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Archean-Proterozoic boundary represents a significant transitional phase in the Earth’s

history. Bastar Craton is one of the major Archean cratons in the Indian subcontinent with

voluminous granites, supracrustal rocks, and tectonic belts. Malanjkhand, Dongargarh,

and Kanker are the threemajor granitic plutons emplaced during the Archean-Proterozoic

transition in the Bastar Craton, and this study is confined to the granites of Kanker pluton.

Based on geochemical systematics, the Kanker granites are classified into sanukitoids,

biotite and two-mica granites, and hybrid granites. The compositional diversity of the

Kanker granites is attributed to two end-member sources, i.e., the enriched mantle

and an older felsic crust, and the interactions between them. The sanukitoids were

derived from an enriched mantle source that was metasomatized by the subducted

sediments. Heat supplied by the sanukitoid magmas induced the crustal melting to

form the biotite and two-mica granites. The interaction between these two mutually

end-member sources, i.e., the enriched mantle and an older felsic crust, resulted in the

formation of hybrid granites. The evolution of the Kanker granites can be accounted for

a transitional geodynamic environment, involving subduction, and collisional tectonics

during the Archean-Proterozoic transition.

Keywords: sanukitoids, biotite and two-mica granites, Archean-Proterozoic transition, subduction and collisional

tectonics, Bastar Craton

INTRODUCTION

The Archean-Proterozoic boundary witnessed critical changes in the Earth’s history, such as the
increase in the crustal thickness, decrease in the rate of continental crustal growth, oxygenation
of the atmosphere, widespread occurrences of plate tectonic indicators and the formation of
supercontinental assemblages (Durrheim and Mooney, 1991; Condie and Kröner, 2008; Keller and
Schoene, 2012; Cawood et al., 2013; Lee et al., 2016). Most of these changes are linked to the secular
cooling of the Earth’s mantle that has utmost implications on the geological processes and is related
to the onset of present-day plate tectonics (Sizova et al., 2010; Keller and Schoene, 2012). Granitic
magmatism has been recorded as early as Hadean, in the Acasta Gneissic Complex (Reimink et al.,
2016) and continued into the Miocene (Hopkinson et al., 2017).
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Granitic rocks, unique to the planet Earth, provide vital clues
on the formation and evolution of the continental crust (Cawood
et al., 2013). Formation of granitic rocks can occur by two
different mechanisms, i.e., melting and differentiation of basaltic
rock and/or by the melting of the pre-existing crustal rocks
(Moyen et al., 2017). The transition from a stagnant lid tectonic
regime to present-day plate tectonics is believed to have initiated
by 3.0 Ga and became prominent by the end of the Archean
(Dhuime et al., 2012; Keller and Schoene, 2012). The global
transition in the nature and style of plate tectonic processes is
well-reflected and resulted in the compositional diversification
of the Neoarchean granitoids (Moyen et al., 2003; Laurent
et al., 2014). Based on the source and petrogenetic mechanism,
the Neoarchean granitoids have been classified into Tonalite
Trondhjemite Granodiorites (TTGs), sanukitoids s.l., biotite and
two-mica granites and hybrid granites (Laurent et al., 2014).
The TTGs are sourced from the partial melting of metabasalts,
sanukitoids are derived from an enriched mantle, and the biotite
and two-mica granites are purely crustal-derived. The hybrid
granites are formed by variable interaction between the three
above-mentioned granitic melts (Laurent et al., 2014).

There has been widespread granitic magmatism in the Indian
shield, as seen in the Aravalli, Bundelkhand, Dharwar, and Bastar
cratons during the Archean-Proterozoic boundary (Jayananda
et al., 2020). The Bastar Craton (Figure 1), with abundant
Archean-Proterozoic supracrustals and granitoids, hold critical
clues reflecting the significant changes that occurred during
this period (Khanna et al., 2019; Mondal et al., 2019; Santosh
et al., 2020). Malanjkhand, Dongargarh, and Kanker are the
three major granitic plutons emplaced during the Archean-
Proterozoic transition in the Bastar Craton. Based on the
whole rock geochemistry, this study intends to characterize
the granites of Kanker pluton and to provide new insights
on the petrogenetic evolution of these granites. The results
have implications on the crustal growth during the Archean-
Proterozoic transition, vis-à-vis, the evolutionary history of the
Bastar Craton.

GEOLOGY OF THE BASTAR CRATON

The Indian Shield is an amalgamation of cratonic blocks, namely
Dharwar, Singhbhum, Bastar, Aravalli, and Bundelkhand cratons
separated by Proterozoic mobile belts. The Bastar Craton of
central India is bound by the Mahanadi Rift and the Eastern
Ghats in the east, the Central Indian Tectonic Zone (CITZ)
toward the west, and the Godavari rift in the southeast (Figure 1).
The Eastern Ghats Mobile Belt forms the southeast boundary
of this craton. The craton records evidence for crustal growth
as early as Paleoarchean (Sarkar et al., 1993; Ghosh, 2004;
Rajesh et al., 2009). The Sukma gneissic complex is considered
as the basement of the Bastar Craton (Ramakrishnan, 1990).
The basement gneisses are best exposed along the southern
part of this craton. Tonalites forming the Sukma gneissic
complex yielded a U-Pb zircon age of 3561 ± 11Ma (Ghosh,
2004). The potassic granites associated with these TTGs were
also emplaced during the Paleoarchean (Rajesh et al., 2009).

FIGURE 1 | Generalized geological map of the Bastar Craton, with the sample

locations (modified after Mohanty, 2015). Inset map of Peninsular India, to

show the major cratonic blocks.

The Sukma Group overlies the Paleoarchean basement gneisses
and constitutes mafic-ultramafics, BIFs, para-amphibolites, and
quartzites (Mohanty, 2015). The CITZ divides the Sukma gneissic
complex into the southern Amgaon gneiss and the northern
Tirodi gneiss. The ages of Amgaon gneiss ranges from 2378 to
3396Ma (Sm-Nd ages, Ahmad et al., 2009). The Tirodi biotite
gneisses yielded an emplacement age of 1618 ± 8Ma (U-Pb
zircon age, Bhowmik et al., 2011).

The Bengpal Group overlies the older Sukma Group with a
basal unconformity. The major rock types of the Bengpal Group
are quartzites, amphibolites, BIFs, and interlayered metabasalts
with quartzites (Mohanty, 2015). Neoarchean boninite-like rocks
and siliceous high magnesium basalts (SHMBs) were reported
from the Bengpal Group (Srivastava et al., 2004) and the
Neoarchean Sonakhan Greenstone Belt (SGB) (Manu Prasanth
et al., 2018). The younger supracrustals of the craton comprise
metavolcanics, metasedimentary sequences and BIFs that occur
as enclaves, as well as linear belts. The Dongargarh, Sakoli
and Sausar are the prominent supracrustal belts in this craton
(Meert et al., 2010). The Dongargarh Supergroup, constituting
the supracrustals and granites, is further divided into Nandgaon
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and Khairagarh groups being separated by the Dongargarh
granite (Deshpande et al., 1990). The Nandgaon Group consists
of Bijli rhyolite and Pitapani basalts and andesites, whereas the
Khairagarh Group consists of basalts interlayered with sandstone
and arenites (Khanna et al., 2019). The volcanic rocks of the
Dongargarh Supergroup, referred to as the Kotri-Dongargarh
Mobile Belt (KDMB), are interpreted to have erupted by ∼2.5
Ga (Asthana et al., 2016; Manikyamba et al., 2016; Khanna et al.,
2019), and are considered to have evolved in an arc setting
(Asthana et al., 2018).

