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In many countries, floods are the leading natural disaster in terms of damage and
losses per year. Early prediction of such events can help prevent some of those losses.
Artificial neural networks (ANN) show a strong ability to deal quickly with large amounts
of measured data. In this work, we develop an ANN for outputting flood inundation
maps based on multiple discharge inputs with a high grid resolution (4 m × 4 m). After
testing different neural network training algorithms and network structures, we found
resilience backpropagation to perform best. Furthermore, by introducing clustering for
preprocessing discharge curves before training, the quality of the prediction could be
improved. Synthetic flood events are used for the training and validation of the ANN.
Historical events were additionally used for further validation with real data. The results
show that the developed ANN is capable of predicting the maximum flood inundation
extents. The mean squared error in more than 98 and 86% of the total area is smaller
than 0.2 m2 in the prediction of synthetic events and historical events, respectively.

Keywords: hazard, maximum flood inundation extent, artificial neural network, resilient backpropagation, urban
flood forecast

INTRODUCTION

Flood is one of the most damaging natural hazards hitting settlements which threatens the safety of
civilians and the integrity of infrastructures (Berz, 2001). Flooding is the leading cause of damage
and losses in many countries in the world (Kron, 2005). Furthermore, as a result of climate and
land-use changes, the flood vulnerability of some regions is expected to rise (Vogel et al., 2011).
Accurate prediction of floods in urban areas can contribute to the development of essential tools to
minimize the risks of flooding.

There are different types of numerical models widely used for urban flood simulation (Henonin
et al., 2013). Hydrological rainfall run-off models can be used to simulate distributed river
discharges. One-dimensional (1D) drainage model solving the one-dimensional Saint-Venant flow
equations, can be applied for simulating the surcharge or drainage of the underground drainage
network (Mark et al., 2004). The two-dimensional (2D) Saint-Venant flow equations are ideal tools
for simulating the urban surface inundation, and obtain the maximum flood extents, maximum
depths and flow velocity on many points on the surface. Furthermore, the 1D–2D coupling model
simulates the drainage network and the urban surface simultaneously. Even though they provide
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more accurate results than the previous models (Hankin et al.,
2008), they are computationally more expensive. All approaches
require field measurements for defining the model parameters.
The two latter have prohibitive high computation costs and
require very detailed data sets which often restrict the application
for real-time forecasting (Vogel et al., 2011). With the advances in
high-performance computing, graphics processing units (GPU)
nowadays are capable of faster 2D simulation in much larger areas
(Kalyanapu et al., 2011). Although these scalability techniques
reduce the simulation time greatly, it is still unacceptably high
in many cases for real-time early warning systems.

Data-driven approaches can be a feasible alternative for
established flood simulation models (Mosavi et al., 2018).
Unlike conventional numerical models, data-driven models
require input/output data only. The fast-growing trend of data-
driven models has shown their high performance even for
nonlinear problems (Mekanik et al., 2013). Unlike physical-based
models, data-driven models do not require field measurements
for determining (physically based) model parameters, which
alleviates the burden on the users for data gathering and model
setup. ANN can be a useful tool for modeling, if properly
applied. Indeed some of the pitfalls are the likelihood of
over-fitting or under-fitting the data, and insufficient length
of the data sets which may lead to erroneous model results
(Zhang, 2007). Various data-driven models for short and long
term flood forecasts have been developed using neuro-fuzzy
(Dineva et al., 2014), support vector machine (SVM) (Bermúdez
et al., 2019), support vector regression (Gizaw and Gan, 2016;
Taherei et al., 2018) and artificial neural network (ANN)
(Kasiviswanathan et al., 2016). Artificial neural network is
a popular approach in flood prediction (Elsafi, 2014; Abbot
and Marohasy, 2015). Some works have successfully applied
ANN for forecasting water levels. Dawson and Wilby (2001)
applied ANN to conventional hydrological models in flood-
prone catchments in the United Kingdom in 1998. Since
then, many studies about flood forecasts in catchment scales
arose (Chang L.C. et al., 2018; Yu et al., 2006). Thirumalaiah
(1998) compared the water level forecast results along a
river using backpropagation, conjugate gradient as well as
cascade correlation. Coulibaly et al. (2000) combined Levenberg-
Marquardt Backpropagation (Marquardt, 1963) with cross-
validation to prevent the under-fitting and overfitting in daily
reservoir inflow forecasting. Taghi et al. (2012) applied a
backpropagation network and a time lag recurrent network
having reached a similar forecast precision in reservoir inflow.
Humphrey et al. (2016) joined a conceptual rainfall-runoff
model with a Bayesian artificial neural network for improving
the precision of the neural network. Sit and Demir (2019)
used discretized neural networks for the entire river network
in Iowa. By including more location information, they could
enhance the forecasting results. Bustami et al. (2007) applied
backpropagation ANN model for forecasting water level at
gaging stations. Tiwari and Chatterjee (2010) compared different
types of ANN predictions of water levels at gaging stations,
namely a wavelet-based, a bootstrap based and a hybrid wavelet-
bootstrap-ANN (WBANN) and shown that the WBANN model
was more accurate and reliable compared to other three ANN.

