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Crystal Size Distribution (CSD)
Analysis of Volcanic Samples:
Advances and Challenges

Katharine V. Cashman*

School of Earth Sciences, University of Bristol, Bristol, United Kingdom

Studies of magmatic systems have long used the textures of erupted samples to infer
processes that control the location and duration of magma storage and drive volcanic
eruptions from these storage regions. Models of volcanic processes and magmatic
systems have evolved substantially over the past decades, in large part because of
advances in analytical and experimental techniques. Cooling- and decompression-
experiments have greatly enhanced our understanding of crystal textures produced
by crystallization associated with volcanic eruptions, while advances in compositional
mapping, isotopic analysis and diffusion chronometry provide the tools to unravel
complex histories of individual crystals. Experiments, however, have failed to replicate
the full range of groundmass textures observed in volcanic samples and the recognition
that magma commonly includes both indigenous (grown from the transporting liquid)
and exogenous (incorporated from elsewhere in the system) crystals complicates
interpretation of crystal populations in volcanic samples. Analysis and interpretation of
crystal size distributions (CSDs) and other physical measures of crystal populations,
in particular, have yet to fully account for crystal populations with diverse origins and
growth histories. Here | assess the extent to which experiments replicate observed
crystal populations and thus can be used to improve understanding of volcanic
processes. | then review conditions under which the size characteristics of crystal
populations can be reasonably interpreted, examine possible reasons for experimental
failure to achieve the very high crystal number densities that characterize some
eruptive samples, and suggest ways to link CSD analysis to other techniques that
seek to constrain the origin of the complex crystal populations. Finally, | show that
compositionally based crystal size measurements are critical for interpreting different
stages of crystal growth and can be yield well constrained growth histories if linked to
diffusion time scales and phase constraints on crystallization conditions.

Keywords: crystallization, crystal size distribution, volcanic processes, textural analysis, magmatic systems

INTRODUCTION

The crystal population of volcanic samples represents the integration of processes that occur
throughout magmatic systems. Reconstructing these processes from the crystal record is
challenging, however, and requires integration of compositional and physical analysis of both
individual crystals and crystal ensembles. A wide array of tools is now available for such analysis;
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the challenge lies in integrating analysis of crystal populations
with evolving understanding of the physical processes
that control magma evolution (e.g., Jerram et al, 2018)
and modulate volcanic activity (e.g., Martel et al., 2019).
Addressing the former requires unraveling complex textures
and compositional zonation preserved in the phenocryst
(macrocryst) population; addressing the latter involves
interpreting groundmass measurements using kinetic constraints
provided by laboratory experiments.

The past decades have seen accumulating evidence that
many of the crystals present in volcanic samples did not grow
exclusively from the melt that transported them to the Earth’s
surface (e.g., Nakada and Motomura, 1999; Davidson et al., 2005,
2007; Humphreys et al., 2006, 2008; Smith et al., 2009; Viccaro
et al, 2010; Cashman and Blundy, 2013; Neave et al., 2013).
Instead, crystal cores commonly preserve records of formation
in diverse parts of the magmatic system and complex histories of
growth, reaction, resorption and agglomeration. For this reason,
the phenocryst population (sensu lato) of a volcanic sample is
often separated into indigenous phenocrysts that have grown
entirely from the transporting melt and entrained exogenous
antecrysts and xenocrysts. Many exogenous crystals, however,
have mantles and/or rims that are in equilibrium with the melt
and thus have a mixed exogenous-indigenous origin. Signatures
of crystal growth histories are easily mapped via stunning
advances in compositional imaging (e.g., QEMSCAN, Neave
etal., 2014, 2017), tomographic imaging (e.g., Gualda et al., 2004;
Mock and Jerram, 2005; Pamukcu and Gualda, 2010; Jerram et al.,
2018; Polacci et al., 2018; Tripoli et al., 2019), microstructural
analysis (e.g., Kahl M. et al, 2017; Holness et al., 2019) and
isotopic analysis (e.g., Davidson et al., 2007; Morgan et al., 2007).
Textural (size and shape) analysis of phenocryst populations,
however, has yet to capitalize on these advances, particularly from
the perspective of analyzing and interpreting the crystallization
histories of crystals with mixed origins.

The past few decades have also seen a dramatic increase in
both analysis of groundmass textures and experimental studies
of crystallization relevant to syn-eruptive volcanic processes.
Measurements of groundmass crystal populations can be linked
to volcanic processes where sample times are well constrained
(e.g., Cashman et al., 1999; Hammer et al., 1999, 2000; Cashman
and McConnell, 2005; Wright et al., 2012; Preece et al., 2016;
Harris et al., 2020) but textural interpretations must rely on
experimental constraints when temporal data are not available.
Experimental studies, in turn, underline the sensitivity of
groundmass crystal populations to initial conditions (super-
or sub-liquidus) and melt composition as well as cooling
and decompression paths (e.g., Brugger and Hammer, 2010a,b;
Martel, 2012; Riker et al., 2015a; Befus and Andrews, 2018).

Here I illustrate ways in which analysis of crystal textures
can be linked to dynamic views of crystallization processes in
volcanic systems. I focus primarily on studies of plagioclase
crystallization, as this phase is both the most common and the
most commonly analyzed; an excellent review of crystallization
of mafic phases is provided by Hammer (2008). Context is
provided by a brief review of the basic tenets of textural
analysis and the relation between sample textures and the

crystallization pathways that produced them. This is followed
by an overview of cooling-driven crystallization of basaltic lava
on the Earth’s surface, where experimental results can be linked
to textural and compositional measurements of well-constrained
samples. Syn-eruptive decompression-driven crystallization is
more challenging to study in both experimentally and active
volcanic systems; studies in these systems show broad agreement
but highlight the need for experimental constraints on very
shallow subvolcanic processes. Unraveling complex histories of
phenocryst populations poses more profound challenges that will
require, ultimately, combining techniques of isotopic analysis,
diffusion chronometry and compositionally based crystal size
distribution (CSD) and shape analysis.