The Neoarchean orogenic events in the craton are marked
by the formation of migmatites from the basement granitoids
(Roy et al., 2006). The Neoarchean-early Paleoproterozoic
granitic magmatism is reported in the form of three major
plutons, namely, Dongargarh, Kanker, and Malanjkhand
granites. The I-type Malanjkhand granite hosts a world-
class copper-molybdenum deposit and was emplaced around
2478Ma (Panigrahi et al., 2004). There is no consensus on the
tectonic setting of the Malanjkhand granite and the origin of
mineralization (Stein et al., 2004; Pandit and Panigrahi, 2012;
Asthana et al., 2016). The Dongargarh granite is a composite
pluton, with both I- and A-type affinity (Narayana et al.,
2000) and is considered to have evolved in a continental rift
setting (Pandit and Panigrahi, 2012; Manikyamba et al., 2016).
Dongargarh granite has yielded a U-Pb zircon age of 2485 ±

6.5Ma and is considered to be coeval with the 2.48 Ga Kanker
granites (Sarkar et al., 1993; Bickford et al., 2014). In a recent
study (Santosh et al., 2020), the Bastar Craton is divided into
Western Bastar, and Eastern Bastar cratons, sutured by the
N-S directed collisional Central Bastar Orogen. Several dyke
swarms of the craton exhibit NW–SE trend, which is parallel to
the Godavari Rift (Meert et al., 2010). French et al. (2008) has
reported the U-Pb baddeleyite age of 1891.1 ± 0.9Ma and U-Pb
zircon age of 1883± 1.4Ma for dolerite dykes from the southern
part of this craton. Meso-Neoproterozoic Chhattisgarh, Khariar,
and Indravathi basins overlie on the Kanker granite (Bickford
et al., 2014).

FIELD RELATIONSHIPS AND
PETROGRAPHY

We present the field, petrographic, and whole-rock geochemical
studies for the unclassified granites representing the Kanker
granitic pluton from the central part of the Bastar Craton.
The Kanker granite is a composite granitic pluton with at
least three phases of granites. Porphyritic feldspar megacrystic
granites are the most common variety, varying from pink
to gray in color (Figures 2A,B). Apart from the porphyritic
granitoids, leucogranites and anatectic granites are also present
(Figures 2C,D). Microgranular enclaves (MEs), and mafic
synplutonic dykes were observed at several places (Figure 2E).
The granite variants mostly display sharp contacts (Figure 2F).
Elangovan et al. (2017, 2020), have found that the mafic and felsic
magmatism were coeval. These granites are variably deformed at
places and form granitic gneisses. Pegmatites, aplite, and epidote
veins are found intruding into these granites. The pegmatite

veins contain large alkali feldspar crystals (2–6 cm in length)
with perfect twins and perthite exsolution along with tourmaline,
titanite, and allanite. In general, these granites are oriented along
NW-SE direction.

Based on the mineral assemblages, the Kanker granites can
be divided into two, namely, biotite, and two-mica granite and
hornblende biotite granite. The biotite and two-mica granites
display inequigranular texture with twinned alkali feldspars
showing the perthitic exsolution. The essential minerals that
constitute biotite and two-mica granites are alkali feldspar,
plagioclase, and quartz, with biotite and muscovite forming the
accessory phases (Figures 3A,B). The alkali feldspars contain
inclusions of plagioclase, quartz, and biotite. Perthite unmixing
is common from both microcline and orthoclase. Mafic minerals
such as hornblende, titanite, and opaques are nearly absent in
these granites. Sericitization of plagioclase and chloritization of
biotite are common (Figure 3C).

The Hornblende biotite granites exhibit hypidiomorphic
texture with plagioclase, alkali feldspar, and quartz as the essential
minerals. Titanite, epidote, opaques, apatite, zircon, and allanite
forms the accessory phases (Figure 3D). The plagioclase feldspars
are euhedral and display kink in their twins (Figure 3D). The
alkali feldspars, which are subhedral to anhedral, exhibit perthitic
exsolution. A few crystals of hornblende exhibit twinning, and
most of them are chloritized, along with biotite. Apatites are
mostly prismatic, though few acicular ones are also observed.
Allanite crystals are well-zoned and elongated (Figure 3E).
Primary epidotes are rarely seen, while the secondary epidotes are
fairly common. Titanite grains are mostly associated with biotite
and hornblende, and they vary from euhedral wedge to irregular
in shape (Figure 3F).

ANALYTICAL TECHNIQUES

The granitoid samples weighing more than ∼3 kg were collected
from fresh outcrops and working quarries. For geochemical
analysis, the samples were crushed to fine powders of size
<250 mesh sieve. The geochemical analysis was carried out
using in-house facilities at CSIR-National Geophysical Research
Institute, Hyderabad. The major elements of the studied samples
are analyzed using XRF (Phillips Axios mAX4), following the
pressed pellet sample preparation technique. USGS standard
reference material G-2 was used as the standard. The details of
instrument calibration, data acquisition, accuracy, and detection
limits are provided in Krishna et al. (2016). The trace elements
were analyzed using AttoM HR-ICP-MS (Nu Instruments, UK),
following the closed digestion sample preparation technique.
About 50mg of finely powdered samples were taken in Savillex R©

vials to which 10ml of the acid mixture containing HF and
HNO3 mixed in 7:3 ratio was added. After heating these vials
for 48 h at 150◦C to obtain a clear solution, 1ml of perchloric
acid was added, and the samples were heated to dryness.
Twenty ml of a freshly prepared acid mixture containing HF
and Millipore water in a 1:1 ratio was added to the vials and
heated for nearly 1 h at 80◦C. On cooling, the sample solution
was transferred to 250ml conical flasks, and 5ml of 1 ppm Rh
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FIGURE 2 | Field photographs of different granite types from Kanker (A) Gray porphyritic granite with feldspar phenocryst. (B) Pink porphyritic granite with alkali

feldspar phenocrysts. Both these granitoids are high in mafic minerals. (C) Medium- to coarse-grained leucogranite being intruded by an epidote vein. (D) Gray

medium- to coarse-grained anatectic granite. (E) Medium to coarse- grained gray granite with abundant Magmatic Enclaves (MEs). (F) Two granitoid variants that

differ in their mafic mineral contents, demarcated by a sharp boundary of biotite aggregates.

was added as an internal standard. The sample solution was
initially diluted to 250ml, followed by a 50ml dilution, to achieve
an optimal Total Dissolved Solid (TDS) level. Along with the
samples, blank solutions and standards JG-1a and G-2 were also
used. The data accuracy was monitored using certified reference
materials (JG-1a and G-2), and the instrument sensitivity and
stability was checked with Rh. The contamination was monitored
using the blank solutions. The details of the sample digestion
method, instrumental parameters, data acquisition, and quality
are referred from Satyanarayanan et al. (2018).

RESULTS

Geochemistry
The whole-rock major and trace elemental data for 39 samples
representing the Kanker granites are presented in Table 1.

Based on the normative mineralogy, the Kanker granites are
mostly granites with few granodiorites and quartz monzonite
(Figure 4A). Considering the compositional variability of
these granites, in conjunction with the variations in mineral
assemblages, these granites are divided into sanukitoids, biotite
and two-mica granites and hybrid granites (as dispositioned in
Figure 4B). This classification scheme enables us to characterize
these rocks for the petrogenetic evolution and sources, apart
from being consistent with the global adaptability of Neoarchean
granitoids (Laurent et al., 2014).