For flood inundation forecast, Simon Berkhahn et al. (2019)
trained an ANN with synthetic events of spatial rainfall data
for 2D urban pluvial inundation. Chang M.J. et al. (2018)
applied a mix of SVM and GIS analysis to expand point
forecasts to flooded areas at a sub-catchment scale. Chu et al.
(2020) proposed an ANN-based framework for flood inundation
prediction based on single inflow data for a 20 m × 20 m
grid resolution.

In this article, we develop a method for predicting the
maximum flood inundation in an urban area by backpropagation
networks based on multiple inflow data for a grid resolution
of 4 m × 4 m. Unlike most of the previous studies, this work
focuses on applying ANN in an urbanized area for producing
high-resolution flood inundation maps from river flooding. For
the prediction of maximum flood inundation, only the real-
time discharges of the upstream catchments are needed. In
Methodology, we introduce the backpropagation artificial neural
network, fuzzy c-means clustering methods (FCM) and our
criteria for model evaluation. Study Area and Dataset provides
basic background information about our study area as well as
the synthetic event database for our model training. Results
shows the results of our model tuning, the simulation results for
synthetic and historical events. To improve the model training
behavior by a limited database, we introduce two FCM for
the preprocessing of the training dataset. Last sections are the
discussion and conclusion of this work.

METHODOLOGY

Resilient Backpropagation Algorithm for
Artificial Neural Network
The ANN applied in this work for modeling the study area
is a forward-feed neural network (FNN) (Nawi et al., 2007),
producing and transmitting the data in a network structure.
The basic element of the neural network is the neuron. Each
neuron collects values from the previous layer by summing
up the results from the previous neuron values multiplying
the weight on each input arc and storing the results on itself.
Through multiple layered neurons, information is proceeded by
the weights and transferred over the network, finally reaching the
output layer. The input layer of all ANNs is given by seven inflows
upstream contributing to the urban area of Kulmbach from the
event database (further details can be found in “HEC-RAS and
Synthetic Event Database” section). The output layer is set from
the raster flood inundation map from the event database.

Backpropagation is an algorithm widely applied in neural
network studies, for optimizing the weights in forward-feed
neural networks (Nawi et al., 2007). The procession consists of
two phases: the training phase collects a part of data from the
existing database, tuning the model by changing the weights on
input arcs to minimize the bias on the output layer; the recalling
phase produces the new outputs for the testing inputs. The rest
individuals in the training dataset are used for evaluating the
behavior of the network. The total bias between the output of
ANN and the observed values is defined as the error function. In
order to reduce the error function in each iteration, the weights
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are modified automatically as described below. The chain rule is
applied for minimizing the biases, namely written as:

∂L
∂wij
=
∂L
∂Oi
·
∂Oi

∂neti
·
∂neti
∂wij

(1)

where
L is error function of the model.
Wij is weight from i’th neuron to j’th neuron.
Oi is output of the model.
neti is weighted sum of the inputs of neuron i.

wij (t + 1) = wij (t)− ε ·
∂L
∂wij

(t) (2)

where
ε is learning rate taken as 0.01 in our training.
The learning rate is used for scaling the gradient in each

iteration of the weight update. It is critical to pick up the correct
value. A large learning rate will miss the optimal point, while a
small learning rate would slow the training process. Herein, we
apply the gradient descent algorithm to calculate the update of the
weights. To speed up the convergence of the iteration formula (2),
resilient backpropagation as defined in Saini (2008) is applied,
which treats the update of weights differently depending on
the derivative of the error function. Larger alternative learning
rate η+ could be set for speeding up the iterations if the error
gradient remains in the same direction in neighboring time-steps
and smaller alternative learning rate η− when approaching the
optimal weights.