BACKGROUND

The basic concepts of crystallization and crystal size distribution
(CSD) analysis are well reviewed by Marsh (1998) and Hammer
(2008) and are only briefly reviewed here. Crystallization requires
both crystal nucleation and growth of those nuclei. Rates
of crystal nucleation and growth are functions of magma
supersaturation, which is commonly described by the effective
undercooling (A Teﬁr), or the temperature difference between the
magma and the saturation temperature of the phase in question.

AT,y is a straightforward concept for cooling-driven
crystallization; it is less intuitive for decompression-driven
crystallization, where supersaturation is more logically
formulated as A¢, the difference between the reference
crystallinity (e.g., the crystallinity at the starting pressure) and
the crystallinity at some lower pressure (Brugger and Hammer,
2010a,b; Riker et al., 2015a,b; Befus and Andrews, 2018).
Importantly, in multicomponent systems supersaturation is
not a fixed value, but varies with temperature and/or pressure.
This is illustrated in Figure 1A, which shows equilibrium
Ag as a function of pressure for decompression of different
H,O-saturated bulk compositions. Experimentally, A¢ can be
imposed by rapid decompression from liquidus conditions to
a final pressure (Pf). Under these conditions, rates of crystal
nucleation (J) peak at larger Ag than rates of crystal growth
(G), as illustrated in Figure 1B, where the ratio J/G is shown as
a function of Py. At a given Py, the rate of crystallization is time-
dependent, decreasing as the system approaches equilibrium.
For this reason, measured nucleation and growth rates will vary
depending on the time interval of measurement. For example,
time-sequential measurements of crystal size (filled circles and
solid line in Figure 1C) yield instantaneous growth rates (dashed
lines) that are both faster and slower than the time-averaged
value derived from the final experiment alone (line labeled
apparent G).

The relative rates of crystal nucleation and growth determine
the final texture of a sample, where here I use the term texture
to mean the abundance and size distribution of the constituent
crystals. For the same total crystallinity, high nucleation rates
produce numerous small crystals, while high rates of growth
on a limited number of sites produce fewer but larger crystals.
Theoretical studies of crystallization provide expressions for
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FIGURE 1 | Experimental constraints on phase relations and kinetics. (A) Equilibrium crystallinity as a function of pressure. Data from Riker et al. (2015a; R2015),
Couch et al. (2003; C2003), Martel (2012; M2012), and Brugger and Hammer (2010b; BH2010). (B) Average ratio of nucleation rate (J) to growth rate (G); data from
experiments of Hammer and Rutherford (2002). (C) Crystal size as a function of time at P; = 76MPa. Dashed lines show growth rates between different experiment
times; dotted line shows the time-averaged, or apparent, growth for the entire duration of the experiment.

crystal nucleation and growth that can be parameterized to link
crystal size (L) and number density (N,, per volume) to time-
averaged rates of /] and G (e.g., Brandeis and Jaupart, 1987):

L~ (/G4
N, ~ (J/G)** =1/1°

(1a)
(1b)

and

In both expressions, the constant of proportionality is of
order 1 except where nucleation is an exponential function of
time (Marsh, 1998). This parameterization illustrates the strong
control of J/G on crystal number and can be linked directly to
experimental data (Figure 1B).

Quantitative Textural Analysis

The simplest (and often most expedient) form of textural analysis
relates measured crystal number density (N, number per area) to
the total area fraction occupied by the crystals (¢,) through the
average crystal area (d?, where d is a measure of crystal size) as

(©)

Where progressive crystallization is achieved primarily
by adding new crystals (nucleation), ¢, increases linearly
with N, and the slope of the line yields the average crystal
area (1/slope d?; Hammer et al, 1999). In contrast,
where an initial period of nucleation is followed by crystal
growth, crystallinity increases at a near-constant (or even
decreasing) N,. A plot of N, vs. ¢, for sequentially crystallized
samples can thus be used to determining the relative
importance of nucleation and growth in driving crystallization
(Hammer et al., 1999, 2000).

Measurements of N, and ¢, in two dimensions can be related
to three-dimensional measurements through use of simple
stereological assumptions. When crystals are randomly oriented,
the measured area fraction is directly equivalent to the volume
fraction (¢,). The number per volume (N,) can be related to the
measured number per area (N,;) as

Ny = (Pu/dz-

N, = N,/dga (4)

if the average size (d,y) is known. Since the average crystal size
can be determined from Eq. (3; day = 4/d*), N, for each sample
may also be determined (N, = N2/ 9,02).

Crystal size distributions analysis provides a more complete
view of a sample’s crystallization history. CSD analysis was
developed for steady state crystallizers (e.g., Randolph and
Larson, 1988). Here the desired output CSD is controlled by (1)
the seed crystals in the input solution, (2) the time spent in the
crystallizer, and (3) the rate at which crystals nucleate and grow
within the crystallizer (controlled by the supersaturation). Under
steady conditions, the crystal number density # (the slope of the
cumulative distribution, with units of number per size class per
volume) is related to crystal size L as

n = n° exp(—L/Gt), (5)

where #°, the nucleation density, is the intercept at L = 0; Ly,
the dominant size, is measured by the slope of the distribution
(Lg = —1/slope = —1/Gt). Mathematically, L, is the mode of the
size-based distribution (the first moment of the integral form of
Eq. 5) and is analogous to the half-life described by the radioactive
decay equation; the equivalent half-size would be L;/In 2. In an
industrial crystallizer, ¢ is known and G can be calculated. The
nucleation rate J is related to the nucleation density as J = n°G,
the total number of crystals is n°Gt, and the total volume fraction
(V) of the measured phase is

Vr = 6k,n°(Lg)*, (6)

where k, is the shape factor required to convert L;* to the true
three-dimensional volume of a single crystal.