Sanukitoids

Based on the normative mineralogy, the sanukitoids of the
Kanker are granites, granodiorites and quartz monzonites
(Figure 4A) with a high content of ferromagnesian elements
(Fe2O3, MgO, MnO and TiO2, FMMT >5 wt.%) (Figure 4B).
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FIGURE 3 | Representative photomicrographs of Kanker granites (A) Biotite and two-mica granite with sericitized plagioclase, alkali feldspar with plagioclase and

quartz inclusions, chloritized biotite, and muscovite. (B) Biotite and two-mica granite with plagioclase, alkali feldspar, quartz, biotite and muscovite. Quartz exhibits

sub-grain formation. (C) Biotite granite with plagioclase, alkali feldspar, quartz and biotite. The alteration of plagioclase is limited to their cores and possess growth

twins. (D) Hornblende biotite granite with hornblende, plagioclase, microcline, quartz and opaques. Plagioclase possesses deformational kinks. (E) An elongated

zoned allanite grain observed in the biotite granite. (F) Biotite granite with large titanite grains associated with biotite, extensively sericitized plagioclase, alkali feldspar

and recrystallized quartz. The mineral abbreviations in the figure are Ms, Muscovite; Afs, Alkali feldspar; Bt, Biotite; Pl, Plagioclase; Qtz, Quartz; Ep, Epidote; Op,

Opaque; Mc, Microcline; Ttn, Titanite; Aln, Allanite.

Their silica and alumina compositions range between 63 and
69 wt.% and 12 to 16 wt.%, respectively (Table 1). These
granites are essentially potassic (K2O = 3.4–5.4 wt.%) with
metaluminous affinity (A/CNK <1) and belongs to high-K calc-
alkaline to shoshonitic series (Figures 5A,B). The sanukitoids
have Mg number (Mg#) as high as 66 with an average of 46
(Figure 5C). On theHarker variation diagrams, these sanukitoids
exhibit a negative trend against the major elements, with marked
enrichment in the ferromagnesian elements (Figures 5D–F).

The sanukitoids have higher compositions of transition
elements (Table 1). These rocks have low Rb (avg. 168 ppm)

and high Sr (avg. 310 ppm) compositions, leading to extremely
low Rb/Sr ratios (avg. Rb/Sr = 0.54). On the chondrite
normalized rare earth element (REE) diagram, sanukitoids
display a highly fractionated pattern [(La/Yb)N varying from
7.83 to 68.94, avg. = 29.8] with a negative Eu anomaly (Eu/Eu∗

varying from 0.96 to 0.20, avg. = 0.63) (Figure 6A). On the
primitive mantle normalized multi-elemental variation diagram,
the sanukitoids display prominent Large Ion Lithophile Elements
(LILE) enrichment and High Field Strength Elements (HFSE)
depletion (Figure 6B). These rocks exhibit negative anomalies of
Nb,Ta, Sr, and Ti.
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TABLE 1 | Major and trace elemental compositions of the Kanker granites.

Biotite and two-mica granites Sanukitoids Hybrid granites

Sample B/5A B/5B B/6 BB14-1 S/240/3 S/230/4 S/237/3 S/239/1 B16/2 B16/5 B16/9 B16/13 B16/16 B16/36 B16/38 B16/40 S/236/2 S/236/5 S/227/4 S/239/5 B16/1 B16/17 B16/22 B16/25 B16/29 B16/31 B16/33 B16/35 B/258/3 B/259/1 B/259/2 B/8A B/8B B/10 B/11 B/27 BB14-3 S/230/10 S/147/2

SiO2

(wt. %)

73.11 73.22 72.17 73.31 74.09 73.32 74.07 73.12 68.16 67.95 67.16 67.30 66.95 67.42 68.16 68.03 69.05 69.04 69.01 63.88 71.90 71.29 70.27 69.31 71.45 71.21 69.94 71.49 70.27 71.50 71.93 70.70 69.83 71.01 69.93 69.81 71.30 71.29 73.38

Al2O3 14.83 14.79 14.91 14.99 14.63 14.77 14.44 14.61 12.73 14.08 14.56 14.33 14.96 14.87 14.18 14.73 14.81 14.80 14.27 15.52 14.28 14.87 15.76 14.69 14.62 14.91 14.41 14.56 14.60 14.48 13.85 14.96 15.02 14.81 14.87 15.10 14.57 13.77 13.80

Fe2O3 (T) 1.50 1.63 1.74 1.38 1.41 1.47 1.30 1.45 4.22 3.55 3.80 3.69 4.43 4.24 4.12 3.97 3.66 3.55 3.78 5.50 1.90 2.30 1.95 3.28 2.46 2.19 2.56 2.69 2.93 2.87 2.57 2.84 2.69 1.92 2.45 2.54 2.37 3.30 2.33

MnO 0.02 0.02 0.03 0.01 0.03 0.02 0.02 0.02 0.05 0.04 0.04 0.04 0.03 0.06 0.05 0.04 0.03 0.03 0.05 0.04 0.01 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.02

MgO 0.20 0.22 0.22 0.16 0.14 0.12 0.19 0.18 1.71 1.32 1.46 1.47 1.96 1.56 1.32 1.29 1.29 1.25 1.19 3.11 0.42 0.34 0.89 0.94 0.36 0.49 0.54 0.34 0.69 0.84 0.64 0.36 0.60 0.42 0.36 0.62 0.74 0.55 0.34

CaO 1.03 1.10 1.07 1.23 0.96 0.81 0.90 1.05 3.03 2.99 2.87 2.76 3.37 2.87 2.94 2.75 2.72 2.83 2.75 3.53 1.74 1.48 2.25 2.61 1.87 1.90 2.48 2.04 1.20 1.47 1.41 2.15 1.82 2.59 1.43 2.77 2.03 1.65 1.69

Na2O 3.96 3.63 3.76 3.89 3.59 3.72 3.83 3.78 3.77 3.84 3.86 4.01 3.61 3.25 4.02 3.59 3.13 3.72 2.73 3.31 3.09 3.38 5.00 2.95 3.54 3.88 3.36 3.84 4.14 3.94 3.32 3.32 3.49 3.47 3.20 4.35 4.39 3.96 3.19

K2O 5.02 5.06 4.96 5.12 4.81 4.92 4.93 5.03 5.35 5.12 5.14 5.00 3.52 5.15 4.27 4.30 4.62 3.40 4.62 4.28 5.38 4.97 2.79 4.91 4.46 4.15 5.29 4.52 4.36 4.12 4.20 4.90 4.58 4.81 5.59 3.97 3.43 3.90 4.97

TiO2 0.08 0.07 0.15 0.05 0.08 0.10 0.13 0.13 0.55 0.46 0.45 0.58 0.54 0.44 0.37 0.41 0.44 0.42 0.43 0.60 0.17 0.25 0.28 0.40 0.23 0.22 0.25 0.23 0.27 0.32 0.24 0.26 0.31 0.17 0.19 0.28 0.27 0.43 0.10

P2O5 0.03 0.03 0.05 0.01 0.01 0.01 0.02 0.04 0.42 0.23 0.26 0.26 0.52 0.13 0.19 0.19 0.17 0.27 0.36 0.23 0.06 0.07 0.05 0.22 0.09 0.11 0.08 0.09 0.08 0.05 0.05 0.16 0.12 0.12 0.08 0.11 0.13 0.09 0.03