1ij (t) =


η+ ·1ij (t − 1) , ∂L

∂wij
(t) · ∂L∂wij

(t − 1) > 0
η− ·1ij (t − 1) , ∂L

∂wij
(t) · ∂L∂wij

(t − 1) < 0
1ij (t − 1) , else

(3)

wij (t) =


wij (t − 1)+1ij (t) , ∂L

∂wij
(t) < 0

wij (t − 1)−1ij (t) , ∂L
∂wij

(t) > 0
0, else

(4)

In which 0 < η− < 1 < η+. In our study these were set constant
and equal to η− = 0.5, η + = 1.2.

Due to the total number data of pixels (resolution of 4 by
4 m) in the city of Kulmbach, a single hidden layer would exceed
365 thousand elements. To reduce the storage requirement and
the ANN model training time, the study area is subdivided into
50 × 50 squared grids, each grid having its own independent
ANN (the output layer has 1400 elements) (Figure 1). A similar
strategy was used by Berkhahn et al. (2019) for an ANN for flood
prediction having rainfall as input.

Fuzzy C-Means Clustering and Principal
Component Analysis
To further enhance the ANN behavior, we apply clustering to the
discharges training dataset. Therefore, we can reduce the size of
the training dataset while still keeping the main representative
events. As such the training time can be reduced and the
overfitting effects minimized. Fuzzy C-means clustering (FCM)

(Tilson et al., 1988) is a widely used clustering method, which
avoids the deficit of the sub-clusters with unequivocal similarities
within its components (Mukerji et al., 2009). In FCM, every
single event is given a membership u, which indicates the relation
between the event and a certain cluster. If a membership is equal
to zero, it means that the event has nothing in common to a
specific cluster; if the membership is one, the event is located at
the center of the cluster. Once a cluster is set up, the membership
u can be calculated by the following equations, and based on the
event and the distances between the events. For cluster i and event
j, the membership uij is to quantify distances between events and
cluster centers. 

uij ∈ [0, 1]
c∑

i=1
uij = 1, 1 < j ≤ n (5)

u(k)ij =
1∑

r=1
c
(
dij(k)

drj(k)

)2 (6)

dij =
∣∣∣∣xj − vi

∣∣∣∣2 (7)

vi(k+1)
=

∑n
j=1 u

(k)
ij xj∑n

j=1 u
(k)
ij

(8)

where
c is number of clusters, 2 ≤ c ≤ n− 1.
vi is centroid of i-th cluster.
dij is Euclidean distance between event j and its

corresponding centroid.
For optimal clustering, the total sum of distances between

events and the cluster centroids have to be the minimum possible.
Therefore the following objective function needs to be optimized:

Jm (U,V) =
n∑
j=1

c∑
i=1

(
uij
)2 dij (9)

Two approaches are applied for deciding the clustering
parameters: (a) conventional clustering (by pre-selected
hydrograph characteristic parameters); (b) dimension reduction
methods. In the former, the clustering variables chosen were P
(peak discharge value), T (peak time), V (total volume), V24
(volume in the first 24 h). These can be applied individually or
combined. The latter clustering method is based on principal
component analysis among the hydrographs. The data are
projected to the first several principal eigenvectors for
dimensionality reduction via PCA, for further clustering by
FCM. To determine the optimal number of clustering c, we
define the clustering performance index L(c).

L (c) =

∑c
i=1

(∑n
j=1 u

2
ij

)
||vi − x̄||2∑c

i=1
∑n

j=1 u
2
ij
∣∣∣∣vi − xj

∣∣∣∣2 · n− c
c− 1

(10)

The optimal cluster number c can be determined by the
maximum of L(c).
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FIGURE 1 | Neural network setups. The study area is divided in 50 × 50 raster each simulated by its own ANN. Input layer: seven input hydrographs. Output layer:
flood inundation extent in each grid.