The application of CSD analysis to volcanic samples presents
numerous challenges. The first relates to definition of crystal size.
In thin section, crystal size can be measured variously as the short
axis, long axis, v/area or average intersection length; the choice of
size metric affects both the slope and the intercept of the resulting
CSD (Cashman, 1988; Muir et al., 2012). A second challenge
relates to conversion of data collected on 2D thin sections to
the 3D formulation of CSD analysis. A solution to this problem
is provided by the widely used program CSDCorrections, where
a constant average crystal shape (determined from CSDSlice)
is used to correct for both the cut effect and the intersection
probability (Higgins, 2006). An alternative approach is to make
measurements directly in 3D. Techniques to obtain direct 3D
measurements have included deconstruction of vesicular volcanic
material to extract individual crystals (Dunbar et al, 1994;
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Gualda et al., 2004), serial sectioning of samples (Castro et al.,
2003; Duchene et al., 2008), and, more recently, tomographic
techniques that allow non-destructive 3D measurements (e.g.,
Gualda et al., 2004; Mock and Jerram, 2005; Gualda and Rivers,
2006; Jerram et al., 2010; Pamukcu and Gualda, 2010), and even
4D (e.g., Polacci et al., 2018; Tripoli et al., 2019).

Direct comparison of CSDs calculated from 2D and 3D
measurements shows that the cumulative area distribution in
2D closely approximates the cumulative volume distribution in
3D (Jerram et al., 2009). This observation lends support to the
definition of average crystal size as d = \/area (Eq. 3). CSD
slopes and number densities are generally in good agreement
except at the smallest sizes, where CSDs calculated using
CSDCorrections may show high number densities that contrast
with downturns in the number of small crystals measured in
3D (Castro et al, 2003). One explanation for this discrepancy
is that crystals of different sizes have different shapes. For
example, prismatic pyroxene microlites measured by Castro
et al. (2003) become more anisotropic with increasing size,
while the tabular plagioclase crystals imaged by Duchene et al.
(2008) are more equant with increasing size. More generally,
the response of specific morphologies to sectioning affects the
accuracy of shape correction. Tabular crystals, for example, are
more easily recognized and quantified than prismatic crystals
because of statistical problems associated with intersecting the
longest axis in very acicular forms (Morgan and Jerram, 2006);
this problem is further complicated in mixed crystal populations.
The sensitivity of stereological corrections to crystal shape
suggests caution when calculating CSDs over a large size range
using a single shape factor (see also Mock and Jerram, 2005;
Brugger and Hammer, 2010a).

More fundamental challenges to CSD analysis lie in the
extent to which conditions of crystallization in natural systems
deviate from those in steady state industrial crystallizers. Even
in simple volcanic systems, crystallization does not occur at
fixed undercoolings (Figure 1), or with constant crystal and melt
compositions, and the final crystal size distribution preserved in
any sample necessarily represents an integration of nucleation
and growth processes over time. This means that extraction of
kinetic parameters is possible only for samples with independent
time constraints. Other complications relate to the effects of
simultaneous crystallization of multiple phases, which may
increase the potential for heterogeneous nucleation and as well
as the likelihood of crystal-crystal impingement (e.g., Zieg and
Lofgren, 2006; Holness et al., 2007). The presence of pre-existing
crystals also affects the conditions under which a new batch
of nuclei will form (Fokin et al., 1999). Below I explore these
challenges through the lens of recent experiments and their
applications to the interpretation of crystal size characteristics of
volcanic samples.

COOLING-DRIVEN CRYSTALLIZATION
OF BASALT AT 1 ATM

Experimental investigation of cooling-induced crystallization at 1
atm has a long history, reaching back to the Neptunist-Plutonist

arguments of the late 18th and early 19th centuries. By the
early 20th century, establishment of the Hawaiian Volcano
Observatory had prompted volcanologists to examine the
chemical and physical properties of basaltic lava and controls on
flow emplacement. Included in this work was investigation of
the contrasting surface morphologies of pahoehoe and ‘a‘a flows
and the observed along-channel transformation of lava from
pahoehoe to ‘a“a with increasing transport distance. Emerson
(1926) addressed this problem by melting lava in a forge and
stirring it as it cooled, experiments that demonstrated the
importance of shear in generating the numerous small crystals
that characterize ‘a‘a lava.

Cooling Rate Experiments
Kinetic experiments on low viscosity basaltic melts performed
at 1 atm (e.g., Kouchi et al., 1986; Sato, 1995; Pupier et al,
2008; Vona and Romano, 2013) provide quantitative insight into
the crystallization kinetics of lava flows on the Earth’s surface.
First, experiments that start at super-liquidus conditions show
small changes in initial temperatures can have profound impacts
on the final sample textures (Sato, 1995; Vetere et al., 2013).
Second, for similar initial conditions, cooling rate exerts a strong
control on plagioclase number density (and size) but does not
affect the crystallinity, which rapidly approaches equilibrium
values (Pupier et al., 2008). Deformation experiments (Kouchi
et al., 1986; Vona and Romano, 2013; Tripoli et al., 2019) have
validated Emerson’s (1926) conclusions about the role of stirring
in generating high crystal nucleation rates, interpreted to reflect
the role of melt advection during stirring, although mechanical
breakage to form secondary nuclei may also be important.
Textural analysis of cooling rate experiments highlights
additional controls on final sample textures. Experiments
initiated at superliquidus temperatures (Pupier et al, 2008)
produce N,-¢ trends positive (low cooling rates) to negative (high
cooling rates) slopes and CSDs that “fan” with decreasing quench
temperature (increasing crystallinity; Figure 2). The reduction in
crystal number accompanying increasing crystallinity requires a
substantial increase in crystal size as well as loss of some crystals;
both signatures can be explained by crystal agglomeration
(synneusis; Schwindinger and Anderson, 1989). Alternative
explanations come from recent innovations in 1 atm experiments
(e.g., Schiavi et al., 2009) that allow in situ observations of
olivine growth (Ni et al., 2014). In these experiments, a decrease
in the number of early-formed nuclei is attributed to Ostwald
ripening, consistent with results of Cabane et al. (2005) that show
ripening is most effective for very small crystals. Also important is
size-dependent growth, such that large crystals grow faster than
small crystals (e.g., Eberl et al., 2002; Kile and Eberl, 2003). In
the experiments of Ni et al. (2014), size-dependent growth is
attributed to melt advection, as measured growth rates are faster
than those expected for diffusion alone. Size-dependent growth
also produces fanning CSDs, as required to conserve the total
number of crystals (=n°Gt).