LOI 0.44 0.63 0.54 0.35 0.42 0.51 0.35 0.35 0.42 0.35 0.46 0.52 0.39 0.43 0.51 0.58 0.41 0.40 0.54 0.47 0.42 0.49 0.31 0.46 0.43 0.55 0.58 0.32 0.70 0.59 0.73 0.61 0.63 0.71 0.64 0.58 0.42 0.51 0.42

Sum 100.22 100.39 99.60 100.50 100.15 99.78 100.18 99.78 100.42 99.95 100.06 99.97 100.28 100.43 100.11 99.88 100.33 99.71 99.73 100.47 99.37 99.45 99.56 99.81 99.51 99.62 99.50 100.15 99.28 100.20 98.97 100.27 99.10 100.04 98.76 100.15 99.67 99.48 100.27

Mg# 22.48 22.71 21.96 20.47 17.92 15.69 24.19 21.62 47.19 45.04 45.77 46.75 49.35 44.78 41.39 41.72 43.75 43.65 40.84 55.46 32.59 24.65 50.18 38.76 24.41 32.87 31.54 22.00 34.02 39.03 35.22 21.74 32.76 32.31 24.20 34.97 40.78 26.65 24.44

A/CNK 1.07 1.10 1.10 1.06 1.14 1.14 1.09 1.08 0.73 0.81 0.85 0.84 0.94 0.92 0.86 0.95 0.98 0.99 0.98 0.94 1.02 1.09 1.03 0.99 1.04 1.04 0.91 0.97 1.06 1.06 1.10 1.02 1.07 0.95 1.07 0.92 1.00 1.00 1.01

A/NK 1.24 1.29 1.29 1.25 1.32 1.29 1.24 1.25 1.06 1.19 1.22 1.19 1.54 1.36 1.26 1.39 1.46 1.51 1.50 1.54 1.31 1.36 1.40 1.44 1.37 1.37 1.28 1.30 1.26 1.32 1.38 1.39 1.40 1.36 1.31 1.32 1.33 1.28 1.30

Cr (ppm) 16.03 15.07 14.75 86.15 79.51 80.05 79.62 77.04 105 110 112 130 137 103 104 124 63.70 62.22 105 71.47 125.32 105 113 108 96.25 110 144 103 13.73 13.25 14.57 11.83 11.58 13.45 15.35 9.99 83.78 83.44 82.14

Co 1.92 1.89 2.44 1.83 2.14 1.82 2.14 2.52 10.63 3.70 8.16 7.64 12.79 3.76 5.37 4.99 3.21 5.64 8.12 13.27 3.94 3.00 4.40 6.05 3.60 3.89 4.46 3.87 2.90 2.26 3.28 3.17 3.74 2.68 2.89 4.09 4.95 3.69 2.45

Ni 2.75 3.94 2.80 6.01 6.42 6.23 5.54 5.58 9.14 8.42 12.26 11.00 9.07 8.26 7.53 9.30 6.04 5.44 6.75 6.89 8.95 7.95 10.06 8.85 9.58 7.50 12.88 8.74 3.25 2.87 3.29 3.12 3.44 3.22 7.70 3.47 6.68 6.21 6.14

Rb 296 270 263 287 270 332 207 209 140 243 269 324 107 116 107 104 200 100 149 163 230 143 123 206 101 91 221 152 99 97 113 176 169 181 200 117 65 210 125

Sr 35.61 59.46 68.89 39 34 34.8 75.9 79 254 158 186 145 485 251 329 306 241 465 453 450 121 111 204 172 243 286 133 172 51 32 28 147 201 206 109 356 236 105 149

Cs 1.99 1.75 2.42 1.18 1.13 0.679 0.528 0.22 0.30 1.04 3.04 1.99 1.03 0.69 0.60 0.88 0.93 0.84 0.31 0.69 0.41 0.56 4.02 0.92 0.78 1.04 2.94 0.69 1.63 0.95 1.10 2.59 1.68 2.05 3.49 2.05 0.53 1.19 0.90

Ba 180 267 242 115 73 89.9 140 201 1134 1025 774 809 1068 1399 1036 1257 1418 1235 1852 1388 712 459 464 827 1295 983 445 958 1118 983 1025 800 836 925 664 695 875 498 952

Sc 1.92 1.49 1.59 2.18 4.22 1.53 1.32 1.26 8.73 4.79 9.50 7.90 7.37 6.86 8.92 10.27 3.14 4.56 8.97 9.78 6.03 5.16 6.71 6.26 5.75 6.70 10.49 7.82 3.73 3.42 3.55 2.71 2.68 2.59 2.17 3.07 3.63 3.77 2.20

V 0.56 0.64 1.10 8.42 4.46 4.49 6.09 8.05 35.55 16.10 39.07 33.13 62.68 16.94 26.17 24.32 12.34 31.48 42.47 62.1 11.60 11.26 31.92 35.07 14.16 14.49 19.05 15.05 1.09 0.91 0.79 1.29 1.54 0.89 0.94 1.94 14.84 11.83 8.67

Ta 2.85 2.08 3.06 1.62 0.89 1.34 1.01 0.31 0.94 0.76 1.74 0.28 0.80 0.09 0.09 0.07 1.37 0.70 0.84 1.49 2.11 0.57 0.84 0.41 0.34 0.32 0.11 0.07 1.60 2.10 2.54 1.11 0.67 2.17 1.73 0.91 0.29 1.21 0.28

Nb 19.9 14.8 20.7 13.23 35.31 31.91 23.81 20.35 34.04 17.95 30.88 47.48 22.74 7.89 10.38 7.17 20.65 17.57 20.44 18.54 32.42 11.31 14.99 24.03 10.74 7.44 10.55 9.25 26.59 29.16 33.77 16.34 12.81 20.28 16.16 8.67 11.81 27.15 4.08

Zr 60.91 77.01 123 137 213 274 191 140 690 482 463 1137 431 348 482 640 343 333 538 495 382 304 571 461 443 239 343 364 207 212 293 218 260 167 171 135 406 578 219

Hf 2.85 3.07 4.70 4.57 7.44 10.5 6.37 4.19 12.80 10.13 8.88 22.15 8.18 6.77 9.26 12.60 7.38 6.63 11.33 10.61 8.59 6.63 11.66 9.20 8.60 5.02 7.67 7.67 6.95 7.35 9.89 6.63 7.67 5.92 6.05 4.02 8.30 13.53 5.79

Th 31.98 33.59 31.25 21.06 52.48 61.0 44.6 24.67 43.89 74.58 53.80 143 3.49 11.71 14.99 14.80 20.19 15.15 23.88 21.38 59.32 45.81 50.28 48.79 12.56 11.64 54.23 25.21 12.02 26.04 22.26 27.27 34.45 39.20 38.63 14.54 25.90 76.95 10.72

U 10.45 14.64 19.70 9.53 15.26 12.1 9.56 9.69 8.03 11.21 11.58 36.65 2.43 1.83 1.65 2.07 8.50 2.73 8.37 3.86 12.17 6.03 4.80 10.92 1.98 1.41 13.12 3.91 2.58 5.51 7.13 5.62 3.91 12.57 9.55 4.74 1.39 28.42 2.59

