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More than 9,000 potential deep-seated landslide sites in the mountain ranges of Taiwan

have been identified by a series of renewed governmental hazard mitigation initiatives

after the 2009 Morakot typhoon. Among these sites, 186 sites have protection targets

where thorough mitigation strategies are to be implemented. One of the important

tasks in the hazard mitigation initiative is to estimate the volume, failure interface and

related quantities of each landslide site. In addition, with this number of sites, an

automated tool is needed to generate predictions at low operational costs. We propose

to use volume-constrained smooth minimal surfaces to approximate the landslide failure

interfaces. A volume-constrained smooth minimal surface in the current context is

defined as a differentiable surface that encloses a given landslide volume with the minimal

surface area. Although the stratigraphy and geological structures are omitted, the smooth

minimal surface method is verified with 24 known landslides and is shown to be able to

generate acceptable, approximated failure interfaces. A collection of assessment indices

is employed to measure the fitness of the predictions. Finally, the prediction fitness vs.

the landslide scarp geometry is investigated.

Keywords: deep-seated landslide, landslide volume-area relation, landslide failure surface prediction, FreeFem++

IpOPT, failure surface accuracy assessment

1. INTRODUCTION

Deep-seated landslides pose severe threats to human lives and property. Typhoon Morakot
struck Taiwan in 2009 which brought approximately 2,500 mm of precipitation in 4 days to the
southern parts of the island and triggered numerous landslides, debris flows and vast flooded
areas. This catastrophic extreme climatic event caused more than 22,000 landslides. Among these
mountainous hazards, more than 320 landslides were found in scarp areas larger than 10 ha (Lin
et al., 2011). These large-volume landslides often lead to composite casualties. For example, the
Hsiaolin landslide, after sweeping through the village in its course, formed a short-lived blockage
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dam, and the continuous inflow triggered follow-up dam-
break debris flows (Dong et al., 2011; Li et al., 2011; Tsou
et al., 2011). Similar rainfall triggered large scale deep-seated
landslide examples and related research include those reported
by Cardinali et al. (2002), Roering et al. (2005), Baroň et al.
(2011), Chigira (2011), Xu et al. (2015), Vallet et al. (2015),
and Lee et al. (2018).

Having learned from the Morakot typhoon landslides,
Taiwan’s government authorities officially defined the deep-
seated landslides for administrative purposes according to their
geometric measurements: volumes larger than 1 × 106 m3, areas
larger than 100 ha or depths deeper than 10 m (Lin et al., 2011;
Chen et al., 2017). Using geometric measurements to classify
the deep-seated landslides simplifies the administrative process
and has been suggested in the literature (Roering et al., 2005;
Lo, 2017). There are in fact other definitions of deep-seated
landslides in different research contexts. For example, geologists
may refer the term to slow moving large-scale landslides with
failure surfaces occurring deep in a rock bed, or geotechnical
engineers may refer it to landslides with failure surfaces below
the underground water table. Nevertheless, as literally suggested,
deep-seated landslides are usually associated with large slide
volumes such that, in the present paper, we adopt the simple
geometric definition for this type of landslides. Because of the
large scale of the potential deep-seated landslides, the spatial
geological variations, weathering effects and orogenic activities
contribute to forming these sites. During long-term evolutionary
processes, topographic features, such as crowns, bulges, and
trenches, develop, and currently, these features can be detected
by modern remote sensing techniques (Varnes, 1978; Chigira
and Kiho, 1994; Chigira et al., 2013; Crosta et al., 2013; Lo,
2017). In a series of hazard mitigation initiatives implemented by
the government starting from 2010 (Central Geological Survey,
2010) and continuing into the present (Soil Water Conserv.
Bureau, 2017; Soil Water Conserv. Bureau, 2018), in which other
sequential projects can be checked, airborne light detection
and ranging (LiDAR), various satellite synthetic-aperture radar
(SAR), and field investigations have been combined to survey the
topographic surface activities (Lin et al., 2013, 2014; Tseng et al.,
2013; Chen et al., 2015; Wu et al., 2017). Through these efforts,
the scarp boundaries of the deep-seated landslides are identified
according to the surface features.More than 9,000 potential deep-
seated landslide sites have been found, and among them, 186 sites
have protection targets (Figure 1). In the figure, a close-up view
of ten sites in Ren’-ai Township, Nantou County, is shown. Along
this direction, assessments of the landslide volume and influence
area are to follow hazard mitigation planning.

In traditional geological engineering approaches, the factor of
safety of the potential landslide site will then be calculated by
using slope stability tools. The most well-known methods are
the those based on the limit equilibrium concept, published by
Bishop (1955), Mogenstern and Price (1965), and Janbu (1973).
In these methods, the slope body above the prescribed failure
interface is discretized into a number of vertical slices (free
bodies), and a system of algebraic equations is derived according
to the force and moment equilibrium, with an additional
proposition of internal forces as closure conditions. Because

the failure interface is a presumed input parameter in these
limit equilibrium methods, there are a few empirical strategies
for proposing the interfaces. These strategies include circular,
piecewise linear, and other methods, and the choice is made
according to the geological condition of the investigated site. The
circular failure interface is the most widely employed because this
shape is easily parameterizable and agrees with a large portion of
common observations. Consequently, automatic iterative search
schemes for the least stable interface are implemented in many
analysis computation tools (e.g., Siegel, 1978). Once the least
stable failure interface is obtained, the landslide depth and 2D
volume can be estimated.

Although the analysis is convenient and straightforward,
2D slope stability can be performed on only one or a few
heuristically selected representative profiles for each landslide
site. Because of this limitation, the analysis may not provide
sufficient information for deep-seated landslides in estimating
landslide-influenced areas. For this purpose, the 3D scarp depth
distribution of the slide mass, for example, is one of the essential
quantities required to estimate the runout and spread of the
landslide, and it is particularly important for rapid large-scale
avalanches, whose motion can be largely influenced by the
topographic conditions of the terrain (Kuo et al., 2011; Luca et al.,
2016; Tai et al., 2019), and the references therein.