Natural Cooling Experiments
Natural examples of cooling-driven crystallization are
provided by studies of crystallization in Hawaiian lava flows
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(e.g., Cashman et al., 1999; Soule et al., 2004; Riker et al., 2009;
Cashman and Mangan, 2014). Here time constraints are provided
by samples collected along active lava channels on the same day
(e.g., Crisp et al, 1994; Cashman et al, 1999), flow cooling
is measured by glass geothermometry and eruption of lava at
near-liquidus temperatures means that crystallization is driven
by cooling accompanying flow. Rates of cooling (~18°C/hr)
and crystallization (~1.8 ¢/hr) are obtained by combining
distance with known flow velocities along proximal to medial
flow reaches. Temporal rates of both cooling and crystallization
appear to be independent of eruption rate, which suggests that
textural analysis of older flows can be used to infer eruption rates
(e.g., Riker et al., 2009).

Crystallization of Hawaiian lavas is dominated by cotectic
precipitation of plagioclase and pyroxene, which typically form
crystal clusters that indicate the prevalence of heterogeneous,
rather than homogeneous, nucleation (Figure 3A). Textural
analysis of along-channel samples shows positive correlations
between N, and ¢ for both phases (Figure 3B), consistent with
rapid and nucleation-dominated crystallization (e.g., Cashman
et al, 1999; Riker et al., 2009). CSDs are linear, as expected
for continuous cooling from near-liquidus conditions, and,
when sample locations and flow rates are well constrained,
yield nucleation rates of ~50-150/mm’s and growth rates
~1077 mm/s (Cashman and Mangan, 2014). These high rates
likely reflect strong advection driven by efficient heat loss at the
channel margins (e.g., Cashman et al., 2006).

The nucleation-controlled crystallization observed in
open channel samples contrasts with the growth-dominated
crystallization observed in insulated pahoehoe flows and lava
lakes (Cashman and Marsh, 1988; Cashman and Mangan,
2014). The latter show both decreasing N, with decreasing ¢
(Figure 3B) and fanning CSD trends similar to those produced
by super-liquidus experiments (Pupier et al., 2008; Ni et al., 2014;
Figure 2). It seems likely that crystal agglomeration, loss of the
smallest crystals via Ostwald ripening and size-dependent growth

rates all contribute to these textural trends. Mafic enclaves may
also show linear CSDs with characteristics (n°, Ld; e.g., Martin
et al., 2006a) that are similar to the most crystalline samples from
lava lakes (e.g., Cashman and Mangan, 2014). The implied slow
cooling suggests that crystallization of these enclaves occurred
before, not after, entrainment in the melt. Pre-entrainment
crystallization is further suggested by the lack of correlation
between measured textures and enclave size (Coombs et al,
2003) and suggests that existing plagioclase frameworks may
help to preserve enclaves during the entrainment process (Martin
et al., 2006b; Andrews and Manga, 2014).

DECOMPRESSION-DRIVEN
CRYSTALLIZATION OF HYDROUS
MAGMAS

Questions about conditions leading to explosive vs. effusive
eruptions (e.g., Cassidy et al., 2018) have driven an explosion
of experiments designed to characterize decompression-driven
crystallization of hydrous magma (e.g., Hammer, 2008). These
experiments span a wide range of compositions and initial
conditions (P, T, and Xp20), although most have been conducted
on H,O-saturated silicic melts. Plagioclase is the most abundant
crystallizing phase, and the most universally quantified for crystal
size and shape. Experimental aims are to determine rates of
crystallization, often with the goal of constraining magma ascent
paths for specific eruptions. The past two decades have also
seen an impressive increase in the number of textural studies of
volcanic samples, many of which have been done in conjunction
with experimental studies. Although very rapid decompression
prevents crystallization, syn-eruption crystallization is observed
in products of (1) short explosions that mark the buildup to
large Plinian eruptions, (2) cycles of Vulcanian activity, and
(3) episodic or continuous lava effusion (including ash venting
and dome collapse).
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FIGURE 3 | Plagioclase textures in Hawaiian basalts. (A) Sample from the Makaopuhi lava lake drill core showing heterogeneous nucleation of plagioclase (black),
pyroxene (gray) and olivine (white) crystals. (B) N, -¢ data illustrating the contrasting crystallization regimes of open channel flows from Kilauea and drill core samples
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Decompression Experiments

Decompression experiments are conducted using (1) single-
step decompressions (SSD), which involve an initial rapid
pressure decrease followed by time at the final pressure,
(2) multi-step decompressions (MSD), where steps and dwell
times are varied to approximate different decompression rates,
and (3) continuous decompression (CD). SSD experiments
typically produce high N, (high initial nucleation rates) but
require annealing at final pressures to achieve equilibrium
crystallinity values; nucleation and growth rates reported for
these experiments vary depending on anneal duration (e.g., Befus
and Andrews, 2018; Figure 1C). MSD experiments are difficult
to generalize as they vary in both step size and hold time at
each step. CD experiments (Brugger and Hammer, 2010a,b;
Riker et al., 2015a,b; Waters et al., 2015; Befus and Andrews,
2018) are not annealed at the final pressure (Pf), so that the
crystallization time is controlled by the decompression rate and
pressure interval of interest.

Decompression experiments have been performed over time
periods of hours to weeks; this means that they are most relevant
to syn- and short intra-eruptive periods of crystallization.
Resulting plagioclase textures span a wide range that reflects
variations in melt composition, initial conditions and rates
and modes of decompression. Experimental data are shown in
Figure 4; here N, and ¢ are used as plotting parameters as
they are the easiest textural parameters to measure and correlate
well with the results of more detailed CSD analysis (Brugger
and Hammer, 2010a). Experimental crystallinities are typically
less than 0.3 and number densities range from 10? to 107 /mm?;
they vary most strongly with Py and melt composition such that
low Py, low temperatures and silicic compositions produce the
highest N;,,.