Y 28.34 23.49 21.82 16.19 45.15 43.5 24.8 26.11 36.00 24.95 64.50 76.66 67.08 21.38 23.08 20.19 20.45 13.97 18.29 34.65 27.95 9.06 19.67 31.25 13.52 7.11 23.06 17.08 42.55 51.76 66.46 19.50 10.31 21.18 12.83 8.52 11.50 40.91 6.68

La 134 210 149 101 106 202 206 120 341 504 430 1086 138 198 256 224 319 279 381 349 335 482 381 384 189 159 307 271 211 254 382 300 382 265 256 125 309 1123 84.91

Ce 101 148 109 69.63 79.38 137 139 87.22 235 347 289 762 107 131 165 145 202 171 249 241 236 334 252 250 123 116 200 181 172 182 314 206 292 179 178 84.57 202 703 60.81

Pr 60.36 91.61 73.07 56.54 74.87 112 108 76.06 207 278 226 614 104 107 134 117 158 132 197 204 189 256 197 193 99.65 84.39 157 146 109 129 189 129 157 113 114 54.16 159 555 52.90

Nd 39.45 57.71 49.43 33.47 50.22 65.07 58.90 46.69 134 161 129 349 74.26 63.57 79.35 70.91 89.25 74.87 114 130 109 137 110 110 58.97 50.86 89.91 85.17 82.66 95.71 138 83.50 99.05 75.60 75.49 37.14 90.51 289.33 33.01

Sm 24.03 30.44 28.24 21.35 41.83 40.85 30.02 31.31 77.39 81.47 71.47 184 67.77 34.54 41.91 36.68 39.34 32.77 48.33 68.27 59.10 57.25 56.88 56.14 30.35 23.51 46.86 41.87 48.25 56.42 77.29 36.02 38.88 39.90 38.36 18.56 42.97 116.64 17.58

Eu 3.69 4.85 5.52 3.23 3.80 4.89 6.38 5.81 27.28 21.07 20.14 26.78 29.25 21.18 22.85 23.19 19.32 22.75 29.18 36.53 14.27 11.97 15.28 27.33 22.13 14.62 17.37 21.93 15.31 13.92 16.69 10.41 11.21 7.93 8.76 9.01 19.12 12.12 13.18

Gd 13.36 15.46 14.84 11.10 24.83 21.38 14.98 16.57 36.61 35.68 37.76 85.21 46.86 16.37 20.22 18.33 17.32 14.93 20.16 31.94 28.65 20.93 25.79 28.50 13.93 9.70 21.79 18.05 28.47 32.45 45.03 16.98 16.29 20.39 17.91 8.70 18.85 47.33 7.18

Tb 14.80 14.89 13.83 11.94 32.64 24.89 15.51 19.12 35.33 31.67 44.88 81.97 53.95 16.65 19.42 18.27 15.81 12.67 15.64 30.20 27.77 13.24 22.29 26.71 12.19 7.87 20.85 16.15 28.55 31.80 42.32 13.74 10.17 17.96 13.13 6.89 15.45 38.74 6.20

Dy 16.22 14.18 13.91 8.69 27.25 20.08 11.66 15.04 22.87 18.47 34.71 52.91 42.19 11.79 13.88 12.55 11.25 8.48 9.94 21.13 19.00 6.68 13.68 18.30 7.94 4.60 14.42 10.46 28.99 32.16 42.58 12.53 7.78 15.48 10.11 5.88 9.03 24.61 4.02

Ho 13.60 11.33 10.89 6.67 21.73 16.57 9.17 11.65 16.17 11.43 27.89 36.11 30.89 9.00 10.59 9.20 8.77 6.28 7.50 15.61 13.42 4.24 9.04 14.04 6.10 3.23 10.69 7.75 22.72 25.53 34.10 9.75 5.88 11.13 7.34 4.53 5.76 17.44 2.90

Er 14.16 11.05 10.35 7.35 23.57 19.00 10.16 12.29 16.54 9.96 30.53 32.97 28.94 9.91 11.12 9.80 9.71 6.68 8.55 16.56 12.39 4.04 8.50 15.34 6.33 3.26 11.04 7.84 20.88 24.27 33.34 8.84 5.38 9.65 6.51 4.25 5.03 18.53 3.10

Tm 14.73 10.78 9.81 8.06 24.61 20.94 10.75 11.86 15.54 8.33 32.99 28.73 23.44 11.20 11.31 10.03 10.54 6.67 9.65 17.14 11.75 3.84 7.78 16.11 6.47 3.41 11.43 8.68 19.05 23.02 32.57 7.93 4.88 8.17 5.68 3.97 4.14 19.13 3.38

Yb 17.23 11.96 10.64 8.52 23.05 21.02 10.30 10.61 13.98 7.56 32.12 23.92 18.21 11.18 12.06 9.81 10.69 6.74 11.20 17.29 11.26 3.82 7.46 16.60 6.34 3.25 11.11 8.69 19.90 24.94 36.41 8.08 5.08 7.96 5.75 4.12 3.64 19.45 3.69

Lu 19.60 14.06 12.20 9.34 22.99 22.33 10.30 10.07 13.40 7.20 31.73 21.84 16.15 12.20 11.91 10.25 10.92 7.51 14.26 18.45 12.33 3.89 8.51 17.01 7.83 3.47 11.98 10.03 22.19 28.39 42.05 9.28 6.03 8.91 7.00 5.39 3.88 20.69 4.46
∑

REE 485 647 510 357 556 727 641 475 1192 1523 1439 3385 781 654 810 716 922 782 1116 1197 1080 1339 1115 1174 590 487 932 835 829 954 1426 851 1041 781 744 372 888 3005 297

(La/Yb)cn 8.02 18.15 14.44 12.28 4.74 9.92 20.68 11.73 25.22 68.94 13.83 46.93 7.83 18.34 21.96 23.60 30.84 42.72 35.12 20.87 30.75 130 52.82 23.94 30.84 50.64 28.52 32.20 10.94 10.52 10.84 38.33 77.71 34.44 46.02 31.34 87.65 59.70 23.78

(La/Sm)cn 5.74 7.12 5.43 4.89 2.61 5.10 7.09 3.97 4.55 6.39 6.21 6.09 2.10 5.93 6.31 6.31 8.37 8.78 8.13 5.28 5.85 8.70 6.92 7.07 6.44 7.00 6.76 6.68 4.51 4.65 5.10 8.59 10.13 6.87 6.89 6.95 7.43 9.94 4.99

(Gd/Yb)cn 0.78 1.29 1.39 1.30 1.08 1.02 1.45 1.56 2.62 4.72 1.17 3.56 2.57 1.46 1.68 1.87 1.62 2.21 1.80 1.85 2.54 5.47 3.46 1.72 2.19 2.98 1.96 2.08 1.43 1.30 1.24 2.10 3.21 2.56 3.11 2.11 5.17 2.43 1.94

(Eu/Eu*) 0.20 0.21 0.26 0.20 0.11 0.16 0.29 0.24 0.48 0.36 0.37 0.20 0.51 0.84 0.74 0.85 0.69 0.96 0.86 0.73 0.33 0.31 0.37 0.65 1.01 0.89 0.51 0.74 0.40 0.32 0.27 0.40 0.41 0.26 0.31 0.66 0.62 0.15 1.07