The concept of the factor of safety has long been the key
concept in slope stabilization plans. Since the wide deployment of
the aforementioned 2D methods, there have also been attempts
to extend the slope stability analysis to general 3D terrains.
Similar to the 2D limit equilibrium formulation, most of these
methods require a priori failure surface; the derived system of
equations is a statically indeterminate system, and additional
conditions are needed to solve it. For example, in a study by
Leshchinsky and Huang (1992a) and Leshchinsky and Huang
(1992b), the landslide mass is assumed symmetric and variational
optimization is adopted for searching the minimum factor of
safety. Ignoring the shear stresses in the internal landslide mass
(Ugai, 1985) showed that the failure profile is circular along
the sliding direction. A two-directional moment equilibrium
method was proposed by Huang and Tsai (2000) and Huang
et al. (2002), which can directly determine the sliding direction,
instead of presuming a sliding direction. Further improvements
are made by including the complete momentum and moment
equilibrium conditions (Zheng, 2012; Jiang and Zhou, 2018), in
which examples of practical 3D applications are demonstrated.
In the group of slope stability analysis methods, Hungr noted
that the unbalanced force in the transverse direction of the
potential landslide mass is responsible for the errors in the
factor of safety (Hungr, 1987; Hungr et al., 1989). In contrast
to the limit equilibrium concept, elasto-plastic approach is
a full determinant method (Griffiths and Lane, 1999). The
adoption of the full determinant method requires more complete
underground material parameters and stratigraphic details, such
that fitting the failure surface obtained by this type of method
to the identified landslide scarp outlines may involve a series
of procedural justifications of the material parameters and
geological conditions. It has a different mechanical complexity
beyond the present consideration and is not pursued further here.
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FIGURE 1 | The distribution of the 186 identified potential deep-seated landslide sites in Taiwan (inset panel, Soil Water Conserv. Bureau, 2018), and 10 examples of

the scarp boundaries of the potential deep-seated landslides in Ren’-ai Township, Nantou County (Central Geological Survey, 2010). The dots in the scarp areas

represent the line-of-sight deformation obtained by using the temporarily coherent point interferometry SAR (TCPInSAR) technique (Chen et al., 2017). Note that the

length scale varies according to the 3D perspective.

Because the limit equilibrium approach for slope stability
analysis yields a statically indeterminant system, additional
empirical conditions, the failure surface and internal forces are
needed to calculate the factor of safety. Unlike the 2D cases, there
is a lack of systematic, convenient and commonly applied ways
to form the 3D failure interfaces that fit the observed landslide
scarps. However, simple spherical-shaped failure interfaces are
often used as illustrative applications in developing 3D slope
stability methods (Xing, 1988; Lam and Fredlund, 1993; Huang
et al., 2002). Treating spherical surface sections as failure
interface elements, a searching scheme has been proposed to
construct the regional distribution of the factor of safety (Reid
et al., 2000, 2001). Although themethod does not focus on finding
precise 3D matches of landslide scarps for individual sites, it has
become increasingly popular in creating landslide susceptibility
maps (Reid et al., 2015; Tran et al., 2018; Zhang andWang, 2019).

In the examples of the identified potential deep-seated
landslide sites in Figure 1, we can see that the scarp areas
are identified by the closed polygons and the line-of-sight
deformation obtained by using the temporarily coherent point
interferometry SAR (TCPInSAR) technique somewhat indicates
the landslide activity (Chen et al., 2017). In addition due
to the large area that can cover topographic heterogeneous
landscapes, each landslide site may contain multiple secondary
failure structures, e.g., the cracks and minor scarps in Figure 1

(Central Geological Survey, 2010). In landslide hazard mitigation
plans with these types of information, a tool that it is able to
generate 3D failure interfaces, conform with the surface scarps
and provide related depth information for the landslide mass is
required. Such a tool also provides great benefits for landslide
sites, of which multiple secondary hazard scenarios are to be
studied and managed. Furthermore, with the massive number of

186 potential landslide sites, the tool should be automated so that
it can be operated at low costs.

As a tradeoff, the tool is aimed at providing predictions
with satisfactory accuracy at small operational efforts but not
necessarily with high degrees of precision. In this regard, we
propose a simple method for computing the failure interfaces
of deep-seated landslides, that is based on the minimization
of a smooth surface that encloses a given landslide volume
with the specified scarp boundary. The concept arises from
the observations that (1), the scarp boundaries of potential
deep-seated landslide sites often develop over time and become
observable on the surface, for example crown fissures and flank
scarps, and (2), landslide volume-area relations can be used to
determine the volume from the scarp area. As a result, the average
landslide depth is well-constrained, and the 3D failure interface
and slide volume can be obtained.

In the proposed method, the geological settings and
hydrogeological conditions of each landslide site are neglected.
Geological settings include the rock texture, lithological stratas,
rock cleavage or joint orientations, etc. These factors affect the
intrinsic structure of the failure surfaces and landslide failure
pattern. On the other hand, the hydrogeolocal conditions include
the rainfall and underground water hydrology, which alter the
force balance condition of the slidemass and trigger the landslide.
Both geological settings and hydrogeological conditions are site
specific details which lead to the deviations of the actual landslide
failure surfaces from the predicted. However, to construct these
details even for a single site may require extensive resources
and investigations such that full coverage surveys and hazard
monitoring for a population of landslides become virtually
impossible. Under these circumstances, we defer the adoptation
of any site specific detail to the present method.
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Hence, it is an important task to establish the accuracy
baseline of the method in the present paper, such that the paper is
organized as follows: A brief introduction to the landslides used
in the assessments is presented in section 2; The smooth minimal
surface method and statistical assessment indices are described
in sections 3 and 4, respectively; the applications of the method
to two landslides and two conceptual examples are detailed
in section 5 and Appendix 1, respectively, which includes the
comparison of the predicted landslide failure interfaces to the
actual failure interfaces and calculations of the assessment
indices. Then, the application set is extended to include a total
of 24 landslides, and their assessment indices are tabulated in
section 6. With this amount of data, the accuracy bounds can
be inferred.

2. LANDSLIDES IN THE STUDY AREA

In total, 24 deep-seated landslides were selected in the present
study (Lin et al., 2011). They were all triggered by the excessive
rainfall of the Morakot typhoon and are distributed in three
different catchment areas in the southwest mountainous range
of Taiwan. The first group, containing 11 sites, is located in
the Cishan River catchment area, Jiaxian District, Kaohsiung
City, as shown in Figure 2. All these landslides have areas larger
than 10 ha, maximum depths over 10 m and, according to the
definition from the Taiwanese government, are classified as deep-
seated landslides. Among them, the sites labeled with HLIN
prefixes are the scarps associated with the Hsiaolin landslides
(Kuo et al., 2011; Tsou et al., 2011; Tai et al., 2019). The
landslides are defined by using the 2005 and 2010 LiDAR 1 m
resolution digital elevation maps (DEMs). The second and third
groups of landslides are identified by the DF054 and DF081
prefixes, respectively (Figure 3). DF054 is in the Longjiao River
catchment, Dapu Township, Chiayi County, and DF081 is in the
Laonung River catchment, Maolin District, Kaohsiung City.

The geological structure and stratigraphy of these catchment
areas are very briefly reviewed here as background information.
Because of space limits, the geological maps of the three
catchment areas are relegated to the Supplementary Materials of
the paper and are made by referencing (Fei and Chen, 2013). To
summarize, the landslide sites of the first group are distributed
in three types of surface strata in the Cishan catchment
area: Hunghuatzu Formation, Changchihkeng Formation, and
Tangenshan Sandstone. These units are arranged chronologically,
with the oldest formed in the late Miocene. The landslide sites
of DF054 are in the Tangenshan Sandstone and Ailiaochiao
Formation (early Pliocene). They consist of sedimentary rocks
and are mainly composed of sandstones and shales, in which
marine microfossils commonly occur. The third group, the
DF081 landslides, is within Chaochou Formation, which is
middle Miocene in age and occasionally interlaces with quartzite.