As observed in cooling experiments, the initial conditions
matter. Super-liquidus starting conditions inhibit crystal
nucleation and promote crystal growth relative to sub-liquidus

samples run at the same conditions (Martel, 2012; Waters
et al., 2015). Pre-existing crystals, in contrast, provide sites for
crystal growth and therefore allow crystallization even when
Ay is sufficiently small to prohibit nucleation of new crystals.
Growth on pre-existing crystals can be significant. For example,
if growth rates are linear and similar on all major growth
faces, adding rims to large crystals will produce more efficient
crystallization, volumetrically, than adding new small crystals
(Befus and Andrews, 2018). One consequence is development
of those pre-existing crystals as a separate population that adds
pronounced curvature to CSD plots (Brugger and Hammer,
2010b; Riker et al., 2015b; Figure 5).

Decompression-Crystallization During

Eruptions

A compilation of groundmass plagioclase data from pyroclasts
and lavas produced by recent eruptions is shown in the N,-¢
plot of Figure 6. The data are from a range of bulk compositions
and eruption styles, span wide range of N, (10> to > 108 mm~3)
and include variations of ¢ from near 0 to 0.8. Although all
samples were quenched at the surface, they are interpreted to
reflect a range of P and T conditions that record different conduit
processes. In detail, rhyolitic samples from Pinatubo, Philippines
(PIN), have the lowest crystallinities while basaltic andesite
samples from Merapi, Indonesia (MER), and Spurr, Alaska have
the highest. Pyroclasts from an individual eruption sequence can
show a wide range of crystallinities, but less common is a wide
range in N,,.

Comparison of Figures 4, 6 shows good agreement between
experimental data and many of the sample suites, thus
demonstrating the power of combining these two approaches
to constrain eruption conditions. Where experiments attempt to
replicate textures of natural samples (e.g., Mount St. Helens -
Muir et al., 2012 and Riker et al., 2015b; Pinatubo - Hammer
etal., 1999 and Befus and Andrews, 2018) the CSDs are similar in
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form but experiments fail to reproduce the large number of small
microlites observed in some natural samples. This mismatch can
be seen in Figure 6, where number densities of natural samples
can exceed experimental values by 1-2 orders of magnitude.

Eruption Conditions That Produce Very
High N,

Very high groundmass crystal number densities were first
measured in pyroclasts from eruptions that preceded the 1991

20
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FIGURE 5 | Variations in texture with decompression rate, decompression
style (SSD experiments denoted by labeled annealing time) and XHoO.
Redrafted from Riker et al. (2015b).

climactic eruption of Pinatubo, Philippines, the largest well-
documented volcanic eruption in the 20th century. The climactic
eruption was preceded first by a dome and then 3 days of
explosive activity that decreased in duration and increased in
frequency approaching the climactic eruption (Hoblitt et al.,
1996); this pattern of activity has been interpreted to record
construction of a connected conduit from the magma reservoir
to the surface (Scandone et al., 2007). The very high plagioclase
number densities occur in the most crystalline samples and
increase in maximum crystal size with increasing inter-eruptive
repose time (Hammer et al, 1999; Figure 6). Crystals in
individual samples form linear CSDs with very high n°® and steep
slopes (Figure 7A). A limited range in matrix glass H,O records
magma arrest in the conduit at effective pressures of c. 8-16 MPa.
Together the textural data and glass volatile contents suggest
crystallization by rapid decompression during an explosion,
followed by annealing at shallow levels in the conduit during the
short inter-explosion repose periods (28-262 min) and expulsion
during the next explosion.

The high number densities of Pinatubo pyroclasts are not
unique to this eruption but have also been observed in pyroclasts
associated with the P1 Plinian eruption of Mont Pelee (650 ybp;
Martel and Poussineau, 2007) and in some samples from the
1980 eruptions of Mount St. Helens (Klug and Cashman, 1994;
Cashman and McConnell, 2005; Figure 6). As at Pinatubo,
the high N, pyroclasts likely record rapid decompression
followed by short (hours) anneal times. Interestingly, very
high crystal numbers are also reported in cryptodome samples
from Mount St. Helens (MSH; Cashman and Hoblitt, 2004),
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FIGURE 6 | Compilation of textural data from erupted samples. Data from Wong and Larsen (2010; OK W&L); Cashman and McConnell (2005; MSH CM0505);
Cashman and Hoblitt (2004; MSH CHO04); Clarke et al. (2007; SHVCIkO7); Murch and Cole (2019; SHYMC19); Hammer et al. (2000; MERHamO00Q); Preece et al.
(2013, 2016; MERPre13_16); Suzuki et al. (2007; USU); Gardner et al. (1998; Spurr); Martel and Poussineau (2007; Pelee); Hammer et al. (1999; PIN); Miwa et al.
(2009; SAKQ); Suzuki and Fujii (2010; FUJI); D’Oriano et al. (2005; MN); Noguchi et al. (2008; UNZ); Szramek et al. (2006; Arenal).
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in surge deposits from Mont Pelee (Martel and Poussineau,
2007) and in block-and-ash flow deposits formed by collapse
of the Soufriere Hills dome in 2010 (Murch and Cole, 2019;
Figure 8). Although individual pyroclasts from MSH reach
higher overall crystallinities than those from Pinatubo (Figure 8),
crystal populations form linear CSDs that have a similar range
of intercept and slope (Figure 7B). The very high crystal
number densities in dome and cryptodome samples are puzzling.
Both observational and experimental constraints show that
effusive eruption and emplacement of silicic lava domes (and
cryptodomes) requires very slow magma ascent to very low
pressures. Under these conditions, we might expect extensive
decompression-driven crystallization at relatively low A¢. How

is it possible, then, to generate a uniform, finely crystalline but
still melt-rich groundmass?

