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We present a methodology that uses crowdsourced detections as an initial location
to obtain fast and reliable hypocenter parameters for felt earthquakes using arrival-
time data from the GEOFON Program. We derive selection criteria for issuing an
alert message using a 3-year-long training set from the trial runs at the European-
Mediterranean Seismological Centre (EMSC) to identify accurate event locations at a
high confidence level. Since an event may have several crowdsourced detections, we
also develop a methodology dealing with multiple triggers. We validate the selection
criteria using real-time processing of recent data and demonstrate that 95% of the
selected events are within 50 km distance from the traditional seismic location published
by the EMSC. Since CsLoc remains essentially a seismic location algorithm, the
selection criteria measure the quality of the seismological network coverage used in
the location, not the method itself. We show that our methodology provides accurate
locations much faster than those published by conventional seismic methods. On
average, the EMSC CsLoc service can provide rapid and accurate locations within a
minute after the occurrence of a felt earthquake, thus it can provide timely and accurate
information on a felt earthquake to the civil protection services and the general public.

Keywords: crowdsource detection, earthquake location, earthquake alert, real time seismology, citizen
seismology

INTRODUCTION

Earthquake crowdsourced detections are based on following eyewitnesses’ immediate reactions to
felt earthquakes on various social media platforms, such as Twitter (Earle et al., 2011), traffic on
the EMSC website (Bossu et al., 2014), and the number of launches of the EMSC smartphone app,
LastQuake (Bossu et al., 2018). While other crowdsourced approaches in seismology (e.g., Cochran
et al., 2009; Minson et al., 2015; Finazzi, 2016; Kong et al., 2016; Cochran, 2018) have focused
on using accelerometers in smartphones or dedicated sensors that are maintained by the public,
our approach exploits the public’s search for information and their online reactions (Steed et al.,
2019). In other words, a crowdsourced earthquake detection reflects a public desire for information.
Offering a very fast earthquake location is a way to answer this desire. It is also instrumental for
rapid engagement of eyewitnesses and to ensure efficient felt report collection from eyewitnesses
which are in turn essential for rapid impact assessment (Bossu et al., 2015). It can also be exploited
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as a “heads-up” for civil protection services which might save lives
in a period where every minute counts and this is why seismic
networks around the world have been constantly pushing for
always faster earthquake information (Kanamori, 2005).

Crowdsourced detections typically appear very fast in social
media, almost immediately after the earthquake occurrence in
densely populated areas. Hence, they can be used as an initial
estimate of the earthquake location. This initial guess triggers
our seismic data analysis to obtain a reliable earthquake location
with a state-of-the-art event location algorithm. Steed et al.
(2019) demonstrated that the crowdseeded location (CsLoc)
approach produces quicker results than traditional earthquake
alert algorithms, and that it can provide reliable locations even
with a limited number of seismic phase arrivals.

This paper focuses on the conditions that would allow our
method to enter into routine operational service, providing fast,
reliable locations of felt earthquakes. This information can then
be provided to the civil protection services and disseminated to
the public. The public’s appreciation for high accuracy is much
less than it’s dislike of false alarms, so one of the crucial aspects
of our effort is to minimize the number of events with inaccurate
locations whilst providing accurate locations on average. Hence,
our objective is to achieve 50 and 80 km location accuracy
(measured as the distance from the traditional seismic network
location) at the 95 and 98% confidence levels, respectively, while
maximizing the number of events that pass the publication
criteria. To derive the selection criteria, we use a training set of 3-
year data, and validate the results on 4-month data from current
real-time processing.

DATA AND METHODS

Crowdsourced Detection
We rely on three different crowdsourced detection
methodologies to start a CsLoc analysis. Note that they may
trigger CsLoc independently, therefore several triggers may exist
for the same earthquake. CsLoc is initiated by the detection
of increased traffic at the EMSC website, www.emsc-csem.org
(Bossu et al., 2014); the detection of increased number of
launches of the EMSC LastQuake smartphone application (Bossu
et al., 2018); and the detection from the Twitter Earthquake
Detection (TED, Earle et al., 2011) system that follows the
keyword “earthquake” in 59 languages in tweets of less than
seven words because people tend to react to stressful events
such as earthquakes in just a few words. The TED system was
developed by the United States Geological Survey National
Earthquake Information Center (NEIC), and it is currently used
in the EMSC crowdsourced detection system.