Model Evaluation
To evaluate the performance of the ANN prediction of maximum
flood inundation in the study area is based on the mean squared
error (MSE) of each grid. It is assumed that the inundation
maps from the synthetic events produced using a dynamic model
(HEC-RAS) are the observed values. The synthetic events have
been produced using the FloodEvac-Tool (Bhola et al., 2018). The
model has been validated (Bhola et al., 2019). As each grid has its
own independent training network, the MSE is evaluated using
all the pixels in each grid.

MSE =
1
n

n∑
i=1

(T − S)2 (11)

where
T is predicted value.
S is observed value.
To evaluate the overall behavior of the model across the

training and validation data sets, the average of MSE and the
standard deviation of MSE are evaluated, indicating the average
accuracy and the spread of the ANN predictions.

avg.MSEm =
1
N

N∑
n=1

MSEmn (12)

where
m is grid index.
n is pixel index in a grid.
N is total number of pixels.

STUDY AREA AND DATASET

Study Area
The study area of Kulmbach is located by the river Main
in Bavaria. The city consists of northern and southern parts
split by the White Main crossing it. About 27 thousand
inhabitants live in this city. The city is classified as a great
district city with a population density of 292 inhabitants per
km2 in the area of 92.77 km2. On May 28, 2006, Kulmbach
was heavily flooded from the river and streams nearby. This
event was the trigger for decision-makers to review the
initiatives of flood prevention for the city. There are seven
streams contributing to this area, namely the Red Main,
Schorgast, Dobrach, White Main, Kinzelsbach, Kohlenbach,
and Mühlbach. The inflows of the seven streams used for
training the ANN are the same ones used in the boundary
conditions of the hydraulic model. Hence, the two approaches
are comparable. The training-validation of the 50 × 50 ANN
aims to replace the hydraulic processes within the marked
study area (see Figure 2). Each ANN aims to generate the
inundation map for one sub-divided area. All the inflows
are inputted to all the networks to keep the ANN topology
identical, and thus avoiding the sudden jump of forecasted
water depths at ANN borders (Chu et al., 2020). Since the
ANNs are trained on the same data, and using the same
inflows as inputs, the inundation maps across the different
ANNs are consistent.

HEC-RAS and Synthetic Event Database
The synthetic event database is generated by the 2D hydraulic
model HEC-RAS (Hydrologic Engineering Center – River
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FIGURE 2 | Map of the study area. It shows the location of Kulmbach in Germany. The blue curves represent the river network. The shaded region is the study area
with its topography represented. On the marked boundary, the red points represent the seven inflow boundary conditions (three rivers and four smaller streams).

Analysis System, Davis, CA, United States) for various
rainfall intensities, distribution, duration (Bhola et al.,
2018). The synthetic events are generated following two
stages. First, the hydrologic model LARSIM (Large Area
Runoff Simulation Model) (Ludwig and Bremicker, 2006)
is used for calculating the discharge hydrographs into the
city area. LARSIM is a hydrological model applied for flood
forecasting at the Bavarian Environment Agency (Disse et al.,
2018). Afterward, the 180 convective and advective events
are simulated with the 2D hydraulic model HEC-RAS 2D
to generate the flood inundation map database. The maps
are generated with high temporal resolution (15 min) and
projected to a spatial resolution of 4 by 4 m. For further
details of the generation of synthetic events please refer to
Bhola et al. (2018).

RESULTS

ANN Training Algorithm
Two training algorithms are applied for training the ANN
model using the same training dataset (Event #1–#120): resilient
backpropagation (RP) and the conjugate gradient (CGF). After
that, both generated models are evaluated using the MSE over
the remaining runs (60) in the testing dataset (Event #121–
#180) (see Figure 3). Figure 4 shows the MSE evaluated
over the training dataset just for comparison purposes. In
Figures 3A,B, most grids have the MSE lower than 0.2 m2,
showing that both RP and CGF networks behave well in
general. Figure 4 shows the MSE from RP is mostly better
than that of CGF.