Complex Crystallization in Volcanic
Systems

Overwhelming documentation of the prevalence of antecrysts
in magmatic systems (e.g., Bacon and Lowenstern, 2005;
Humphreys et al., 2006; Smith et al., 2009; Viccaro et al., 2010;
Neave et al., 2013, 2014, 2017; van der Zwan et al., 2013; Witter
et al., 2016) has been critical for the development of mush-
dominated paradigms of magmatic systems (e.g., Edmonds et al.,
2019; Sparks et al., 2019). Entrained crystals can be identified
by major element and/or isotopic compositions that are not in
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equilibrium with the transporting magma (e.g., Morgan et al,
2006, 2007; Berlo et al., 2007; Martin et al., 2010; Sakyi et al., 2012;
Cashman and Blundy, 2013; Sides et al., 2014; Brenna et al., 2018;
Shane et al., 2019) and by evidence of deformation in crystal-
rich mush zones (e.g., Kahl W. et al.,, 2017; Befus et al., 2019;
Holness et al., 2019; Wieser et al., 2020). These crystals are often
mantled by crystal rims that are compositionally and/or texturally
distinct from the entrained core and typically in equilibrium with
the carrier liquid.

Complex crystallization histories are particularly well
recorded by plagioclase crystals. Examples from Mount St.

Helens include inherited cores with a range of compositions
and dissolution/reaction textures (Figure 9), mantles with
complex oscillatory zones (Figure 9A), rims that are
distinct (Figure 9B) to almost non-existant (Figure 9C)
and evidence of agglomeration both before (Figure 9B)
and after (Figure 9D) final rim growth. Importantly,
patterns of rim growth may be mirrored by adjacent

microphenocrysts  (Figures 10A,B), demonstrating that
both formed in response to the same decompression
conditions, in this case multi-stage decompression in
the volcanic conduit (e.g., Cashman, 1992; Geschwind

plagioclase crystals. Scale bar is the same in both images.

W2
| )’Z‘%Jnﬂ??‘u ﬁ«i\/‘l

FIGURE 8 | Groundmass textures in MSH cryptodome samples. These samples are from precursory explosions described in Cashman and Hoblitt (2004) but show
the same textural range as the blast dacite erupted on 18 May. (A) Shows abundant well-formed plagioclase crystals and (B) shows sparser and more skeletal

100 ym
EE—

FIGURE 9 | Example phenocryst textures from summer 1980 eruptions of Mount St. Helens (described in Cashman and McConnell, 2005). BSE images show
compositional variations; brighter zones are An-rich. (A) Crystal with resorbed An-rich core and thick oscillatory zoned rim. (B) Crystal with extensive patchy
resorption in the core and overgrowth rim with two zones; note the agglomerated oscillatory zoned crystal enclosed within the outer rim. (C) Highly resorbed and
anhedral An-rich crystal with no rim growth. (D) Resorbed Ab-rich core with thick normally zoned rim; note late-adhering crystal with its own late-stage rim.
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and Rutherford, 1995; Blundy
Cashman and McConnell, 2005).
Although crystal rims associated with decompression are often
thin, they may contribute significantly to the total volume of both
individual crystals (e.g., Befus and Andrews, 2018) and the total
amount of decompression-driven crystallization (Riker et al.,
2015b). For example, Figure 10C shows the relation between
crystal volume and rim volume for the same rim thickness
but variable crystal shapes and Figure 10D shows the relation
between area % and volume % of rims for variable shapes and rim
thicknesses. Specifically, measurement of core and rim areas for
the phenocryst (Ph) and microphenocryst (MP) in Figure 10A
show that the rim comprises 16% of the phenocryst area and
46% of the microphenocryst area; this illustrates the relative
importance of adding approximately the same linear thickness of
rim growth to a larger and smaller crystal. The absolute addition
of crystal area via rim growth, however, is ~3.6 times larger
for the phenocryst (2577 jwm?) than for the microphenocryst
(710 wm?3); the volumetric contribution will be substantially

and Cashman, 2005;

larger. From the perspective of crystallization history, therefore,
the growth of phenocryst rims can contribute substantially to
the amount of decompression-driven crystallization, which is
typically assessed via groundmass crystallization alone.

Alternative Approaches to CSD Analysis
of Complex Crystal Populations

The diverse and complex crystal populations described above
raise important questions about current approaches to CSD
analysis. It is clear that the phenocrysts (sensu lato) often record
more than one crystallization episode and may have time breaks,
for example at resorption boundaries. Crystals in explosively
erupted pyroclasts may also be extensively fragmented (e.g.,
Bindeman, 2005; Jerram et al., 2009; van Zalinge et al., 2018).
Crystal cores may be drawn from different populations and
therefore do not always represent a single crystallization event.
Finally, crystal rims represent a late stage of crystallization
which is often correlative with formation of the groundmass

Vol rim

Vol % rim

0.25, 0.5, and 1 x SA).

FIGURE 10 | Rim growth in MSH samples. (A) and (C) show rim growth on crystals from summer 1980 eruptions; in (A) MP and Ph refer to the crystals mentioned
in the text. (B) Calculated variations in crystal volume relative to rim volume for crystals with a short axis (SA) = 1, Intermediate axis = 1, 2, 5, 10 and Long axis = 1,
2, 5,10 and a rim thickness of 1SA. (D) Comparison of rim area to rim volume for the same range of crystal shapes as in (B) but with variable rim thickness (0.1,
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population. Therefore, if the intent of CSD analysis is to decipher
crystallization histories, interpretation of CSDs by absolute
crystal size may not be adequate.

Several alternative approaches to textural analysis have been
suggested. Early stages of crystallization may be preserved
within oikocrysts or megacrysts; measurement of these crystals
is particularly useful for determining the initial crystallization
conditions of plutonic rocks (e.g., Higgins, 2017). Patterns
of crystal zoning can be used to identify different crystal
populations and magma recharge events, which in turn can
be combined with diffusion analysis to constrain the timing
of magma inputs (e.g., Morgan et al.,, 2004, 2006; Kahl et al,
2013). Isotopic microdrilling can be used to identify individual

crystallization episodes and to synchronize individual crystals for
use as chronometers (e.g., Martin et al., 2010); when combined
with CSD analysis (iCSDs; Morgan et al., 2007), identified
crystallization events can be tied to episodic magma recharge.
These methods provide important constraints on the relation
between crystallization and magma input; none, however, isolates
the late-stage crystallization responsible for growth of both
phenocryst rims and groundmass crystals.