To detect an event, the number of app launches or website
visits are monitored as counts/minute at 5 s intervals and a
short-term average/long-term average (STA/LTA) algorithm is
applied to these curves to detect peaks in the traffic (Bossu et al.,
2019). The latest count/minute is compared to a baseline created
from an average of the last half an hour of traffic and if the
difference reaches a preset threshold then a peak is declared.
Various procedures are used to increase signal to noise and to

eliminate false detections (such as those caused by automated
scans of IP addresses or the website). For instance, only visitors
that have not been seen within 30 min are included in the analysis,
as this helps to remove frequent users from the data such as
researchers from institutes. We also bin our users by country of
origin so that the background noise level is reduced. As the EMSC
becomes more known by the public, we will probably need to
adjust our triggering system to take account of greater levels of
traffic but the current system has worked well for since 2014.

Crowdsourced detections are typically obtained before the first
seismic location is made, therefore the CsLoc procedure starts
without having a location provided by local or regional seismic
networks. Once a crowdsourced detection is made, the centroid
of the largest cluster of geolocations of the users within 120 s
before the detection time and within the country where the
detection was made is passed to the CsLoc association module
(Steed et al., 2019). The cluster centroid and the crowdsourced
detection time serves as an initial guess for the earthquake
location, and as noted above, several CsLoc processes could be
initiated for the same event. The system collects arrival picks
within 1000 km (for regions with sparse networks up to 2000 km)
distance of the crowdsourced initial location from the global
GEOFON Program (73 FDSN networks as used in GEOFON
Data Centre, 2019; Steed et al., 2019) that includes some 800
stations. The P-wave arrival picks are received in real time from
210 s before until 120 s after the crowdsourced detection time
using the GEOFON HTTP Message Bus (Heinloo, 2016).

CsLoc Association and Location
The CsLoc association process is optimized for speed and it
uses the crowdsourced initial guess as the event hypothesis for
finding corroborating arrivals. Hence, CsLoc is a seismic location
algorithm that exploits the fact that we already know from
crowdsourcing that an earthquake occurred, and we have a rough
idea where and when the earthquake has struck. We assume that
for our spatial range of interest the first P wave arrival is a Pn
phase and we search for first-arriving P-phases that given the
hypocenter origin hypothesis, providing a reasonably good fit to
the ak135 (Kennett et al., 1995) Pn travel-time curve. Only those
arrivals that are within three times the median absolute deviation
(MAD) of the Pn travel time curve are passed to the locator.

Using the selected arrivals, we apply the iLoc (Bondár
and Storchak, 2011; Bondár et al., 2018) location algorithm
to locate the event. iLoc accounts for correlated travel time
prediction errors due to unmodeled 3D velocity structures
(Bondár and McLaughlin, 2009) and thus provides robust
location estimates even for unfavorable network geometries.
It is an iterative linearized inversion method that obtains an
improved hypocenter estimate using a neighborhood algorithm
(Sambridge, 1999).

As new data arrives and the location changes, it is necessary
to repeat the association and location procedures several times
until an acceptable solution is reached. Figure 1 illustrates the
iterative association-location steps for the 2016-08-24, magnitude
6.2 Central Italy event. The crowdseeded location triggered by the
EMSC website traffic is some 450 km away from the earthquake
epicenter. The association algorithm considers P picks arriving
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FIGURE 1 | The CsLoc association and location cycle, for iterations (A) 0, (B) 1, and (C) 2. Top row: The initial crowdsourced trigger (yellow circle) may be far away
from the EMSC seismic location (green circle), but iLoc (red circle) converges fast to the traditional seismic location. Yellow, blue and green triangles show the
seismic stations considered, associated and used in the locations, respectively. Bottom row: First-arriving P phase picks are considered in a time window (green
lines) before the crowdsourced trigger. Those within 3*MAD (blue lines and blue diamonds) of the best fitting travel time curve (red line) with the slope of the ak135
Pn velocity, 8.04 km/s, are passed to iLoc.