(Zr/Hf) 21.37 25.12 26.23 29.91 28.63 26.00 30.04 33.54 53.87 47.59 52.07 51.31 52.63 51.37 52.06 50.80 46.43 50.19 47.53 46.61 44.47 45.82 48.92 50.10 51.50 47.74 44.74 47.50 29.70 28.85 29.65 32.95 33.93 28.27 28.28 33.52 48.95 42.70 37.78

(Nb/Ta) 6.96 7.11 6.77 8.17 39.75 23.77 23.51 64.93 36.19 23.57 17.75 171 28.45 86.07 116 106 15.04 24.98 24.23 12.44 15.40 19.72 17.81 59.30 31.77 23.23 94.02 142 16.58 13.87 13.29 14.71 19.11 9.35 9.37 9.51 41.12 22.35 14.74

(Sr/Y) 1.26 2.53 3.16 2.39 0.76 0.80 3.06 3.01 7.04 6.34 2.88 1.90 7.24 11.75 14.26 15.13 11.78 33.26 24.78 12.99 4.32 12.23 10.36 5.51 17.97 40.21 5.76 10.09 1.21 0.62 0.43 7.52 19.50 9.75 8.50 41.75 20.56 2.57 22.32
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Asokan et al. Petrogenesis of the Kanker Granites

FIGURE 4 | (A) The distribution of Kanker granites on the normative An-Or-Ab

triangle diagram (after O’Connor, 1965). (B) The disposition of the Kanker

granites in the ternary classification diagram for Neoarchean granitoids (after

Laurent et al., 2014), the fields correspond to that of well-studied suits from

different cratons.

Biotite and Two-Mica Granites
Based on the normative mineralogy, the biotite and two-mica
granites are essentially granites (Figure 4A). Their silica and
alumina compositions vary in a narrow range, between 72 and
74 wt.% and 14–15 wt.%, respectively (Table 1). These granites
are essentially potassic (K2O= 4.9–5.1 wt.%) with peraluminous
affinity (A/CNK >1) and belongs to high-K calc-alkaline
series (Figures 5A,B). These rocks have lower compositions
of ferromagnesian elements (Fe2O3+MnO+MgO+TiO2 <2.2
wt.%) and are clustered toward the Alumina pole in the
classification diagram for Archean granitoids (Figure 4B and
Table 1). They have a low Mg number (Mg# <22) (Figure 5C).
In Harker variation diagrams, these granites show negative

correlation of CaO, MgO, TiO2, and Fe2O3 (Figure 5). The
biotite and two-mica granites have low transition elemental
compositions (Table 1), have high Rb (avg. Rb = 267 ppm) and
low Sr (avg. Sr = 53 ppm), resulting in high Rb/Sr ratios (avg.
Rb/Sr= 5.9). Similarly, these granites have low Zr (avg. Zr= 152
ppm) and Hf (avg. Hf = 5.4 ppm), resulting in low Zr/Hf ratios
(avg. Zr/Hf= 27.6).

On the chondrite normalized REE plot, the biotite and two-
mica granites are less fractionated with (La/Yb)N varying from
4.74 to 20.68 (avg. (La/Yb)N = 12.5), but possess a strong
negative Eu anomaly with Eu/Eu∗ <0.3 (Figure 6C). On the
multi-elemental variation diagram, biotite and two-mica granites
display LILE enrichment and HFSE depletion with negative
anomalies of Ba, Nb, Ta, Eu, Sr, and Ti (Figure 6D). The Nb-
Ta depletion is not very prominent in the biotite and two-mica
granites when compared to the sanukitoids.

Hybrid Granites
The hybrid granites of the Bastar Craton are compositionally
diverse, with geochemical features intermediate between the
sanukitoids and the biotite and two-mica granites. Based on
normative mineralogy, they are granites (Figure 4A). Their silica
and alumina compositions range between 69 and 73 and 13–
16 wt.%, respectively (Table 1). On the Alumina Saturation
Index diagram (Shand, 1943), the hybrid granites are distributed
between metaluminous and peraluminous fields, with more
affinity toward the latter (Figure 5A). These are potassic (K2O
= 2.8–5.6 wt.%), plotting in the fields of high-K calc-alkaline
to shoshonitic series (Figure 5B). They have varied Mg number,
ranging between 21 and 55 (avg. Mg# = 32) (Figure 5C).
On Harker variation diagrams, the compositions of hybrid
granites are distributed between the sanukitoids and biotite and
two-mica granites (Figures 5D–F). These granites are low in
ferromagnesian elements (1.8 ≤ FMMT ≤ 4.5 wt.%) (Table 1).

On the chondrite normalized REE plot, hybrid granites
show incoherent REE abundances with a strongly fractionated
elemental pattern [(La/Yb)N range from 10.5 to 130, avg.
= 42] and variably negative Europium anomalies (between
0.15 and 1) (Figure 6E). On the primitive mantle normalized
multi-elemental variation diagram, hybrid granites display
LILE enrichment and HFSE depletion, with the trend
intermediate between sanukitoids and biotite and two-mica
granites (Figure 6F).

PETROGENESIS OF THE KANKER
GRANITES

Source
Sanukitoids are considered to be derived from an incompatible
element rich mantle source (Shirey and Hanson, 1984).
Sanukitoids of the Kanker area are metaluminous, low in SiO2,

and high in ferromagnesian elements (Figures 4B, 5A). They
are also rich in transition metals and incompatible elements
such as Ba and Sr (avg. Ba+Sr = 1510 ppm) (Table 1). Such
compositional diversity (rich in compatible and incompatible
elements) is suggestive of an enriched mantle source (Figure 7)
(Shirey and Hanson, 1984; Heilimo et al., 2010). It has been
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Asokan et al. Petrogenesis of the Kanker Granites

FIGURE 5 | (A) Alumina Saturation Index diagram (Shand, 1943), wherein the sanukitoids are confined to metaluminous field, biotite and two-mica granites are into

peraluminous field. The hybrid granites are distributed among both fields. (B) SiO2 vs. K2O diagram (after Le Maitre, 1989) to show the variations in the melt affinity of

different granite types of Kanker pluton. (C) SiO2 vs. Mg# plot, wherein the sanukitoids with high Mg# suggest the mantle involvement (Rapp et al., 1999). (D–F)

Harker variation diagrams depicting the major elemental compositional variations among the granite types of Kanker pluton. Note the compositional variability of

hybrid granites and their distribution between the compositional range of sanukitoids and biotite and two-mica granites.

established that enrichment of the mantle can be caused by
different metasomatic agents such as slab melts, carbonatite
veins, fluids and/ or sediment melts (Smithies and Champion,
2000; Halla, 2005; Steenfelt et al., 2005; Martin et al., 2009;
Laurent et al., 2011). In the slab melt model, petrogenesis of
sanukitoids is explained by a two-stage process involving the
interaction between slab melts and the mantle peridotite (Martin
et al., 2009; Laurent et al., 2014). The sanukitoids from the Kanker

are relatively poor in Sr (avg. Sr =310 ppm) when compared
to the other well-studied sanukitoids, such as those from the
Dharwar Craton (avg. Sr= 664 ppm;Mohan et al., 2019), Kapvaal
Craton (avg. Sr= 553 ppm; Laurent et al., 2014) and Karelian and
Kola cratons (avg. Sr = 729 ppm; Halla et al., 2009). The low Sr
concentration could also be induced by plagioclase fractionation.
The rocks have low Sr/Y values (Sr/Y ≤40), which rules out
the role of slab melting in the metasomatisation of the mantle
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Asokan et al. Petrogenesis of the Kanker Granites

FIGURE 6 | Chondrite-normalized Rare earth element (REE) and primitive mantle-normalized multi-elemental variation diagram for the sanukitoids (A,B), biotite and

two-mica granites (C,D) and hybrid granites (E,F). The compositional range of sanukitoids (green area) and biotite and two-mica granites (yellow area) are highlighted

in the background (E,F) to show that hybrid granites are the mixtures of two primary granite types. Normalized values are from Sun and McDonough (1989).