Number of Hidden Layers and Neurons
To improve the performance of the neural networks, the layer
number and neuron number for comparison are modified. By
optimizing the error function with the training dataset, the
optimized number of network layers and neurons per layer are
obtained. The layer number is set between two to six, while the
neuron number set from 10 to 30. Table 1 shows the number of
grids in each combination (number layers and neurons) which
outperform all the others; it shows 70% of all grids fall within the
number of layers equal to two or three layers.

Grid Resolution
The grid resolution comparison aims to verify if a finer grid
improves the prediction performances. Two grid sizes are tested,
namely one with 50× 50 (each grid has 1400 pixels) and another
with 100 × 100 (each grid as 350 pixels) grids (Figure 5). The
former has 2500 ANN networks that need to be trained, while
the latter has 10000. Since the 50 × 50 performed better (see
Table 2) and is computationally more efficient, the former is
selected for this study.

Fuzzy C-Means (FCM) Clustering
Here different results from clustering different sets of parameters
obtained from the hydrographs are evaluated using the index
L(c) (Tilson et al., 1988). Larger numbers indicate that the
selected parameters are more suitable. Figure 6A shows the
relationship between the index L(c) and the clustering number.
The spreads of the 90% confidence intervals of the clusters are
listed in Table 3. According to Table 3, the clustering by four
parameters (P, V, V24, T) produces the minimum spread, which
is the best clustering parameter combination for our studies.
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FIGURE 3 | Comparison of average MSE by the two training algorithms in the testing dataset (Event #121 to Event #180). Each grid is an ANN. Black elements are
houses. (A) Average (among events) MSE by resilient backpropagation (RP). (B) Average (among events) MSE by conjugate gradient (CGF).

FIGURE 4 | Difference of average MSE by the two training algorithms in the
training dataset (Event #1 to Event #120). Each grid is an ANN. Black
elements are houses. Negative values indicate that RP performs better than
CGF (i.e., smaller MSE). In the plot, 149 grids have positive values and 335
grids have negative values.

TABLE 1 | Number of grids in each combination (number layers and neurons)
which outperform all the others.

Number of Layers

Number of

Neurons 2 3 4 5 6

10 97 28 7 15 21

15 1 41 10 13 17

20 9 36 8 4 11

25 14 76 19 4 5

30 9 99 29 0 7

Note: highlighted in gray are the combinations tested with a number of optimal
grids larger than 70.

Figure 7 also shows that the 90% confidence interval of the
four clusters by conventional FCM according to the parameter

combination of (P, V, V24, T) is the best choice. Besides the
conventional FCM, FCM is also quantified based on principal
component analysis (PCA-FCM). It is observed that by choosing
seven components for clustering we can represent more than 97%
of the original data (Figure 6B). The clustering results by PCA-
FCM are shown in Figure 8. The comparison in Table 3 shows
that PCA-FCM generates smaller integrals of the bandwidth area
(i.e., the 90% confidence interval shown in Figure 8) than those
of the conventional FCM. The integral of the bandwidth area is a
measure of the spread of the discharge curves in each cluster. An
efficient clustering strategy will have a small spread. As such the
clusters generated by PCA-FCM are applied in this study. Table 4
summarizes the sign of the differences among the training results
from 100 clustered events to those from original unclustered 120
events and a random unclustered 100 events.

Prediction of Maximum Flood Inundation
for Synthetic Events
For the sake of representation of results, Figure 9 shows one
example of the comparison of the flood inundation maps of one
single event, Event 180. It is visually possible to infer that the flood
inundation maps and water depths from the ANN and the ones
from the HEC-RAS database are very similar. To study the overall
performance across all 60 events in the testing set, the average and
standard deviation of MSE of every testing event in the whole
area is evaluated. In Figure 3A, most of the area is displayed
blue, showing that the MSE is close to 0.1 m2. Overall, only 1.21%
(seven out of 580) of total grids have their MSE over 0.2 m2.