FIGURE 2 | Multiple strains for the same event (star) triggered by various country-based website traffic (green triangle) and TED triggers (blue triangle), as well as the
LastQuake app (red triangle) crowdsourced detections in (A) Turkey, (B) Great Britain, and (C) Haiti. Corresponding color lines show the trajectory of CsLoc locations
during the iterations. CsLoc shows a robust performance against the position of the initial crowdsourced triggers.

in the time interval shown in green lines, and selects those that
are within the 3∗MAD of the best fitting line with a slope of
8.04 km/s, the ak135 Pn velocity. On the map, green triangles
show the seismic stations that iLoc used in the location and the
iLoc solution is shown as a red circle. In the two next iterations, as
the iLoc solution improves, the 3∗MAD interval for the candidate
associations shrinks drastically and even after the first iteration
the iLoc solution is very close to the final EMSC seismic location.

Steed et al. (2019) executed 10 iterations of the association and
location cycle with 15-s delays between each step. In this paper

we focus on the determination of the set of conditions that will
allow us to stop as soon as some quality assurance criteria are
met. The selection criteria will also allow us to fully automate the
CsLoc procedures.

The three types of crowdsourced detections (web traffic,
LastQuake app, and TED) can each trigger the CsLoc procedure.
For the web triggers the geolocation is based on the user’s IP
address that varies from country to country and it is often
accurate to the city level or less. If the website is accessed via a
mobile phone, the geolocation often gives the location where the
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FIGURE 3 | Location map of events in the (A) training and (B) validation data sets. Circles color coded by depth denote the events that pass the selection criteria
described later in the text; empty circles represent the events that did not pass the criteria. (C) Histogram of (C) depths and (D) magnitudes of event in the training
(blue) and validation (red) data sets. Filled bars in the histogram represent events that pass the selection criteria.

FIGURE 4 | Cumulative distributions of CsLoc mislocations from published EMSC solutions for (A) web traffic, (B) LastQuake, and (C) TED crowdsource triggers
with decreasing secondary azimuthal gap thresholds (from black to red curves, with better coverage toward red curves). Green vertical and horizontal lines mark the
95 and 98% confidence levels and the 50 and 80 km location accuracy targets, respectively.

mobile network is connected to the internet. Thus, as Figures 1, 2
illustrate, the physical location of the users can be quite inaccurate
and often biased by large cities and therefore the centroid of
the crowdsourced detections often coincides with a large city,
such as Istanbul, Athens, Milan, etc. This is always true for IP
locations and tweets.

The LastQuake app asks for the user’s permission to access
their mobile phone’s location, otherwise it determines the user’s
location using triangulation or wifi. Some 80% of users allow the
use of location services, therefore the app triggers are considered
the most accurate. Furthermore, the website and app detection
systems are monitored in each country separately. The Twitter
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FIGURE 5 | (A) Histogram (blue) and cumulative distribution (red line) of the distance of CsLoc locations from published EMSC locations for the validation data set.
Green lines mark the 95 and 98% confidence levels and the 50 and 80 km location accuracy targets, respectively. The green line at the 50% confidence level
indicates that 50% of the locations are within 10 km from the EMSC location. (B) Event mislocation by crowdsource triggers that first satisfied the publication criteria.
Only 1 event was located with a larger than 80 km location error.

FIGURE 6 | Histogram and cumulative distribution of the deviation of CsLoc (A) depth and (B) origin time determinations from published EMSC values for the
validation data set.

detection system determines the location of the user from the
profile of the author found in each tweet. It also tries to divine the
user’s location based on the language used in the tweet. Therefore,
the accuracy of TED triggers may also exhibit a large scatter.