(Martin et al., 2009). Also, Neoarchean TTGmagmatism is yet to
be reported from this craton. The lower Sr and Ca compositions,
and corresponding enrichment of the HFSE (such as Nb, up to
47 ppm and Zr, up to 1,137 ppm) rules out the possibility of
carbonate melt as a metasomatic agent in the genesis of these
sanukitoids (Steenfelt et al., 2005). Also, there is no record of
carbonatite magmatism in the vicinity of the study area.

Mantle enrichment can also be possible due to the
involvement of subducting fluids (Elliott, 2004) and/ or due to
sediment melting associated with the subducting oceanic crust
(Woodhead et al., 2001). Trace elemental ratios such as Ba/La,
U/Th, Th/Yb, Hf/Sm, and Ta/La can effectively differentiate
between the fluid-related and sediment-melt related enrichments

(Hawkesworth et al., 1997; La Flèche et al., 1998;Woodhead et al.,
2001). The Bastar sanukitoids and a few hybrid granites follow
the trend of sediment-melt related enrichment (Figure 8A). The
above observation is also supported by the disposition of these
samples in the Hf/Sm vs. Ta/La plot (Figure 8B). The available
detrital zircon age data from the Bastar Craton indicates very
older provenance, as old as extending from the Paleoproterozoic
to Paleoarchean (1.75–3.67 Ga) (Khanna et al., 2019). Thus, the
mantle enrichment, as evident in the case of Kanker sanukitoids,
is possibly an outcome of sediment melting associated with
earlier episode(s) of subduction.

The biotite and two-mica granites are considered to
be the products of crustal reworking of older TTG with
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FIGURE 7 | Triangular plot using the discriminants Ba+Sr/1000, 1/Er and Er

to differentiate the enriched mantle, garnet-controlled and

non-garnet-controlled sources (after Heilimo et al., 2010).

sedimentary inputs (Laurent et al., 2014). These granites are
SiO2 rich, peraluminous, and poor in ferromagnesian elements.
Paleoarchean basement rocks (TTG) are documented from the
Bastar Craton (Sarkar et al., 1993; Ghosh, 2004; Rajesh et al.,
2009). Possibly, the reworking of these older basement granitoids
(TTG) is responsible for the origin of biotite and two-mica
granites of Kanker. Besides, the role of sedimentary inputs
in their genesis has been examined. The higher Rb, low Sr
and Ba compositions of these strongly peraluminous rocks,
and corresponding higher Rb/Ba and Rb/Sr ratios (Figure 8C)
indicate their genesis from clay-rich sources (Sylvester, 1998).
These elements are actively controlled by minerals of the
feldspar and mica group (Harris and Inger, 1992). On the
ternary source discrimination diagram (Figure 7), they are
confined to non-garnet- controlled sources. This is further
supported by strong negative europium anomaly, low Sr
content (avg. 53 ppm) and flat HREE pattern (Figure 6C), to
suggest the shallow depth of melting where plagioclase was
in the source residue. Therefore, the biotite and two-mica
granites could have been generated by the crustal melting with
significant sediment input, or due to the reworking of older
TTG. The availability of radiogenic isotopic data can resolve
this preposition.

The hybrid granites are found in different Neoarchean cratons
and are formed by variable interaction between the melts of
TTG, biotite and two-mica granites and sanukitoids (Laurent
et al., 2014; Mohan et al., 2019). The hybrid granites of Kanker
possess geochemical compositions intermediate between the
sanukitoids and biotite and two-mica granites. This observation
is supported by geochemical signatures such as metaluminous
to peraluminous affinity (Figure 5A), major elemental trends on
Harker diagrams (Figures 5C–F) and incoherent REE patterns

FIGURE 8 | (A) Th/Yb vs. Ba/La plot (Woodhead et al., 2001), to identify the

role of sediment and fluid component. (B) (Hf/Sm)N vs. (Nb/La)N plot (La

Flèche et al., 1998), to differentiate the metasomatic agent involved in the

petrogenesis of Kanker granites (C) Rb/Ba vs. Rb/Sr plot (after Sylvester,

1998), to determine the nature of crustal sediments involved in the

petrogenesis of strongly peraluminous biotite and two-mica granites.

(Figure 6E). The large variability in incompatible elemental
compositions such as Ba (445–1295 ppm, avg. Ba = 817 ppm),
Rb (65–230 ppm, avg. Rb = 148 ppm), Sr (28–230 ppm, avg.
Sr = 161 ppm) and REE (6REE varies from 83 ppm to 910
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FIGURE 9 | (A) The Ca+Al - 3Al+2(Na+K) - Al+(Na+K) projection diagram to differentiate the sources and the tectonic setting trends in the evolution of granites

(Moyen et al., 2017; Moyen and Laurent, 2018). The projection has been plotted using the GCDkit (Janoušek et al., 2016). (B,C) are tectonic discrimination diagrams

for granites (Pearce et al., 1984; Harris et al., 1986) suggestive of an arc to collisional origin for the Kanker granites.

ppm, avg. 6REE = 292 ppm), also reflect such heterogeneity.
The large range of HFSEs in the hybrid granites could either
reflect differentiation, melting depths and/or variable degree
of interaction between the magma types. The presence of
negative europium anomaly indicates shallow depth ofmelting or
plagioclase fractionation. The geochemical anomalies displayed
by these granites are similar to those granitoids that evolved in
convergent margins (Pearce et al., 1984). Therefore, the hybrid
granites of Kanker possibly had evolved from the melting of a
heterogeneous source, formed by variable mixing of crustal and
enriched mantle components.

Tectonic Setting
As outlined above, the Kanker granites with large compositional
variability are derived from two mutually exclusive end-member
sources, i.e., the enriched mantle and an older (felsic) crust.
Diversity of these granites and their voluminous distribution
within a restricted period during the Archean-Proterozoic
transition can only be possible in a tectonic environment where
these two distinct source reservoirs were spatially close, and

could variably interact due to a heat source. Previous works on
the Kanker granites are minimal and ascribe a tectonic setting
variable between the subduction and syn-collision (Hussain
et al., 2004; Mondal et al., 2006). Based on a compilation
of experimental granitic melts, Moyen et al. (2017) devised
Ca+Al - 3Al+2(Na+K) - Al+(Na+K) projection diagram to
differentiate the mafic and felsic sources responsible for a
variety of granitic rocks in arc and collisional systems during
the Paleozoic, and further extended it to Archean granitoids
(Moyen and Laurent, 2018). In the Ca+Al - 3Al+2(Na+K) -
Al+(Na+K) projection diagram (Figure 9A), the sanukitoids
from the Kanker are confined to the field of mafic source, and fall
in the trend of subduction-related tectonic setting. In contrast,
the biotite and two-mica granites of the Kanker are confined
to the felsic source and fall in the trend of collision-related
tectonic setting. The hybrid granites are distributed between
the above two groups, indicating their heterogeneous nature,
either in source or tectonic setting. Based on the above trend, it
may be postulated that the Kanker granites were emplaced in a
transitional tectonic setting, involving subduction and collision.
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This inference is further supported by the distribution of these
samples into the volcanic-arc and syn-collisional granite fields
(Figure 9B) in the tectonic discrimination diagram (Pearce et al.,
1984). A similar distribution is noted for the Kanker granites
in the tectonic discrimination diagram of Harris et al. (1986)
(Figure 9C). Neoarchean granites from many cratons exhibit
such a transitional tectonic regime, involving subduction to
collision (Laurent et al., 2014; Mohan et al., 2019). Such a
transition in tectonic regime is attributed to the changes in
geodynamo, and the nature and style of plate tectonics during
the Archean-Proterozoic transition (Keller and Schoene, 2012).