The landslide volumes (V) and areas (�p)
1 of the landslides

are tabulated in Table 1 and the data are plotted in Figure 4A. In
the figure, the regression model is drawn and compared to the

1In common geological practice, �p is measured on the horizontal projection of

the landslide scarp, cf. Figure 5.

well-known equation from Guzzetti et al. (2009) and Klar et al.
(2011). It is found that the present 24 landslides agree excellently
with the fitted regression line. With these two quantities, we can
calculate the equivalent radius:R =

√

�p/π
2. The characteristic

length scale 2R, which is the equivalent diameter, will be used as
the normalization length factor for statistical quantities varying
in the horizontal or slopewise directions, such as the distance
of the gravity centers between the actual and predicted landslide
volume. In addition, two additional non-dimensional geometric
parameters, the roundness rr and the sphericity rs, can be defined
with these measurements and the scarp boundaries.

We use standard mathematical definitions to define the two
parameters. The roundness is defined as the ratio between the
radius of the maximum inscribed circle of the scarp and that
of the minimum circumscribed circle. Its values range between
0 and 1, with the two extreme values corresponding to an
infinitely thin and perfectly circular shapes, respectively. For
ellipses, the roundness reduces to the aspect ratio between
the width and length. With this analogy, we can associate the
roundness to the landslide aspect ratio, which commonly appears
in the landslide literature. By adopting this general definition,
calculation ambiguities for scarps with complicated shapes can
be avoided. On the other hand, the sphericity rs is defined
as the ratio of the surface area of a sphere of a volume V

to the total surface area of the landslide mass S0 + Sb (the
sum of the free surface S0 and the failure interface areas Sb),
i.e., rs = π1/3(6V)2/3/(S0 + Sb). Its value also ranges from
0, an infinitely thin volume, to 1, a perfect sphere. Because
the landslide thickness is usually much smaller than the other
spanwise dimensions, the sphericity becomes a factor involving
the landslide thickness and the slope3. These two parameters in
the above definitions have long been applied in various landslide
studies but have different terminologies, such as the width-length
ratio and the depth-length ratio (Taylor et al., 2018).

There appears to be a relation between the roundness and
sphericity with the present landslide inventory (Figure 4B).
The data are somewhat evenly distributed in the range of the
roundness and sphericity; i.e., no favorable clustering spots
of data are found. Instead, the sphericity generally increases
with increasing roundness. Among the sites, FID12 is likely a
statistical outlier because of the distinctive gap between it and
the other data. Inspecting the site in Figure 2, we find that
the scarp boundary of FID12 appears to have a peculiar shape,
colloquially a dumbbell shape, with landslide mass biasedly
distributed at both end lobes but its relative roundishness reduces
the sphericity. The site is likely composed of two distinguished
landslides instead of an integrated one. We, however, do not
perform further manipulations on this site other than simply
exclude it from the accuracy assessments in section 6.

The other important landslide geometric parameters, such
as the mean and maximum depths are calculated and listed in
Table 2 for facilitating the later accuracy assessments with the
failure interface predictions. The related discussion will resume

2
R, thus, is also defined on the horizontal projection plane, cf. Figure 5.

3Under the shallowness assumption, the total surface areaS0+Sb is approximately

2�p divided by the directional cosine of the slope.
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FIGURE 2 | Landslides in the Chishan River catchment, Jiaxian District, Kaohsiung City (Central Geological Survey, 2010). Negative values of the color legends

indicate landslide scarp depths and the positive values indicate the deposit thickness in meters. The HLIN prefixes mark the Hsiaolin landslide and its associated

landslides. The sites outlined in red solid lines are the deep-seated landslides investigated in the present study. The TWD97 coordinate system is used.

in section 6, after the description of the method of the smooth
minimal surface, assessment indices and casewise applications.

3. SMOOTH MINIMAL SURFACE

Unlike the full mechanical approach involving fracturing or
plasticity, the failure interface is not a determined result but
a prescribed prerequisite. Based on observations, circular (2D)
or spherical (3D) shaped failure surface profiles are usually
applied for slopes with homogeneous and isotropic materials.
To fit the application scenario, we relax the surface to a smooth
minimal surface. In our application, the minimal smooth surface
is obtained by giving an assumed failure volume V with the
constraint that its boundary on the free surface matches that
from geological field investigations. This type of surface is chosen
because it has a close relation to the spherical failure surfaces in
3D slope slability analysis and can degenerate to the spherical

surfaces for some special cases, cf. Appendix 1. Therefore it may
also inherit the same property that the method fits better for
slopes with isotropic and homogenous materials, following the
same reasons of the traditional slope stability analysis.

Determining the smooth minimal surface is an optimization
process. Let (x, y, z) be the Cartesian coordinates with z vertically
pointing upwards, and let the failure interface zb ≡ zb(x, y)
be a smooth differentiable surface, as shown in Figure 5.
Mathematically, the area of the surface can be calculated as

S(zb) =

∫

√

1+ ||∇zb||2 d�p, (1)

such that the minimum surface can be acquired by minimizing
(1) by varying zb; i.e.,

Sb = min
zb

S, (2)
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FIGURE 3 | Landslides in (A) the DF054 area, in the Longjiao River catchment, Dapu Township, Chiayi County and (B) the DF081 area in the Laonung River

catchment, Maolin District, Kaohsiung City (Central Geological Survey, 2010). Negative values of the color legends indicate landslide scarp depths and the positive

values indicate the deposit thickness in meters. The sites outlined in red solid lines are the deep-seated landslides investigated in the present study. The TWD97

coordinate system is used.

TABLE 1 | Landslide volume, area, equivalent radius, roundness, and sphericity.

Id V, (m3) �p, (m
2) R, (m) rr rs

HLIN 21,100,000 628,000 447.0 0.413 0.255

HLIN-2 582,000 31,700 100.0 0.400 0.444

HLIN-3 288,000 19,900 79.6 0.538 0.462

FID3 1,420,000 72,800 152.0 0.588 0.353

FID5 1,150,000 58,000 136.0 0.442 0.362

FID9 2,900,000 214,000 261.0 0.303 0.201

FID12 503,000 66,600 146.0 0.744 0.182

FID13-2 2,130,000 114,000 190.0 0.378 0.310

FID13-3 3,040,000 175,000 236.0 0.352 0.253

FID16 2,210,000 93,600 173.0 0.473 0.335

FID18 573,000 46,800 122.0 0.339 0.306

DF054-1 271,000 35,700 107.0 0.417 0.218

DF054-2 113,000 14,400 67.7 0.381 0.307

DF054-3 58,400 7,100 47.5 0.492 0.377

DF054-4 89,800 24,100 87.6 0.253 0.177

DF054-5 68,700 8,600 52.3 0.611 0.351

DF054-6 31,400 9,500 55.0 0.129 0.223

DF081-1 96,300 12,800 63.7 0.485 0.299

DF081-2 50,400 8,480 51.9 0.402 0.291

DF081-3 22,300 6,000 43.7 0.182 0.240

DF081-4 12,800 5,000 39.9 0.215 0.206

DF081-5 63,400 5,050 40.1 0.584 0.506

DF081-6 119,000 11,400 60.2 0.599 0.402

DF081-7 10,300 3,020 31.0 0.616 0.301

EX1 1,061,000 42,500 116.3 0.862 0.488

EX2 3,810 897 16.9 0.884 0.554

The parameters shaded in light colors indicate the normalized non-dimensional assessment indices. EX1 and EX2 are ideal benchmark cases for comparison and they are described in

Appendix 1. The mean and maximum depths are tabulated in Table 2.