Because of the various triggers, it is not uncommon that
there are several crowdsource detections for the same event.
CsLoc is robust enough to reach accurate locations, even if the
initial location is far off. However, it helps to identify these
multiple strains early on. We analyzed our data set to find
reasonable criteria to decide if two crowdsourced detections

are generated by the same event. We found that events with
a large number of seismic arrivals and those with just a few
seismic arrivals require separate logic. We rely on the assumption
that if two solutions share a fair amount of common seismic
arrival picks then the events are likely to be the same. For
candidate events for multiple triggers we check the number of
common seismic arrivals for each event pair. If the number
of common seismic arrival picks is larger than 20, we declare
the two events common. For events with just a few picks, we
require at least three common seismic arrival picks and that
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FIGURE 7 | Publication delay after the origin time for the events that satisfied the publication criteria in the validation data set. (A) Box-and-whisker plot of
publication delay for each crowdsource trigger types (blue), all CsLoc locations and the EMSC. (B) Histogram of CsLoc (green) and EMSC (red) publication delays.
The median publication delay is reduced from 5 min of the EMSC locations to around 1 min for the CsLoc locations.

20% of the seismic phases be shared between the events to
declare them the same.

Figure 2 shows examples for CsLoc event location trajectories
starting from several different crowdsourced detection. Recall
that the crwodsourced detection is the barycenter of the
eyewitness locations. Green trajectories denote web-based
triggers, red lines LastQuake app triggers and blue trajectories
TED triggers. One of the major strengths of our method is that
regardless of the trigger type and the initial mislocation, CsLoc is
capable to obtain a final solution that is very compatible to the
final EMSC solution of the event.

RESULTS

Steed et al. (2019) executed 10 iterations of the association
and location cycle with 15-s delays between each step and
developed publication criteria based on the combination of
acceptance thresholds of six different parameters. Exploiting the
accumulated wealth of data, we aim to simplify the original
publication criteria and focus on the determination of the set
of conditions that will allow us to stop as soon as some quality
assurance criteria are met.

To determine the new selection criteria, we use a training
set of crowdsourced detections between January 2016 and
May 2019 including 708 events triggered by the EMSC web-
site traffic, 782 events triggered by the LastQuake app, and
648 events triggered by TED. Note that the same earthquake
may initiate several triggers and the data set represents 2,138
unique events. To validate the selection criteria, we use the
data set between 10 October 2019 and 12 December 2019 that
were not used in the creation of the training data set. We

consider only those events that produced a location at the last,
10th iteration. The validation data set contains 288 events of
which 123 events triggered by the EMSC web-site traffic, 97
events triggered by the LastQuake app, and 68 events triggered
by TED.

Figure 3 shows the location map of the training and validation
sets, as well as their depth and magnitude distributions. The
training set represents a fairly good representation of global
seismicity of felt earthquakes, while the validation data set, owing
to its much shorter time window, have events mostly from Europe
and South America. Nevertheless, the depth and magnitude
distribution of the events in the training and validation sets
are quite similar. Note that both sets have subcrustal and
intermediate depth events, and the magnitudes span from small
to large events.

We consider the secondary azimuthal gap in the network
used in the location, and the MAD of the residuals after the
iLoc location in each iteration. The secondary azimuthal gap is
obtained by calculating the largest azimuthal gap when removing
one station from the network and it is a good indicator of reliable,
accurate locations (Bondár et al., 2004). The MAD of the residuals
helps removing outliers due to noisy data or associations from
other events, typically aftershocks. We use the distance between
the published EMSC location and the CsLoc location as the metric
to measure the performance of CsLoc. These parameters measure
of the seismic network coverage that ultimately controls the
location accuracy.

Our design goal is to achieve 50 km location accuracy at
the 95% confidence level and less than 80 km mislocation
at the 98% confidence level while maximizing the number of
events that pass the criteria and stop the iterations as soon
as possible to facilitate quick but reliable earthquake alert
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information. This means that only 5 and 2% of the events
would have a location error larger than 50 km and 80 km,
respectively, all the rest will be much more accurately located.
We calculate the metric for a series of secondary azimuthal
gap thresholds between 180 and 300 degrees (the smaller
the secondary azimuthal gap, the more favorable the network
geometry to produce accurate locations) and a MAD residual
threshold of 3, 4, 5, and 100 (the latter being no constraint
on MAD). We found that setting the MAD threshold to 4 s
is a reasonable choice, that excludes obvious outliers while
keeping most events.