Prediction of Maximum Flood Inundation
for Historical Events
The historical discharges from the historical events are
taken from Bavarian Hydrological Services (Bhola et al.,
2018). From the historical events, two representative
events are selected to validate the ANN. The February
2005 is an example of an advective precipitation with
lower peaks and longer duration, with an intensity of
2–3 mm/h. The May 2013 is an example of a convective
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FIGURE 5 | Comparison of average MSE by two grid-size (numbers of ANNs) in the testing dataset (Event 121 to Event #180). Black elements are houses. (A)
Average (among events) MSE in 50 × 50 grids by RP. (B) Average (among events) MSE in 100 × 100 grids by RP.

TABLE 2 | The impact of grid size on the ANN training.

Grid Wet Average Percentage of Average

size grid MSE > 0.1 MSE > 0.1

50 × 50 485 19 3.92%

100 × 100 1679 82 4.88%

Wet grid = number of grids which have water; Average MSE > 0.1 = number of
grids with average MSE larger than 0.1.

precipitation with higher peaks and shorter duration, with an
intensity of 5–60 mm/h.

Figures 10, 11 show the MSE obtained for the prediction
of the historical event in February2005 and May 2013. In
Figure 10, the large MSE occurs mainly in the ponding area to
the southwest. Figure 11 shows larger MSE in the southwest than
that in February 2005.

DISCUSSION

Training Algorithm
In this section, the two training algorithms, resilient
backpropagation and conjugate gradient are discussed.
Figures 3, 4 support that both algorithms do not show
overfitting. Indeed, similar MSE over the training dataset and
the testing dataset are observed. However, we still observe a few
grids, whose MSE has higher values, suggesting that increasing
the size of the training datasets could further improve the
performance. Figure 4 shows that the resilient backpropagation
has a lower standard deviation of the MSE for the testing dataset
compared to that of the conjugate gradient. As such resilient
backpropagation is selected for as training algorithm. This is
in line with other researchers which also described resilient
backpropagation as efficient with forward-feed neural networks
(Bustami et al., 2007; Chibueze and Nonyelum, 2009).

FIGURE 6 | Determine cluster numbers and numbers of principal components. (A) Conventional FCM criteria and their corresponding L(c) values: P (peak discharge
value), T (peak time), V (total volume), and V24 (volume in the first 24 h). (B) Data preserving rate in relation to the numbers of principal components. A minimum
data-preserving rate of 97.5% was selected as a good representation of the training database.
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TABLE 3 | Integral of the bandwidth (90% confidence interval shown in Figure 9) by conventional FCM and PCA-FCM assuming a cluster number equal to 4.

Clustering Parameters Red Main Upper Schorgast Dobrach White Main Kinzelsbach Kohlenbach Mühlbach

P 20,886 11,916 327 14,275 327 327 656

T 19,808 10,954 277 12,624 277 277 551

V 18,298 10,056 229 11,337 229 229 457

P, V 20,208 10,799 285 12,744 285 285 569

T, V 19,358 10,844 275 12,433 275 275 550

P, T 18,826 10,447 283 12,353 283 283 565

P, V, T 17,964 9494 271 11,452 271 271 539

P, V, V24, T 17,844 9405 244 11,030 244 244 489

PCA 17,311 9799 221 11,378 221 221 443

FIGURE 7 | Clustering of all the discharge curves in the training dataset of Stream Red Main (biggest inflow) grouped into four clusters by conventional FCM. Each
curve represents a single event. (A–D) The curves are clustered into the above four clusters. The clustering is based on the combination of P (peak discharge value),
T (peak time), V (total volume), and V24 (volume in the first 24 h). Asterisks represent the 90% confidence intervals of the four clusters (A–D).

Number of Hidden Layers and Neurons
The number of hidden layers and the number of neurons have
a decisive impact on the effectiveness of the neural network
(Xu and Chen, 2008). Due to their critical importance, different
combinations of hidden layer numbers and neuron numbers
were tested for finding an optimal combination. The number
of layers of two, three, four, five and six, as well as the number

of neurons of 10, 15, 20, 25, and 30 were tested, amounting
to a total number of combinations tested of 25. In Table 1, a
grid is “optimal,” once the error function reaches the minimum.
From the results, it is possible to conclude that the majority
of grids (70%) behave better with two or three hidden layers.
There is, however, no general trend observed between the number
of neurons and the number of hidden layers. The “optimal”