Frontiers in Earth Science | www.frontiersin.org 6 July 2020 | Volume 8 | Article 211

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Kuo et al. Minimal Surfaces as Landslide Failure Interfaces

FIGURE 4 | (A) Landslide area and volume relation. (B) Roundness and sphericity relation. The gray area indicates the 95% confidence interval.

TABLE 2 | DEM grid size, depth-related quantities, and positional offsets of the maximum depth and gravity centers between the predicted and actual scarps.

Id 1, (m) 1̄, (%) hact
max, (m) h

pred
max , (m) Ēmax,(%) hact

mean,(m) h
pred
mean,(m) Ēmean,(%) dMD,(m) ĒMD,(%) dGC,(m) ĒGC,(%)

HLIN 10.0 1.12 80.7 80.0 2.17 34.9 34.5 1.19 53.9 6.02 30.70 3.43

HLIN-2 10.0 4.98 44.9 39.3 30.38 18.5 18.2 1.52 192.0 95.74 24.40 12.15

HLIN-3 10.0 6.28 30.9 26.4 30.15 14.9 14.6 1.72 10.0 6.28 9.30 5.84

FID3 20.0 6.57 40.9 56.7 78.94 20.1 18.8 6.45 0.0 0.00 42.00 13.79

FID5 20.0 7.36 47.4 40.6 32.40 21.2 21.2 0.40 102.0 37.53 11.30 4.17

FID9 20.0 3.83 46.0 42.2 25.35 15.2 15.0 1.64 440.0 84.30 41.40 7.92

FID12 10.0 3.43 25.0 24.4 6.97 9.0 8.6 4.10 36.1 12.38 25.90 8.89

FID13-2 20.0 5.26 48.1 45.6 12.03 20.8 19.9 4.43 184.0 48.48 38.10 10.01

FID13-3 20.0 4.24 48.7 40.0 45.63 19.1 18.5 2.86 260.0 55.11 32.80 6.96

FID16 20.0 5.79 59.2 63.5 17.16 25.1 25.5 1.71 89.4 25.91 9.38 2.72

FID18 20.0 8.19 31.3 28.6 20.61 13.1 12.8 2.31 247.0 101.30 54.20 22.22

DF054-1 10.0 4.69 25.2 20.4 60.98 7.8 7.6 2.41 20.0 9.38 17.50 8.23

DF054-2 10.0 7.38 18.3 19.6 17.62 7.8 7.8 0.34 44.7 33.03 18.40 13.62

DF054-3 10.0 10.52 17.5 15.9 18.99 8.3 8.1 2.65 20.0 21.04 1.87 1.97

DF054-4 10.0 5.71 15.9 11.8 96.66 4.3 4.4 2.54 280.0 159.90 63.80 36.44

DF054-5 10.0 9.56 17.2 16.7 6.71 8.1 8.0 0.81 10.0 9.56 8.01 7.65

DF054-6 10.0 9.09 9.5 7.5 60.25 3.3 3.0 8.76 72.8 66.19 6.31 5.73

DF081-1 5.0 3.92 21.1 16.3 63.70 7.6 7.5 0.82 22.4 17.55 4.57 3.59

DF081-2 5.0 4.81 14.0 11.0 51.23 6.0 5.8 3.05 33.5 32.29 2.65 2.55

DF081-3 5.0 5.72 10.7 7.8 77.40 3.9 3.7 3.30 67.3 76.96 16.70 19.07

DF081-4 5.0 6.27 6.3 9.1 99.42 2.8 3.0 5.87 95.5 119.70 25.30 31.66

DF081-5 5.0 6.24 33.8 28.4 42.81 12.6 12.5 0.31 18.0 22.48 6.20 7.73

DF081-6 5.0 4.16 29.9 23.9 56.73 10.5 10.5 0.65 7.1 5.88 5.92 4.92

DF081-7 5.0 8.06 8.2 7.1 29.85 3.4 3.4 0.38 7.1 11.39 2.58 4.16

EX1 5.0 2.15 48.1 48.1 0.02 25.0 24.8 0.77 7.1 3.04 0.05 0.02

EX2 0.5 1.48 8.3 8.3 0.07 4.2 4.2 0.63 0.0 0.00 0.00 0.00

The parameters shaded in light colors indicate the normalized non-dimensional assessment indices. EX1 and EX2 are ideal benchmark cases and are described in Appendix 1.

subjected to the constraints

zb = z0 on Ŵ, zb ≤ z0 in �p, (3)

and

C(zb) ≡

∫

(z0 − zb) d�p − V = 0. (4)

In the equations, ∇ is the 2D gradient operator (∂/∂x, ∂/∂y);
�p is the xy−projection area of the failure scarp area;
and Ŵ is the boundary of �p. The first constraint states
that the boundary elevation of the failure interface is equal
to the elevation of the free surface, z0 ≡ z0(x, y); the
scarp surface is below the free surface; and the second
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FIGURE 5 | Conceptual sketch, symbols, and coordinate system. The landslide site FID5, defined in Figure 2 is used as an example. Symbols z0 ≡ z0 (x, y) and

zb ≡ zb(x, y) are the free surface and underground failure interfaces, respectively. �p and Ŵ are the projection of the scarp area and outline on the xy plane,

respectively. The scarp failure interfaces and depth are largely exaggerated for clarity in this sketch, and the color map conceptually indicates the scarp depth.

constraint states that the failure volume is the prescribed
volume V .

The scheme is implemented in the open source finite element
platform FreeFEM++, ver. 3.47 (or above) (Hecht, 2012), and
the integrated Interior Point OPTimizer (IpOpt, Wächter and
Biegler, 2006) optimization scheme in FreeFEM++ is applied to
find the numerical solution. In the scheme, the Jacobian and
Hessian matrices of the target function (1) are used to accelerate
the numerical convergence:

S
′(zb) · [ẑb] =

∫

∇zb · ∇ ẑb
√

1+ ||∇zb||2
d�p, (5)

and

S
′′(zb) · ([ẑb], [žb]) =

∫ (

∇ ẑb · ∇ žb

(1+ ||∇zb||2)1/2

−
(∇ žb · ∇zb)(∇ ẑb · ∇zb)

(1+ ||∇zb||2)3/2

)

d�p. (6)

The above two expressions are written with the help of the
notation of the Fréchet derivative for facilitating the numerical
scheme implementation (Vergez et al., 2016). Similarly, the
Jacobian matrix of constraint (4) is

C
′(zb) · [ẑb] = −

∫

d�p = −�p. (7)

Equations (5), (6), and (7) are evaluated at discrete points
in each mesh element. Supporting external C++ functions are
coded to handle the DEM, scarp boundary outline inputs and
outputs to other software for geographic information systems
(GIS), such as ArcGIS, qGIS, and GRASS. Initially, the outline
is uniformly discretized with a prescribed number into a set
of linear edges, and the mesh of the scarp area is generated.
Then, the optimization (2) for the minimal surface is executed.
Depending on the precision requirement of the mesh, multiple
passes of mesh adaptation can be performed based on the
calculated failure interface.