As noted previously and illustrated on Figure 2, the different
triggers represent different levels of reliability, therefore we
develop the selection criteria for each trigger type separately.
The web traffic and TED crowdseeded initial locations can be far
away from the final solution, and they may need a few iterations
for CsLoc to close on the right location. On the other hand,
the LastQuake app crowdseeded location can be quite accurate,
therefore the final CsLoc solution might be obtained in just
one iteration. Thus, we also set thresholds for the minimum
number of iterations CsLoc has to perform before we apply the
selection criteria.

Figure 4 summarizes our results. The figure shows the
cumulative distributions of the distance of the CsLoc location
from the published EMSC solution for each trigger type for the
series of secondary azimuthal gap thresholds for MAD leq 4. Note
that Figure 4 shows only the upper 20% percentiles, from 80 to
100%, as we focus on location errors in the top 10 percentiles. We
found that for the web traffic and TED triggers we should execute
at least two iterations to allow for the warm-in period for CsLoc
before testing for the criteria; for the LastQuake triggers we can
apply the selection criteria right away.

We list our final publication criteria for each trigger types
below. Note that these criteria measure the seismic network
performance, not the quality of the crowdsource detection. That
is only used as the initial guess for the location using observations
from seismological stations. Once the selection criteria are met at
any iteration after the prescribed number of iterations, the CsLoc
association – location iteration cycle stops and an earthquake
alert can be issued.

• For website traffic triggers after the 3rd iteration accept an
event for publication if the secondary azimuthal gap leq
240◦ and the MAD of residuals leq 4 s.

• For LastQuake triggers after the 1st iteration accept an event
for publication if the secondary azimuthal gap leq 230◦ and
the MAD of residuals leq 4 s.

• For TED triggers after the 3rd iteration accept an event for
publication if the secondary azimuthal gap leq 240◦ and the
MAD of residuals leq 4 s.

The selection criteria for the web traffic triggers select 69%
(488 out of 708) of the events with a median mislocation
of 9.2 km from the EMSC solution and with a location
accuracy of 41 and 77 km at the 95 and 98% confidence
levels, respectively. For the LastQuake app triggers, they
select 73.5% (575 out of 782) of events with a location

accuracy of 10.4, 47, and 74 km at the median, 95 and
98% percentiles, respectively. For the TED triggers, the criteria
select 68% (441 out of 648) of events with a mislocation of
13.2, 48, and 65 km at the median, 95 and 98% confidence
levels, respectively.

Applied to the validation data set, the publication criteria for
web traffic triggers selected 60.2% (74 out of 123) of events with
a mislocation of 7.5, 42, and 52 km at the median, 95 and 98%
confidence levels, respectively. The publication criteria for the
LastQuake triggers select 56% (54 out of 97) of events with 8.7,
38, and 40 km mislocation at the median, 95 and 98% confidence
levels, respectively. For the TED triggers, the publication criteria
select 37% (25 out of 68) of events with a location accuracy of 8.5,
51, and 71 km at the median, 95 and 98% percentiles, respectively.

We indicated those events that passed our selection criteria
in Figure 3 as the events color coded by depth. The events
that did not pass the selection criteria are shown as empty
circles, and concentrate in regions with somewhat poorer station
coverage. The depth and magnitude distributions do not show
any particular bias for events passing (colored bars) or failing the
selection criteria (empty bars) either.

Figure 5 shows the distribution of the CsLoc location
differences from the published EMSC locations as well as the
mislocations by the trigger types that first reached the publication
criteria. The green lines show our target design criteria of 50
and 80 km location accuracy at the 95 and 98% confidence
level, respectively. They indicate that the validation data set
confirms that our publication criteria are indeed able to identify
accurate locations for all trigger types that satisfy our design
goals of minimizing the number of poorly located events and
maximizing the number of accurately located events when issuing
an earthquake alert to the public. The selection criteria will
also allow us to fully automate the CsLoc procedures and the
automatic publication of fast and reliable locations even using
very limited data sets.