Frontiers in Earth Science | www.frontiersin.org 8 August 2020 | Volume 8 | Article 332

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00332 May 27, 2021 Time: 16:28 # 9

Lin et al. Flood Inundation Prediction: RP-ANN

FIGURE 8 | Clustering of all the discharge curves in training dataset of Stream Red Main (biggest inflow) into four clusters by PCA-FCM. Each curve represents a
single event. (A–D) The curves are clustered into the above four clusters. Asterisks represent the 90% confidence intervals of the four clusters (A–D).

occurs over all the combinations of the number of hidden layers
and the number of neurons. When the layer number takes
four, five, or six, it is possible to find a widespread “optimal”
number of neurons. For the majority cases (70%, where the
layer number takes 2 or 3), it is seen that the network with
fewer neurons behaves better with only two hidden layers,
though the network with more neurons behaves better with
three hidden layers. Overall, the complex dependency between
hidden layers and neurons reflects the complexity in the input
training datasets. In our study, we used two hidden layers with 10
neurons per layer.

Grid Resolution
The results show the capability of the ANN to perform
predictions with small MSE (Figure 5). Concerning the
processing time, the 100 × 100 (finer grids) takes 2 h more only
for the initialization of the network. Furthermore, the 100 × 100
grid tends to have a larger MSE during the testing phases, which
indicates more overfitting than the solution with 50× 50. On the
other hand, it is obvious that a decrease in the number of grids
produces less precise results. Therefore, giving more weight to the

TABLE 4 | Sign of MSE difference between PCA-FCM clustered 100 events,
original 120 events, and the randomly clustered 100 events.

50 h-Prediction Number of grids

Avg.MSE RP100C-Avg.MSE RP120 Positive Negative

231 253

Avg.MSE RP100C-Avg.MSE RP100 Positive Negative

188 296

All of them use resilient backpropagation for training.

training efficiency with less overfitting, it was decided to proceed
with the 50× 50 grid in our study.

Fuzzy C-Means (FCM) Clustering
In the conventional FCM by hydrograph characteristic parameter
the parameters of P (peak value), T (peak time), V (total volume)
and V24 (volume in the first 24 h), and their combinations were
tested. Figure 6A and Table 3 show that the full combination of
all four parameters creates the most compact clusters evaluated
by the performance index. In the second approach PCA-FCM,
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FIGURE 9 | Example of flood inundation prediction in testing dataset (Event #180). Black parts are houses. (A) Inundation prediction from ANN model. (B)
Inundation prediction from the database.

FIGURE 10 | Average MSE difference between the ANN and the
hydrodynamic model of the historical event in February 2005. Black elements
are houses. Comparison of average MSE to observed inundation depth
(historical event in February 2005). Each grid is an ANN.

we conducted PCA over the discharge curves (50 dimensions), to
reduce their dimension to the first 10 orthogonal eigenvectors.
Projected to the first seven eigenvectors, the data have a
preserving-rate of 97% (Figure 6B). Therefore, in our research,
we choose the first seven principal components for clustering
into four groups. Comparing to conventional FCM, we observe
five out of seven streams have smaller clustering spread (except
Upper Schorgast and White Main), while the rest two are only
slightly larger.

It is important to verify that the clustering strategy is efficient.
Therefore, we compare it with three other strategies using the
MSE: (a) the original training dataset, consisting of the original
120 events in the training dataset from the synthetic database
(RP120) (b) randomly select the 100 events from the 120 events
(RP100), and (c) randomly select 100 events from the four
clusters (RP100C). The results show that the RP100C behaves

FIGURE 11 | Average MSE difference between the ANN and the
hydrodynamic model of the historical event in May 2013. Black parts are
houses. Each grid is an ANN.

slightly better than RP120, which means that we can achieve
similar good predictions even when with a clustered dataset with
a smaller size. The RP100C behaves much better than RP100; this
shows that, with the same training database, clustered individuals
perform better than random individuals.