As seen in the formulation and calculation principle,
the smooth minimal surface can be equivalently replaced

with other mathematical surfaces, provided that they are
phenomenologically reasonable and their descriptive expressions
are available. It is also in principle possible to design
transformations that can further manipulate the predicted
failure surfaces to incorporate with site specific geological
settings or hydrogeological conditions. Nevertheless, because
the method is a phenomenological approach, the accuracy of
the failure surface prediction has to be verified with actual
landslide data. In what follows, we use the current smooth
minimal surface to proceed the application example and accuracy
assessment. The assessment indices and procedure are generic
and applicable to future alternative failure surface prediction or
transformation schemes.

4. ASSESSMENT INDICES

The proposed predictionmethod for the failure interface is purely
mathematical. Intuitively, the failure interface is mimicked by a
“soap-bubble” film that encloses the free surface at a specified
volume V. Because the film is uniquely defined, it becomes
important to assess the fitness, i.e., the closeness between the film
and the real failure interface and to establish the error bounds of
the method.

Under the current approach, the area, volume and scarp
boundary are kept identical for each landslide, and hence, the
mean depth of the predicted landslide mass will be equal to
the actual one, (V/�p), in principle. Nevertheless, because of
the nature of discrete numerical data and computations, the
discretization incurs digital errors, e.g., the DEM is presented at a
resolution of grid size 1 and in the minimal surface calculation,
forward and backward interpolation is performed between the
DEM and mesh system. It is expected that this type of error
is bounded by the precision of the mesh, such that we list the
normalized grid size 1̄ as an informative indicator, which is
normalized with respect to the equivalent diameter 2R.

To compare the predicted and actual failure interfaces, we
start by calculating and finding the crucial quantities in each of
them: the mean and maximum scarp depths (hmean and hmax,
respectively) and the positions of the gravity center rGC and
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TABLE 3 | The modes, standard deviations of the prediction discrepancy δ(x, y), resultant regression parameters, and SSIMs.

Id mode(δ),(m) Ēmode, (%) std(δ),(m) Ēstd, (%) ᾱ β̄ R2 SSIM

HLIN −2.2 6.36 12.9 37.07 0.322 0.686 0.557 0.768

HLIN-2 1.6 8.43 8.6 46.33 0.392 0.617 0.416 0.849

HLIN-3 −2.0 13.76 4.5 30.14 0.128 0.887 0.684 0.913

FID3 −9.4 46.64 11.0 54.98 0.604 0.424 0.454 0.713

FID5 −0.7 3.51 7.3 34.51 0.087 0.916 0.618 0.864

FID9 4.7 30.72 9.0 59.26 0.398 0.612 0.330 0.715

FID12 −2.3 25.99 5.5 61.45 0.598 0.419 0.263 0.774

FID13-2 1.1 5.17 10.9 52.16 0.475 0.550 0.336 0.702

FID13-3 2.3 11.91 7.2 37.68 0.033 0.995 0.643 0.807

FID16 −4.7 18.68 10.8 42.95 0.392 0.598 0.645 0.777

FID18 6.9 52.47 9.4 71.61 0.725 0.282 0.063 0.677

DF054-1 −0.3 4.28 3.9 50.30 0.151 0.870 0.566 0.818

DF054-2 −0.4 4.72 5.5 69.49 0.659 0.342 0.177 0.748

DF054-3 −0.7 7.85 2.6 30.79 0.113 0.911 0.694 0.955

DF054-4 0.3 7.82 3.8 87.58 0.663 0.329 0.129 0.770

DF054-5 −0.1 1.15 3.1 38.84 0.114 0.893 0.595 0.919

DF054-6 −0.4 11.74 1.7 52.85 0.317 0.748 0.453 0.949

DF081-1 0.3 4.14 2.7 35.27 0.053 0.955 0.731 0.930

DF081-2 −0.8 13.25 3.5 58.10 0.240 0.783 0.323 0.839

DF081-3 −0.3 7.00 1.9 49.12 0.271 0.754 0.457 0.920

DF081-4 −0.2 5.52 2.0 69.94 0.533 0.441 0.477 0.892

DF081-5 0.0 0.10 4.6 37.03 0.020 0.983 0.760 0.898

DF081-6 −0.7 6.33 3.6 34.45 0.008 0.999 0.798 0.892

DF081-7 −0.8 24.52 1.1 31.27 0.094 0.903 0.751 0.977

EX1 −0.2 0.60 0.2 0.77 0.015 0.992 1.000 1.000

EX2 −0.0 0.13 0.0 0.59 0.012 0.994 1.000 1.000

The parameters shaded in light colors indicate normalized non-dimensional assessment indices. EX1 and EX2 are ideal benchmark cases described in Appendix 1.

maximum depth point rMD. One can define the measures of
discrepancy as the differences of these quantities between the
predicted and actual landslide failure interfaces. To eliminate the
landslide scale effect, the depthwise quantities are normalized

with respect to the actual mean depth; i.e., Ēmean = (h
pred
mean −

hactmean)/h
act
mean, Ēmax = (h

pred
max − hactmax)/h

act
mean, and the spanwise

offsets of the gravity centers dGC and maximum depths dMD are
then normalized with respect to the equivalent diameter; i.e.,

ĒGC = dGC/(2R) = |r
pred
GC − ractGC|/(2R), ĒMD = dMD/(2R) =

|r
pred
MD − ractMD|/(2R). The superscripts pred and act obviously

represent the model predictions and the actual measurements
of these quantities. Ēmean contains only the discretization error
as discussed previously. ĒGC and ĒMD somewhat represent the
bias of the depth distributions between the predicted and actual
failure interfaces.

The ratio Ēmax is one of the assessment indices, which merely
measures the difference between the maximum depths. The other
assessment indices are the statistical properties associated with
the prediction discrepancy. Let the prediction discrepancy be
the difference between the actual and predicted scarp depths,

δ(x, y) = hact − hpred = z
pred
b

− zact
b
, where (x, y) ∈ �p.

