the normalization of the

residuals by their variance (as minimized by the objective function). (B) Without normalization, hence the values reflect the head data mismatch reduction mainly. The

ensemble size is 200.

FIGURE 9 | Evolution of the decimal logarithm of the data mismatch term of the cost function minimized at each iteration when assimilating both head and flowrate

data with ES-MDA: (A) Without transformed data. (B) With transformed data. The ensemble size is 200.
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FIGURE 10 | Predicted hydraulic head and flowrate data at the observation locations, before (in gray) and after (in blue) the assimilation of both the transformed

hydraulic heads and transformed flowrate data with ES-MDA. The red dots are the observed data; the ensemble size is 200.

minimize because of their much more smaller measurement
errors. In contrast, the initial ensemble of mismatch values
resulting from the transformed data (Figure 9B) is much less
spread and resembles a Gaussian distribution (Figure 11). By
making Gaussian the distribution of all mismatch values defining
the first cost function to be minimized with ES-MDA, the

normal-score transform applied to each data type seems to have
benefited the data assimilation with ES-MDA. Since a new cost
function is minimized after each ES-MDA iteration, we suppose
that the initial Gaussian distribution of all the data mismatch
values resulting from the transformation contributes to make
the minimization more efficient by allowing to take equally
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FIGURE 11 | Distribution of the decimal logarithm of the sum of weighted squared errors prior to the assimilation of head and flowrate data with ES-MDA: (A) Without

transformation. (B) With transformation.

account of each data type in the assimilation from the start of
the assimilation. However, as discussed by Schoniger et al. (2012),
it is important to note that such local transformation of the
state variables would not have led to a successful application
of ES-MDA if the multivariate dependence of the state
variables was not sufficiently Gaussian in the first place. Indeed,
since the proposed transformation only affects the marginal
distribution, it is essential that the multivariate structure of
the state variables is near-Gaussian in order to really observe
an improvement of the performance of the ensemble Kalman
method. Crestani et al. (2013) illustrated this point by observing
that similar local transformation performed on concentration
data can deteriorate the performance of EnKF because of
an insufficient dependence between the multi-Gaussian log
hydraulic conductivity parameters and the concentrations.

It could be argued that equal contributions from both the
heads and flowrate data to the first cost function could also
have been obtained in the case without transformation by
decreasing the measurement variance of the head measurements.
However, the use of very small values of measurement errors can
cause problems during the data assimilation as it may lead to
severe underestimations of the parameter uncertainty due to the
overconfidence in the assimilated data.

6. CONCLUSION

In this synthetic study, two iterative forms of ensemble smoother,
LM-EnRML (Chen andOliver, 2013) and ES-MDA (Emerick and
Reynolds, 2012a), were applied and compared. They were both
used to condition an ensemble of multi-Gaussian log hydraulic
conductivity fields to transient hydraulic data. Given the non-
linear dynamics of the groundwater flow problem inspired by a
real hydraulic situation, the results show the necessity of using
an iterative instead of non-iterative ensemble smoother in order
to obtain an ensemble of hydraulic conductivity fields which all
match properly the data.

Despite the multi-Gaussian log K distribution considered, the
repeated assimilations of the data set have highlighted the known
tendency of ensemble Kalman methods to underestimate the

true error due to the finite ensemble size. A trade-off between
accuracy of the estimation and computational efficiency hence
needs to be found when applying such methods. Our uncertainty
analysis based on the comparison between the ensemble spread
and the true error, here accessible in this synthetic study, clearly
indicated the existence of a threshold ensemble size below which
the updated mean and variance are not reliable. For our case,
we found that the final estimates using an ensemble of 100
were not acceptable whereas increasing the ensemble to a still
reasonable size of 200 improved significantly the accuracy of the
updated mean and spread of the ensemble for both algorithms.
Because determining this threshold ensemble size a priori is not
possible, it seems all the more important before tackling large-
scale applications to try to estimate this threshold size on a
smaller-sized problem but which will take into account the main
characteristics of the real inverse problem.

Although LM-EnRML outperforms ES-MDA in terms of the
accuracy of the estimated uncertainty when using an ensemble
size of 200, the performance of ES-MDA seems to improve
steadily with the ensemble size while LM-EnRML does not. In
particular, the RMSE of the ES-MDA estimates keeps decreasing.
This particularly underlines that both algorithms do not converge
to the same solution. It is not so surprising considering that LM-
EnRML was derived so as to minimize an objective function
using a gradient-based approach while ES-MDA was derived
to minimize the variance of the error (Chen and Oliver, 2013;
Evensen, 2018).

The benefit of transforming the state variables with ES-
MDA was mainly observed when assimilating the hydraulic
head and flowrate data simultaneously. Indeed, the normal-
score transform of the state variables allowed a normalization
of the magnitudes of all data types to values drawn from a
standard normal distribution. Consequently, both data types
could be more equally taken into account during the data
assimilation as shown by the more stable reduction of the cost
functions compared to the application of ES-MDA without
transformation. However, as commented in previous studies
(Schoniger et al., 2012; Crestani et al., 2013), the applicability
of such state transformation could be questioned in cases where
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the multi-Gaussian dependence of the state variables is not as
strong as in this multi-Gaussian log K case, either as a result
of the non-linearity of the model and/or because of an initial
non-multi-Gaussian parameter distribution.

Although this paper focused on the performance of iterative
ensemble smoothers in the specific case of multi-Gaussian
distributions, their application to condition non-Gaussian
distributions is of special interest for many real field applications.
For a case such as the one of the ANDRA where the built
groundwater model is very high-dimensional, the observed
efficiency of iterative ensemble smoothers to decrease the
data mismatch in the multi-Gaussian case is very interesting.
However, as summarized by Zhou et al. (2014), one main issue
when conditioning directly non-multi-Gaussian distributions
using ensemble Kalman methods is that the consistency of the
initial geological structures is lost. A relevant future perspective
for the case of the ANDRA will hence to consider an appropriate
parameterization for the application of iterative ensemble
smoother methods to non-Gaussian heterogeneous fields such
as when generated with truncated Gaussian or multiple-point
statistics simulation techniques.
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