Prediction of Maximum Flood Inundation
for Synthetic Events
Validation of the results in the synthetic events using the
whole testing datasets is shown in Figure 9. The majority
of the predictions are accurate with MSE around 0.1 m2. In
any case, there are still more than 1.21% of grids with MSE
larger than 0.2 m2. Since the terrain elevation is relatively
flat (city center) the impact of a highly variable terrain in
the ANN predictions is reduced. This could also add to
the good agreement found in our results. In any case, the
results show clearly that the ANN prediction is bounded by
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the local topography, displaying a very similar inundation
extent as the hydraulic model. Despite that, larger error
can occur in the water depths particularly in the southwest
of our study area. This is the farthest away area from
all the seven inflows (model inputs). Hence, it could be
anticipated that this area would be more difficult to predict
by the ANN model.

Prediction of Maximum Flood Inundation
for Historical Events
Finally, the developed ANN is tested in two real events, namely
in 2005 and 2013. By evaluating the results, the grids with
larger MSE than 0.2 m2 are 8.97% in 2005 and 13.62% in
2013, which shows that for the real events, our ANN provides
an accurate prediction on water depth for more than 85%
grids. In both of the synthetic events, we observed that the
large MSE part occurs in the southwest of the study area (see
Figures 10, 11). This is again a similar behavior also found
during the testing phase (Figure 3) which can be expected
since it is the area further away from the major inflows (see
Figure 2). As the distance to the inflows (model inputs) increases,
the growing uncertainty causes the water depths prediction to
deviate from the observed data. It should be noted that the
inundation extent is always well predicted. As in the results
for the synthetic events, the ANN is able to accommodate the
flooded volume within very similar topographic limits as the
hydraulic model.

CONCLUSION

This study focuses on using artificial neural networks trained
with synthetic events to replace the 2D hydraulic model for flood
prediction. A forward-feed network structure was applied and set
up with a training dataset with 120 synthetic events and a testing
dataset of 60 events.

Two popular algorithms were compared, namely resilient
backpropagation and conjugate gradient, with their MSE in the
whole domain evaluated. Resilient backpropagation performed
better than the conjugate gradient with a smaller MSE on
average. An investigation of the number of hidden layers
and the number of neurons per layer set this to 2 and
10, respectively. Complex dependencies from the interaction
of these two parameters were observed. It was not possible
to find a clear trend over all the ANN with a simple set
of network layers and neurons. It was nevertheless noticed
that 70% of our networks performed better, once two or
three hidden layers have been used. This indicates that the
prediction of flood inundation extents by inflow hydrographs
is more likely to be precise at a low hidden layer number.
The impact of the network size 50 × 50 and 100 × 100
over the studied area was also investigated. Both settings
produced small errors. However, the 50 × 50 grids have
slightly smaller MSE with much less model tuning time, hence
chosen in this study.

Conventional FCM and PCA-FCM were investigated
in this study. Both clustering methods capture the

characteristics in each cluster (by the trend of curves and
of confidence intervals). By checking the 90% confidence
interval over all the clusters, we could infer that the
cluster spread of PCA-FCM was smaller than the spread
with the conventional FCM clustering. Hence, the former
was preferred. The MSE difference map of the clustering
strategy showed that this strategy is efficient in reducing
the size of the training set. Thus, clustering is helpful as the
preprocessing of the training dataset. With the clustered
data, the network could cover a wider range of inputs
and avoid overfitting by similar training data. Overall,
in our case study, clustering enhanced the performance
of the ANN training by reducing the size of the training
set and slightly improved the prediction of maximum
flood inundation.

The prediction results on the testing dataset are very
good. The prediction of maximum flood inundation shows
no visible difference from the synthetic events in terms of
flood extent and water depth. By comparing the MSE, only
1.21% of the wet grids have values larger than 0.2 m2,
suggesting that the prediction is successful over 98% ANN.
Tests on real events showed that the prediction results of the
flood inundation are still very good but with some localize
disagreements in the maximum water depths. Overall the
prediction by grids, 91.03% in 2005 and 86.38% in 2013
events were good, for which the MSE was smaller than
0.2 m2. It was also seen that the model prediction quality
decreased as the area of the forecast was further away
from the inputs.

Finally, this work proved that resilient backpropagation
networks can be used for replacing the 2D hydraulic model
for prediction of flood inundation, requiring only the discharge
inflows as inputs.
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