The statistical properties that can be computed include the
distribution function of the prediction discrepancy δ, its mode(δ)

(the most frequent discrepancy), standard deviation std(δ),
and their non-dimensionalized counterparts, Ēmode and Ēstd

(normalized with respect to hactmean). Note that std(δ) is virtually
the root mean square error (RMSE) between the predicted and
actual depths according to its computational principle (Kuo
et al., 2011). For completeness, the linear regression model,
hact = β̄hpred + α, is also calculated for each landslide site.
To facilitate comparisons among landslides of different size
scales, the intercept α of the regression model is again non-
dimensionalized with respect to hactmean; i.e., ᾱ = α/hactmean.
Together with the slope β̄ and the coefficient of determination
R2, these regression parameters are tabulated in Table 3.

The aforementioned statistical quantities are commonly
applied in landslide studies. The limitations of these indices are
that they rely on the fitness of a single point (e.g., Ēmax, ĒMD),
on the averaged properties of the scarp (Ēmean, ĒGC), or on the
discrepancy distribution of the scattered grid data (Ēmode, Ēstd, ᾱ,
β̄ , R2, etc.). To the authors’ point of view, one important factor
has not yet been properly addressed by these indices, and this
factor is the likelihood of the patterns between the predicted
and actual scarps. The pattern refers to the landslide depth
distribution in the proximity of any given point in the scarp area,
and this pattern is highly dependent on the neighboring area.
The patterns are omitted in the former statistical indices because
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FIGURE 6 | Landslide FID5. Clockwise from the upper-left figure: (A) The topography, scarp outline and smooth minimal surface computational mesh. (B) The actual

landslide depth. (C) The predicted landslide depth. (D) The prediction discrepancy δ(x, y). The solid red circle and triangle represent the gravity center and maximum

depth location, respectively.

FIGURE 7 | Landslide FID5. (A) Histogram of δ(x, y), the graphical definition of mode(δ), std(δ) and the negligible mean depth discrepancy δmean. (B) Scatter plot and

regression analysis of the predicted and actual depths.

the elevation of each mesh grid is treated as an independent
random variable.

To include in the spatial topographic patterns into the current
assessment, we adopt the so-called structural similarity index
(SSIM), which was developed for and is commonly used in image
studies for assessing qualities among various image-processing
schemes (Wang et al., 2004). In the computation of this index,
the value of each pixel of the image, or here, those of the grids in
the scarp area, is replaced by the SSIM calculated in the vicinity
window (grid) surrounding the pixel. For each window, the SSIM
is defined as

SSIM(hact, hpred) = l(hact, hpred) c(hact, hpred) s(hact, hpred), (8)

where the functions on the right hand side are defined as

l(hact, hpred) =
2hactmean h

pred
mean + C1

hactmean
2 + h

pred
mean

2
+ C1

,

c(hact, hpred) =
2hact

std
h
pred
std

+ C2

hact
std

2
+ h

pred
std

2
+ C2

,

s(hact, hpred) =
σ act,pred + C2/2

hact
std

h
pred
std

+ C2/2
. (9)

The symbols in the expressions are slightly modified to be

consistent with those in the current work, such that hact
std
, h

pred
std

and
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σ act,pred are the standard deviations of the actual and predicted
scarp depths, respectively, and the cross variance σ act,pred =
{

∫

(hact − hactmean)(h
pred − h

pred
mean) d�p

}

/�p. C1 and C2 are small

constant parameters that stabilize the expressions for small
denominators and their default values, as well as the window,
are taken from Wang et al. (2004). The three expressions in
(9) are for comparing the luminance, contrast and structural
pattern in image studies but can be analogous to the comparison
of the landslide scarp depth, the change in the depth and the
pattern of the depth in the present study. Therefore, the SSIM
should perform similarly as an assessment index to evaluate the
fitness of the prediction. In the implementation, the SSIMs in
the vicinity area of each grid are calculated with the help of the
standard Gaussian window functions of signal processing and
statistics. The window size is 10 DEM grids. The resultant SSIM
for each landslide site is then defined as the average SSIM over the
scarp area and takes a value between 0 and 1, where 0 indicates
complete dissimilarity and 1 indicates perfect identicalness. Tests
showed that the resultant SSIM does not sensitively depend on
the window size and function. For further statistical theories
and derivation details, interested readers are directed to the
referenced literature.

5. APPLICATION EXAMPLES: FID5 AND
FID18

In this section, application examples of the minimal surface
method for two landslides are presented. There are also two
additional benchmark cases for validating the minimal surface
optimizations, but because of their simplicity, these benchmark
cases are relegated to Appendix 1. The two real cases, one with a
good prediction and the other with a fair prediction, are chosen
and they are purposely selected to illustrate the comparison of the
opposite predictions. The calculation of the statistical assessment
indices are also explained in detail, particularly those operational
procedures that are not thoroughly described in section 3 and
section 4.

We start with the FID5 landslide. The FID5 site is on the slope
of the west bank of the Cishan River and has a volume V of
1,167,000 m3 and an average slope of 35.2◦, inclined toward the
E-NE direction. The DEM domain is 600×340 m, in the x and
y directions, respectively, with a resolution of 20 m (normalized
to 1̄ = 7.36%). The 3D view of the site has been shown as a
conceptual sketch in Figure 5. The post-landslide topography as
well as the scarp boundary is plotted in Figure 8A. The projection
area, �p, of the scarp is then equal to 58, 000 m2 and the
equivalent radiusR = 136.0m. These geometric dimensions lead
to a roundness ratio rr of 0.442 and a spherical ratio rs of 0.362.

As the slope and scarp boundary are now defined, we
proceed with the preparation of the input data set of the
minimal surface optimization scheme. Because FreeFEM++ only
provides unstructured triangular meshing for general shapes of
computational domains, numerical interpolation algorithms are
employed to convey the data between the structured DEM mesh
and the unstructured FreeFEM++ computational grids. We do
not have any compulsory reasons to adopt higher order accuracy

interpolations for the present purpose; thus only first order
interpolation algorithms are used.

When the DEM and scarp outline are input, parsed and
interpolated, an initial unstructured mesh for the scarp domain
�p is constructed4. The P2 finite elements are used for
data arrangement and manipulation. Then, the optimization
routine for the minimal surface is executed. To extend the
scarp prediction to future mechanical slope stability analyses,
which may require a higher accuracy within the FreeFEM++
framework, we perform a second-pass mesh adaptation based on
the scarp depth of the initial calculation with a mesh refinement
precision error factor of 0.054. The refined mesh for the smooth
minimal surface calculation is superposed in Figure 6A. A high
mesh density is found in the areas where the topography exhibits
large variations, in this case, around the vicinity of the ridges and
edges of the slope surface. After the smooth minimal surface is
found, it is interpolated back to the structured DEM grids.

The actual and predicted landslide depths are shown in
Figures 6B,C. The landslide has a maximum depth hactmax of
47.4 m and a mean depth hactmean of 21.2 m. Their predicted

counterparts are h
pred
max = 40.6 m and h

pred
mean 21.2 m, respectively.