DISCUSSION

Aiming at fast and accurate locations for an operational centre
such as the EMSC, the first issue to address is the identification of
the single event to trigger among the various triggers for the same
event. Thus, we check at each iteration if the event has already
satisfied the publication criteria from another trigger, by applying
the test for common events. If the event proves to be a common
event by an earlier trigger and is already published, we simply
abandon the trigger and stop processing the event. While other
triggers may later result in slightly more accurate locations, our
objective is to issue an alert at the earliest possible time with the
stated location accuracy at high, 95 and 98% confidence levels.

Our crowdsourced detections carry no information on
event depth, yet with the CsLoc procedures we are able to
determine the depth with reasonable accuracy. Recall that CsLoc
employs the iLoc location algorithm (Bondár and Storchak,
2011; Bondár et al., 2018) that provides robust depth estimates.
In the CsLoc procedures the local networks typically provide
sufficient resolution for depth determination. Figure 6 shows the

Frontiers in Earth Science | www.frontiersin.org 7 July 2020 | Volume 8 | Article 272

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00272 July 3, 2020 Time: 20:0 # 8

Bondár et al. Crowdsourced Location

histograms of the deviation of the CsLoc depth and origin time
from the published EMSC values for the validation data set. The
vast majority ofCsLoc event depths are within 10 km of the EMSC
depth, and the origin times are within 2 s from the published
EMSC origin time.

In principle, CsLoc can also provide magnitude estimates.
We plan to publish magnitudes alongside the hypocenters as
that would be a fairly trivial task; all we need to do is to get
the automatic amplitude measurements along with the first-P
arrival picks and calculate the magnitude. Since we collect phase
picks up to 1,000 km (for sparse networks up to 2,000 km) this
would allow us to calculate local magnitude, ML. However, ML
starts saturating relatively early at medium moment magnitudes,
therefore for some cases ML would underestimate the magnitude.
For these events we will not publish ML at all. Attenuation along
the ray path and possible interference with Lg phase poses further
problems that might bias the ML estimate. Obviously, we will
have to rely on generic attenuation relations the same way as
the most popular programs, such as Antelope, SeisComp3 do.
Nevertheless, we believe that besides producing rapid, accurate
locations for felt earthquakes it is also important to publish
magnitudes for small events that may not be recorded at
teleseismic distances.

CONCLUSION

We successfully developed a methodology that can be used to
identify accurately located events at a high confidence level. The
selection criteria are quite robust against the various crowdsource
triggers and facilitate the handling of multiple triggers for the
same event. The location accuracy is better than 10 km for 50%
of the events, which is comparable to the average location error
of 9.4 km in the EHB bulletin (Engdahl et al., 1998). The EHB
bulletin is the groomed ISC bulletin and it is considered amongst
the highest quality global bulletins and thus the preferred source
for doing global and regional tomography. The location error is
larger than 50 and 80 km or only for 5 and 2% of the events,
respectively. Similarly, the CsLoc depth and origin time estimates
are on average within 5 km and 1 s of the EMSC solution for
50% of the events, and larger than 25 km and 3 s for only
10% of the events.

Our selection criteria for publication allows us to significantly
reduce the publication latency times compared to those cited in
Steed et al. (2019) as the majority of events can be published right
after the third iteration and notably it was never necessary to wait
for the full ten iterations. Figure 7 shows the publication delay
after the origin time for the EMSC published hypocenter and the
CsLoc locations that satisfy the publication criteria. The median
delay time for the EMSC is 5.6 min, while the median delay in
publication time is reduced to 55, 53, and 72 s for the web traffic,
LastQuake and TED triggers, respectively. Overall, the median
delay in publication time for the CsLoc locations is reduced to
60 s, hence providing a significant improvement over the 103 s
median delay reported by Steed et al. (2019).

The selection criteria allow us to reduce the EMSC publication
delay after the event origin time by as much as 4 min on

average and publish 75% of the events within 2 min after their
occurrence. The performance of the CsLoc services depends
on both population and station density as well as information
timeliness. To further improve the CsLoc services we plan to
improve the network coverage by complementing the actual real
time seismic phases obtained from the GEOFON Program with
more openly accessible stations, without significantly increasing
the data latency.
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