Here I suggest an additional approach that complements
the applications of isotope tagging and diffusion chronometry
described above. When crystal cores and rims/groundmass
differ in composition, the contribution of different crystal
components to the overall sample crystallinity can be assessed
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FIGURE 11 | Example of compositionally based textural analysis of a MSH lava sample. (A) compositional discrimination of different crystallization units; yellow are
An-rich cores, aqua are An-poor cores, blue are very high An zones, green are mantles plus rims. (B) Cumulative distributions of the lengths and volumes of cores
(yellow + aqua), rims (green + blue) and whole crystals [identified by color, see caption of (C)]. (C) CSDs of cores, rims and complete crystals.
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using compositional maps made directly from BSE images or
element maps (e.g., Muir et al., 2012), including automated
analysis such as QEMSCAN (e.g., Neave et al,, 2014, 2017). To
illustrate the use of compositional information in BSE images, I
use an example from Mount St. Helens, where the diversity of
the plagioclase population has been well documented (e.g., Berlo
et al., 2007; Cashman and Blundy, 2013).

As illustrated in Figure 9, plagioclase crystals from Mount St.
Helens have diverse core populations and mantles that vary in
thickness, most likely as a consequence of different durations of
pre-eruptive storage in the upper crust. Figure 11A shows the
distribution of resorbed (yellow), high-An (turquoise) and low-
An (blue) core components as well as mantle zones (green). For
measurement simplicity, the crystal populations were separated
into only core and mantle components; the former includes
cores of variable compositions and textures, the latter includes
thin rims that were difficult to isolate at the full thin section
scale. Cumulative length (diamonds) and volume (triangles)
distributions of cores, rims and whole crystals were calculated
assuming size d = \/area and volume = d° (Figure 11B). Resulting
CSDs (with N, calculated as in Eq. 4) are linear; individual core
and mantle populations have steeper slopes than measured for
the whole crystal population (Figure 11C), consistent with the
smaller average sizes of individual core and mantle components.
The diversity of the core population prohibits interpretation of
core size data as a singe crystallization event. Size information
related to the mantles, however, yield information on crystal
growth during pre-eruptive magma storage at ~100-125 MPa
(Cashman and Blundy, 2013). Timescales of pre-eruptive magma
storage derived from diffusion studies of orthopyroxene rim
growth are < ~2 years (Saunders et al., 2012); if these time
scales also apply to plagioclase mantles, then the measured Gt
of 0.1 mm yields growth rates >1.5 x 10~°2 mm/s. Interestingly,
this is similar to rates inferred for crystallization in mafic magmas
(e.g., Patwardham and Marsh, 2011; Fornaciai et al., 2015) but
faster than rates of 1071° to 107! mm/s typically assumed for
more silicic melts (e.g., Witter et al., 2016).

DISCUSSION AND CONCLUSION

The examples provided above illustrate both the power and the
challenges of using the textures of volcanic rocks to reverse
engineer the processes that formed them. Fundamental questions
to ask when assessing such samples include:

(1) Does the crystal population of interest represent a single
crystallization event or a mixed population?

(2) How can the measured textures be linked to the physical
processes responsible for transporting magma to, and
across, the Earth’s surface?

Eruption Conditions That Produce Linear
CSDs

Examination of both experiments and natural samples shows
that cooling-driven crystallization of basaltic lava at the Earth’s
surface produces linear CSDs when the erupted magma is at

near-liquidus temperatures (few to no pre-existing crystals).
Studies of well-constrained lava samples have shown that the
kinetics of cooling-driven crystallization are tied closely to the
conditions of flow emplacement. Flow emplacement conditions,
in turn, are controlled by a balance between rates of advection and
rates of cooling and crust formation, coupled with the internal
flow dynamics (Griffiths et al., 2003). Time- and temperature-
sequential samples may show either nucleation-dominated
crystallization, where plots of N,-¢ are positively and linearly
correlated (Figure 3B), or growth-dominated crystallization,
where CSDs fan around one or more pivot points. Nucleation-
dominated crystallization characterizes open-channel basaltic
lava flows, where nucleation is enhanced by shearing and melt
advection in response to rapid head loss from crust-free marginal
shear zones. Crystal growth dominates when cooling occurs
after emplacement, for example in well-insulated lava flows and
lava lakes. Sequential samples have crystal numbers that often
decrease with increasing crystallinity (Figures 2A,3B), a pattern
attributed to crystal agglomeration (synneusis), Ostwald ripening
and/or size-dependent growth rates.

Decompression of hydrous melts can also produce N,-
¢ trends that are positively and linearly correlated and
associated linear CSDs; these trends are common for groundmass
plagioclase crystals preserved in pyroclasts produced by pulsatory
explosions (e.g., Hammer et al., 1999; Cashman and McConnell,
2005; Martel and Poussineau, 2007; Martel, 2012; Figure 7).
Co-eruption of crystal-free pyroclasts that require very rapid
decompression from depth and crystal-bearing pyroclasts that
annealed at shallow levels provide a snapshot of the conduit
stratigraphy (Cashman and McConnell, 2005); crystallization
rates at different depths (pressures) can be inferred if the
time of magma residence in the conduit is known. Textural
analysis of these samples provides important constraints on
models of magma ascent, arrest, and pressure buildup associated
with cyclic eruptive activity (e.g., Diller et al., 2006; Clarke
et al, 2007; Burgisser et al, 2011). Inferring time scales
from measured CSDs is more difficult because growth rates
vary substantially with decompression path (e.g., Brugger and
Hammer, 2010a). Importantly, decompression experiments have
failed to replicate the very high N, values observed in some
pyroclasts (Figures 4, 6).