These values lead to dimensionless discrepancies Ēmax = 32.40%
and Ēmean = 0.40%, respectively. The prediction discrepancy
distribution δ(x, y) is plotted in Figure 6D. The prediction
overestimates the scarp depth in the part of the slope with
higher elevation, such that δ(x, y) has twomajor oppositely signed
zones aligned adjacently along the downslope direction. This
distribution of δ(x, y) leads to the positions of both the maximum
depth and gravity center of the landslide mass residing on the
upper-slope side compared to the actual landslide mass. The
positional offsets of the maximum depth and gravity center are
dMD = 102.0 m (ĒMD = 37.53%), and dGC = 11.3 m
(ĒGC = 4.17%).

The histogram of the prediction discrepancy δ(x, y) is plotted
in Figure 7A. It depicts the frequency distribution of δ(x, y), and
the distribution has an approximate symmetric triangular shape
except for a minor peak at δ ≈ −9 m. Its mode, mode(δ), is
approximately −0.7 m and the standard deviation, std(δ) is 7.3
m, leading to normalized discrepancy ratios of Ēmode = 3.51%
and Ēstd = 34.51%. In Figure 7B, the scattered data of hpred and
hact are plotted in the regression analysis and the resultant linear
regression line is hact = 0.916hpred + 1.84, which provides the
normalized intercept parameter ᾱ = 0.087. The coefficient of
determination, R2, is 0.618. The SSIM is 0.864, which is one of the
cases with a high score, cf. section 6. In the SSIM computation,
the default Gaussian window, of size 11×11 with a standard
deviation of 1.5 cell sizes, is used. To compare with other cases,
these statistical quantities are tabulated in both Tables 2, 3.

FID18 is a landslide site near the Zion village. The landslide
has a volume of 567,000 m3, an area of 46,800 m2, a maximum
depth of 31.3 m, and a slope of 29.4◦ inclined toward the south.
The roundness and sphericity are 0.339 and 0.306, respectively.
The DEM has a spatial resolution of 20 m (δ̄ = 8.19%).
After performing the smooth minimal surface calculation, the

4By BAMG, bidimensional anisotropic mesh generator with mesh refinement

facility, integrated in FreeFEM++.
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FIGURE 8 | Landslide FID18. Clockwise from the upper-left figure (A) The topography, scarp outline and smooth minimal surface computational domain. (B) The actual

landslide depth and scarp outline. (C) The predicted landslide depth. (D) The prediction discrepancy δ(x, y). The solid red circle and triangle represent the gravity

center and maximum depth location, respectively.

computational mesh, the actual, predicted depths and the
prediction discrepancy are plotted in Figure 8. The panels are
arranged the sameway as in the previous FID5 case. Interestingly,
the prediction also overestimated the landslide depth in the
upper part of the slope and underestimated the lower part of the
slope. Therefore, the prediction discrepancy also shows similar
negative-positive-lobed prediction discrepancy zones along the
downslope direction as in the previous case.

The accompanied discrepancy histogram and regression
analysis are shown in Figure 9. The histogram indicates that

the discrepancy has a flatter distribution with a few more
irregular minor peaks than that of FID5. This case is identified
as a poorer fit because the prediction also has relatively poor
linear regression parameters compared to the actual data: the
intercept ᾱ (0.72, normalized with respect to hactmean) is large,
β̄ (0.28) deviates greatly from 1, and R2 (0.063) is low. We
found consistent indications from Ēmode (52.47%), Ēstd (71.61%)
and ĒGC (44.44%), representing larger prediction discrepancies,
wider deviations and larger offsets of the gravity center. The
SSIM (0.677) also has one of the lowest scores. Nevertheless,

Frontiers in Earth Science | www.frontiersin.org 12 July 2020 | Volume 8 | Article 211

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Kuo et al. Minimal Surfaces as Landslide Failure Interfaces

FIGURE 9 | Landslide FID18. (A) Histogram of δ(x, y) and the graphical definition of mode(δ), std(δ) and the negligible mean depth discrepancy δmean. (B) Scatter plot

and regression analysis of the predicted and actual depths.

despite these comparatively subnormal indices, the prediction
is only 2.31% for Ēmean and a satisfactory 20.61% for Ēmax, as
both the scarp area and volume are constrained in the present
failure surface prediction method such that the mean depth has
interpolation errors only and the maximum depth is generally
proportional to the mean depth (see section 6).

6. DEPLOYMENT TO THE FULL SET OF
LANDSLIDES AND ASSESSMENTS

The method is applied to the 24 landslide sites defined in
Figures 2, 3 and Table 1. The resolution of the DEMs varies
from 5 to 20 m due to various preparation conditions, such as
public release policies and the size of landslide sites. Though
with these different resolution settings, the normalized grid
size 1̄ remains within 10% (Table 2). In the same table, the
maximum and mean depths as well as the positional offsets of
the maximum depths and gravity centers between the actual
and predicted scarps are listed. To make visual comparisons, the
depth-related quantities are plotted in Figure 10. The predicted
and actual depths excellently match the diagonal lines in
Figure 10A. Reorganizing the data, we find that there is also
a linear relationship between the maximum and mean depths
(Figure 10B). From the regression model, we have a gross
guideline that the maximum scarp depth can be obtained by
multiplying the mean scarp depth by a factor of 2.3.

The remaining assessment indices (i.e., the mode, standard
deviation, regression parameters of the prediction discrepancy
and the SSIM) are tabulated in Table 3. To comprehend at a
glance the interrelationship among the assessment indices, we
draw the box plots of the normalized indices in Figure 11. These
indices are sorted in ascending order by their median values and
are divided into two groups, of which the first group contains
the slopewise quantities, normalized by 2R and the second
involves the depth-related quantities, normalized by hactmean. The
discretization is determined by the DEM resolution, 1̄, and its
values in Figure 11A, are within 10% for the present data-sets.
The values of the normalized mean prediction discrepancy, Ēmean

in Figure 11B, are small and are all within 10%, as expected. As

argued in section 4, this finding is due to Ēmean being constrained
by the specified area and volume inputs to the method and the
small values arise from the DEM discretization approach and
interpolation scheme.

There are two assessment indices associated with the
maximum scarp depth: the positional offset ĒMD and discrepancy
Ēmax. The two indices both exhibit much larger spreads of their
data values than the other indices. The positional offset of the
gravity centers of the predicted and actual scarps is interestingly
small approximately 6% (median value), dimensionally of 6% ·

2R ≈ 0.12R. An important implication of this fact for future
incorporation of the mechanical slope stability analysis is that the
force balance condition of the predicted scarp mass (cf. free body
diagram) may not significantly differ from the actual mass, and
consequently, the landslide motion dynamics may bear a close
similarity. Research into this proposition is beyond the scope of
the present paper and will be reported in follow-up studies.