In a subduction-collision regime, the subduction episode,
prior to the collision results in the metasomatisation of the
mantle. In most Archean cratons, sanukitoids represent the
terminal event of subduction (Halla et al., 2009; Laurent et al.,
2014). The arc magmas often show a transition from fluid fluxed
melting to sediment melting with the maturation of subduction
(Duggen et al., 2007). As outlined in the earlier section,
the Kanker sanukitoids had been derived from the enriched
mantle, possibly after the maturation of the arc or after the
cessation of subduction. The mantle melts probably underwent
differentiation and/or assimilation with the pre-existing older
crustal rocks. The heat supplied by these melts resulted in
low degree melting of crust with significant sedimentary input
to form the peraluminous biotite and two-mica granites.
Subsequent to the cessation of subduction, collision between
the continental blocks leads to slab break-off, resulting in
asthenospheric upwelling (Sylvester, 1998; Bonin, 2004; Halla
et al., 2009). Thermal anomaly generated during the collision
will induce partial melting of the previously enriched mantle,
leading to the interaction between crust and mantle components
resulting in the formation of a spectrum of granites (Bonin,
2004; Mikkola et al., 2011; Laurent et al., 2014; Moyen et al.,
2017). The compositional heterogeneity of the hybrid granites
suggests they could have formed at various stages, i.e., from
subduction to collision, or could have resulted by the interaction
between enriched mafic magmas with the pre-existing felsic
crust. However, precise age and isotopic data will provide
better clues on the sequence of emplacement of these granites,
constraining the sources and extent of interactions between
them. Based on field, geochemical evidences and with the aid
of tectonic discrimination diagrams, the evolution of the Kanker
granites can be best explained in an accretionary orogenic setting
involving the subduction and subsequent collision.

IMPLICATIONS ON REGIONAL
GEODYNAMICS

The Bastar Craton remains one of the prominent cratons in
the Indian shield, mainly due to the mineralization, proximity
to the CITZ and imprints of supercontinental cycles (Pandit
and Panigrahi, 2012; Santosh et al., 2018; Liao et al., 2019).
In addition to the Kanker, Dongargarh and Malanjkhand are
the two other major Archean-Proterozoic granitic plutons. The
available geochronological data indicate that these three plutons
had emplaced at ∼ 2.48 Ga (Sarkar et al., 1993; Panigrahi et al.,

2004; Bickford et al., 2014). Having established the subduction
to collisional environment responsible for the evolution of the
Kanker granites, it is essential to look for the coherence of the
proposed tectonic environment with the existing tectonic models
proposed for the Dongargarh and Malanjkhand granites.

Available geochemical studies indicate that Malanjkhand
granites display I-type affinity (Pandit and Panigrahi, 2012). Also,
it has been established that porphyry-type mineralization hosted
by this granite was contemporaneous with its emplacement (Stein
et al., 2004). The Malanjkhand granites are distributed into the
fields of volcanic arc and syn-collisional granites in the tectonic
discrimination diagram of Pearce et al. (1984) (refer to Figure
5 of Pandit and Panigrahi, 2012), Although porphyry copper
deposits are generally related to convergent margin setting
(Sillitoe, 2010), there are also evidences for their occurrences in
the collisional environment such as Tibetan Orogen (Hou and
Cook, 2009). In the collisional environment, the thermal anomaly
associated with the collision could be the source for hydrothermal
fluids responsible for the mineralization, as observed in the
Malanjkhand granites.

The Dongargarh granite is a complex pluton, with both I-
and A-type affinity (Narayana et al., 2000). Previous studies
have attributed a continental rift setting for the evolution of the
Dongargarh granite (Pandit and Panigrahi, 2012; Manikyamba
et al., 2016). The available geochemical data on the intraplate
Dongargarh granite, indicate that they are A2 type granites. The
A2 type granites are considered to be post-orogenic, and are
the product of crustal reworking (Eby, 1992; Bonin, 2007). The
evolved hafnium isotopic signatures of the Dongargarh granite
indicate the reworking of an older crust (Manikyamba et al.,
2016). But the A2 affinity of the Dongargarh granite negates
the earlier postulated extensional back-arc or the continental rift
environment (Pandit and Panigrahi, 2012; Manikyamba et al.,
2016). Therefore, the Dongargarh granite can be related to the
collapse of this collisional orogeny due to delamination and
thermal relaxation.

To have a better understanding of the prevailing tectonic
environment during the emplacement of the Kanker granites, it
is imperative to know if any genetic relationship exists between
the granites and adjacent supracrustal rocks. An island arc setting
is proposed for the siliceous high Mg basalts (SHMB) from
the 2.7 Ga Sonakhan Greenstone Belt (SGB), located on the
eastern margin of the Kanker granite (Manu Prasanth et al.,
2019). The field relationships indicate the intrusive nature of
Kanker granites with the Sonakhan belt, suggesting that both
lithologies are not contemporaneous (Manu Prasanth et al.,
2018). Trace element signatures depict a depleted mantle source
for the SGB basalts (Manu Prasanth et al., 2019), distinct
from that of the Kanker granites. Geochemical and isotopic
studies on the 2.5 Ga volcanic rocks of the Kotri Dongargarh
Mobile Belt (KDMB) suggest that they were derived from a
depleted mantle source and had evolved in an Andean type
continental arc setting (Asthana et al., 2016; Khanna et al., 2019).
Hence, it can be surmised that the supracrustals adjacent to the
Kanker granites had a different source, and a convergent margin
was active in the Bastar Craton during the Neoarchean and
Early Proterozoic.
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Hence, the granites of Kanker pluton evolved in a transitional
geodynamic environment involving the subduction and
collision during the Archean-Proterozoic transition. The
proposed geodynamic environment can explain the origin of
the Dongargarh and Malanjkhand granites, and also account
for the mineralization associated with the latter. Compositional
variations of the Kanker granites are attributed to variable
crust-mantle interactions. Precise age and isotopic data
will provide better clues on the sequence of emplacement
of these granite types, constraining the sources and the
extent of interactions between them. With these limitations,
a craton scale geological model is beyond the scope of
this contribution.

CONCLUSIONS

• Kanker granites are geochemically classified into sanukitoids,
biotite and two-mica granites and hybrid granites.

• Two discrete end-member sources, i.e., the enriched mantle
and an older felsic crust, and their variable interactions
are responsible for the compositional diversity of the
Kanker granites.

• The evolution of the Kanker granites can be accounted
for a transitional geodynamic environment, involving
subduction and collisional tectonics during the
Archean-Proterozoic transition.

• The collisional tectonic regime can also be related to the
porphyry mineralization in the Malanjkhand granite and the
A2 affinity of the Dongargarh granite.
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