The Paradox of Very High N,

The paradox of very high N, can be illustrated by the
cryptodome that intruded into the Mount St. Helens edifice in
the months prior to the 1980 eruption. Here magma intrusion
into the edifice was slow and therefore the expectation would
be that decompression-driven crystallization would proceed
under conditions of low nucleation rates and high growth rates
(small Ag) to produce high crystallinities and relatively low
crystal number densities. Instead, cryptodome samples have
very high plagioclase number densities and variable plagioclase
crystallinities (Figure 8). The very high groundmass number
densities therefore raise two questions: (1) what conditions
of magma ascent prohibited extensive decompression-driven
crystallization during slow magma ascent and (2) what produced
the high N, values of the cryptodome samples?
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In the 2 months prior to May 18, the volcanos north
flank was moving outward at ~2 meters per day (0.08 m/h),
which equates to a decompression rate of ~0.002 MPa/h
for an overburden thickness of density of 2500 kg/m>. This
intrusion rate estimate overlaps with extrusion rates measured
during continuous dome growth in 2004-2008 (0.07-0.36 m/h,
or ~0.002-0.01 MPa/h; Dzurisin, 2018) but is two orders of
magnitude slower than the minimum decompression rate used
in experiments. Experiments show that crystallization efficiency
is reduced when decompression is slow, particularly when growth
is on pre-existing crystals. This raises the interesting question of
whether very slow ascent might allow magma to rise to shallow
levels without (significant) groundmass crystallization, perhaps
explaining the stealth nature of cryptodome emplacement.

Reconstruction of the cryptodome geometry (Donnadieu
and Merle, 1998) suggests that the shallowest part of the
cryptodome occupied a pressure range of ~7-18 MPa consistent
with a maximum pressure of ~20 MPa suggested by measured
H,O of 0.07-1.5 wt% in cryptodome glass (Hoblitt and
Harmon, 1993; Newman and Lowenstern, 2002; Neill et al,
2010). Phreatomagmatic eruptions in the months prior to
the 18 May eruption ejected material from the cryptodome
(Cashman and Hoblitt, 2004); there is also isotopic evidence
of open system degassing from the cryptodome during this
time period (Neill et al, 2010). This raises the question of
whether rapid decompression of shallow-stored magma (during
a precursory eruption) followed by annealing during an inter-
eruption repose period could generate the characteristic high N,
of the cryptodome samples. Similarly, the high N, pyroclasts
at Pinatubo occur in magma that stalled at pressures of 8-
16 MPa between precursory eruptions (Hammer et al.,, 1999);
here the low crystallinities can be explained by repose intervals
that were much shorter than at Mount St. Helens (hours
instead of days to weeks). Importantly, most decompression
experiments have used initial pressures P; > 125 MPa. This
raises the questions of whether very high crystal number
densities could be replicated experimentally by single step
decompression from low pressures followed by annealing times
of hours to weeks.

Re-thinking CSD Analysis of Volcanic

Material

There is abundant evidence that most volcanic materials
contain a complex mixture of crystals from multiple sources.
Experiments show that the presence of pre-existing crystals
creates CSDs that are either kinked or curved because new
groundmass crystals are added as rims grow on pre-existing
crystals (Figure 5). Kinked or curved CSDs measured in volcanic
samples, however, are typically treated as two populations -
groundmass and phenocrysts - that experienced two separate
(and unrelated) crystallization histories (e.g., Higgins, 1996;
Neave et al., 2013; Witter et al., 2016). There are several problems
with this interpretation. First, heterogeneous crystal cores record
crystallization over different time scales (e.g., Cooper and Kent,
2014), and under different Pppo-T-X conditions (e.g., Berlo
et al, 2007; Humphreys et al,, 2009), and therefore do not

represent a single and unique crystallization episode. Second,
most crystals also have mantles (often oscillatory zoned) that
record growth in pre-eruptive upper crustal magma storage
regions. Variations in the thickness and composition of these
mantles requires individual crystals erupted together to have
spent different amounts of time, and even in different parts of,
magma reservoirs prior to eruption (Cashman and Blundy, 2013).
Finally, crystal rims form during magma ascent (decompression)
and therefore represent the same crystallization event responsible
for nucleation and growth of groundmass crystals. Treating
large crystals as a single crystallizing population is therefore
misleading. This problem is compounded when resulting CSD
data are used to infer a crystal residence time, which requires
assumption of a single average growth rate for the entire
phenocryst population.

To move forward, it is important to examine the goals of
textural analysis. The reason to study crystallization during
eruptive episodes is clear: groundmass crystallization affects
magma rheology and permeability and thus understanding syn-
eruptive crystallization histories provides critical constraints for
estimating magma rheology (e.g., Klein et al., 2018), modeling
lava flow advance (e.g., Dietterich et al., 2017) and anticipating
transitions in eruptive styles (e.g., Cassidy et al, 2018). To
examine the evolution of magmatic systems and assembly of
eruptive magma bodies (e.g., Flaherty et al., 2018) further requires
not only identification of different crystal populations (e.g.,
Morgan et al., 2007; Kahl et al., 2013; Wieser et al., 2020) and
sources of those populations (e.g., Morgan et al., 2007) but
also the extent and conditions of their shared ascent histories
(e.g., Cashman and Blundy, 2013). Measuring the amount of
crystallization that can be attributed to each population would
allow textural analysis to be linked, for example, to diffusion
chronometry (e.g., Jerram et al, 2018) and to models of
magmatic systems (e.g., Blundy and Cashman, 2008). Unraveling
the crystallization histories of diverse crystal populations in
thin section requires, ideally, large area compositional mapping
at high resolution (e.g., QEMSCAN) coupled with detailed
isotopic measurements and diffusion chronometry of individual
crystals to identify the origin of, and time of entrainment,
different components of each crystal population. Advances in
tomographic imaging could further allow compositional textural
analysis in 3D. The primary challenges of this approach are
balancing spatial coverage with resolution, as well as handling the
computational expense.
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