The index Ēmode depicts the most frequent prediction
discrepancy, and from this definition, it somewhat indicates the
skewness of the frequency distribution of δ(x, y), cf. Figures 7,
9. The moderate value range of Ēmode (Figure 11B) suggests
that the frequency distributions of the δ(x, y) histograms remain
reasonably symmetric. As mentioned in section 4, the standard
deviation index Ēstd equivalently describes the RMSE between
the predicted and actual scarps. The box plot shows that the
deviation is approximately 45 ± 10% of the mean scarp depth,
or approximately 19 ± 4% of the maximum scarp depth,
based on the regression model depicted in Figure 10B. These
margins of Ēstd indicate that the present smooth minimal surface
is satisfactory for predicting the landslide failure interfaces.
Figure 11C presents the value range of the resultant regression
parameters and the SSIM.

Finally, we comment on whether there is a relationship
between the good predictions from the present method and
the landslide scarps. The importance of the answer to this
question is that it enables us to estimate the goodness of the
prediction without needing to know the actual underground
failure interface when the method is applied to hazard mitigation
plans for potential landslide sites. For this purpose, the roundness
is chosen as the parameter to describe the landslide scarp
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FIGURE 10 | Combined comparison between (A) the predicted and actual depths, and (B) the maximum and mean depths. The data sources and regression

relations are marked in the figure legends.

FIGURE 11 | Box plots for the assessment indices (A) 1̄, ĒGC and ĒMD, (B) Ēmean, Ēmode, Ēmax, and Ēstd, and (C) ᾱ, β̄, R2 and the SSIM. The normalization

parameters are 2R for the first group and hactmean for the second group.

FIGURE 12 | Three selected normalized assessment indices vs. the landslide scarp roundness. The roundness vs. (A) Ēstd, (B) R
2, and (C) the SSIM. The dashed

lines are obtained by LOESS regression, with a default span parameter of 0.75 (Cleveland et al., 1992). The gray shaded areas indicate 95% confidence intervals.

FID12 is an outlier and is excluded from the regression analysis.
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FIGURE 13 | Flowchart of the present model for both application scenarios: verification, blocks shaded in light yellows, and hazard mitigation planning, blocks in light

greens. The current failure surface prediction model is in light red colors. For failure surface prediction verification, i.e., the main theme of the paper, the computational

flow is led by the thick solid brown lines but, for hazard mitigation planning, it is led by the thin dashed green lines.

because this parameter is usually the first obtainable information
from topographic surveys. After reviewing the collection of
the assessment indices, we select Ēstd, R2 and the SSIM to
measure the fitness of the predictions. These three indices vs.
the roundness are plotted in Figure 12. The locally estimated
scatterplot smoothing (LOESS) technique (Cleveland et al.,
1992), is then applied to determine their relationships with
certain degrees of statistical confidence. One exception is made
for the noted outlier FID12, cf. section 2, which is excluded from
the LOESS analysis but is included in the figure for reference.

Comparing the three LOESS results, we can draw a consistent
conclusion that the smooth minimal surface performs relatively
poorer for a roundness of approximately 0.3. At this value, the
standard deviation Ēstd (RMSE) has the highest value whereas
the coefficient of determination R2 and structural similarity index
SSIM have the lowest values. For values away from a roundness
of 0.3, the landslide scarp becomes either slenderer or more
circular. Intuitively, these two regimes have lower geometric
complexity because they both degrade to simpler 2D-like scarps.

The prediction fitness may thus be associated with the reduction
in the geometric complexity. In fact, the same conclusion can be
reached with the undiscussed ᾱ and β̄ parameters.

A note to keep in mind is that the conclusion drawn
from the above assessments is based on the current simple
smooth minimal surface approach for the failure surfaces. The
geological settings and hydrogrological conditions are completely
omitted. This arrangement is deliberate because it is essential
at present to construct a baseline dataset with the simplest
setting of the method. The dataset will be the foundation for
future comparative studies if alternative failure surface prediction
strategies are proposed. For example, the dataset will be used
for improvement assessments when we design mathematical
transformations to manipulate the failure surface predictions to
accommodate site specific geological conditions. On the other
hand, whether the current approach fits better for landslides in
slopes with uniform rocks also remains to be investigated and the
hypothesis can be examined by comparing to the baseline dataset.
These related studies will be reported in upcoming papers.
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7. CONCLUSION

Even with protection targets, a large number of potential deep-
seated landslides in the mountain ranges were identified in
a series of renewed hazard mitigation initiatives in Taiwan.
When implementing successful, detailed hazard mitigation
strategies, tasks such as the determination of the landslide
influencing areas and the installation of a monitoring system,
need the estimation of the landslide volumes, failure interfaces
and other related information. Having observed that these
deep-seated landslide sites are represented by polygons in
the GIS and that there are regression relations between
the landslide scarp areas and volumes, we propose to use
smooth minimal surfaces to approximate the landslide failure
interfaces. The smooth minimal surface is constructed by
minimizing the surface area while keeping the enclosed
volume fixed at the value obtained by the scarp area-volume
relation. This type of surfaces is chosen because it is closely
related to the commonly used spherical-shaped surfaces in
slope stability analyses. Consequently, it is expected that the
prediction may suit better for slopes with homogeneous and
isotropic rocks.

The method, though still in its primitive form, has the
potential to be applied to hazard mitigation plans in which
higher tolerance in prediction errors is allowed. Therefore, one
of the main themes of the paper is to establish the knowledge
about the fitness and margins of errors for this method setting.
The fitness of the prediction results was verified with 24
landslides that were triggered by excessive rainfall during the
2009 Morakot typhoon. A collection of assessment indices was
reviewed and among these indices, the standard deviation Ēstd

(equivalently, the RMSE), the regression parameters and the
SSIM are shown to contain the information about the prediction
discrepancy over the entire scarp domain for each landslide
site. Using the present landslide dataset, the value range of the
index Ēstd was found to be approximately 45 ± 10% of the
mean scarp depth. The limited positional offset of the gravity
center, ĒGC, indicates that the force balance condition may not
significantly differ from the actual landslide mass. Finally, the
relation between the prediction fitness and scarp geometry was
determined: Better predictions are achieved for either slender
or comparatively circular scarps. Overall, the indices reveal that
the smooth minimal surface method is able to produce practical,
acceptable predictions of deep-seated landslide failure interfaces,
despite the omission of stratigraphy, geological structures and
hydrogeological conditions.

The method is implemented with ease of use in mind such
that operational costs are kept low and automation processes

for a large number of landslide sites can be made possible.
An additional benefit is that the method can simultaneously
generate 3D computational meshes for the landslide scarp mass.
These meshes can be applied to many subjects related to hazard
mitigation plans. For example, for slope stability management,
it is currently ongoing to develop 3D extended schemes
for landslide volume and safety factor relations. Integrating
with surface deformation data and material constitutive laws,
slip displacements on the failure surface can be inversed
for deep-seated landslides, in a somewhat similar way to
dislocation model in tectonics. The volumetric mesh, or depth
distribution, can also be used as the initial mass to perform
landslide motion simulation to assess the influenced area.
Summarizing the abovementioned potential applications and
verification details presented in the present paper, we draw
a combined flowchart in Figure 13 for the two application
scenarios of the method. The inputs and products of the
method are explicitly indicated for each application scenario.
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