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Atmospheric Phase Screens (APSs) derived from Interferometric Synthetic Aperture

Radar (InSAR) observations contain the difference between the tropospheric water-

vapor-induced delay of two acquisition epochs, i.e., the slave and the master (or

reference) epochs. Using estimates of the atmospheric state coming from independent

sources, for example numerical models and/or Global Navigation Satellite System

(GNSS) observations, the APSs can be transformed into absolute maps of Tropospheric

Delay (Zenith Total Delay or ZTD), related to the columnar atmospheric water vapor

content. In this work, a systematic comparison between various APS and ZTD products

aims to determine a convenient strategy to go from APSs to InSAR-derived absolute

ZTD maps, highlighting the uncertainties and approximations introduced in the entire

processing. The main problem to solve is the evaluation of a sufficiently accurate high-

resolution master delay map. Different sources of data and two different approaches

to derive the master are validated and compared to define the most suitable strategy

for meteorological applications. Maps of ZTD obtained by an iterative interpolation of

a global atmospheric circulation model values results in being more suited than those

derived from the assimilation of GNSS observations into an NWP model. A time average

approach to estimate the master map is more robust than the single epoch approach

with respect to the choice of the master epoch. Still, the choice of a proper master epoch

in the InSAR processing chain as well as that of the maps to be averaged crucially result

in the estimate of the master.

Keywords: water vapor, GNSS meteorology, SAR meteorology, master estimate, numerical weather prediction,

ZTD, APS, data assimilation

1. INTRODUCTION

Tropospheric water vapor is a key factor in the generation of convective storms (Sherwood et al.,
2010). Information about water vapor content can be derived from the processing of both GNSS
(Bevis et al., 1992) and SAR observations (Hanssen et al., 1999). Water vapor in fact affects the
propagation velocity of both GNSS and SAR electromagnetic signals, resulting in an extra path
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or delay in the corresponding observed distances. Originally
processing by-products, as they have to be estimated and
removed in order to obtain an accurate positioning or
deformation estimation for GNSS and SAR, respectively, these
delays have paved the way for GNSS and SAR meteorological
applications, i.e., their use as atmospheric water vapor sensors
together with classical radiosoundings or satellite-borne and
ground-based radiometers.

The advantages in the use of GNSS rely on the possibility
of deriving high temporal resolution water vapor delay time
series from the data collected by existent geodetic permanent
networks (Shoji, 2013; Oigawa et al., 2014; Barindelli et al., 2018).
On the other hand, the spatial resolution can be relatively poor
for meteorological applications since geodetic networks have
an interdistance of 30–50 km with irregular global coverage.
The accuracy of the GNSS products is nevertheless quite high:
the agreement with radiosounding is within 2 mm of standard
deviation for post-processing and near-real-time precipitable
water vapor (PWV) products (Barindelli et al., 2018; Mascitelli,
2020). Note that the PWV is related to the wet part of the
tropospheric delay, as described in more detail in section 2.2.1.
The assimilation of GNSS products into NWP models can
currently be done in terms of total delay in the zenith direction
above a receiver. Their positive impact on the prediction of
convective storms localization and timing has been proved in
many research studies (Oigawa et al., 2018; Lagasio et al., 2019;
Mascitelli et al., 2019; Hdidou et al., 2020; Yang et al., 2020).

As for the SAR-derived water vapor maps, they have the
great advantage of a very high spatial resolution (100 m or
below), although their temporal availability is still too poor for
meteorological applications, as the revisiting time of the current
SAR satellite missions is of the order of few days at midlatitudes.
To overcome this limitation, the concept of a geosynchronous
SAR is under development, and this will allow for a continuous
monitoring of integrated water vapor over large areas (Ruiz
Rodon et al., 2013; Monti Guarnieri and Rocca, 2017; Monti
Guarnieri et al., 2018). Several experiments were done to prove
the positive impact of the SAR-derived water vapor maps in the
prediction of extreme rain events when assimilated into NWP
models (Pichelli et al., 2015; Mateus et al., 2018; Lagasio et al.,
2019; Miranda et al., 2019; Pierdicca et al., 2020).

There are still several open issues to be tackled to fully exploit
the potential value of such maps. Recently, Manzoni et al. (2020)
successfully implemented a simple and fast algorithm to process
SAR observations and produce APS. As already mentioned, up
to now, SAR APS maps have been a by-product of a processing
focused on the estimation of Earth surface deformations. The
new technique applies interferometric SAR processing on the
time series of SAR images. By exploiting the statistical properties
of the so called Distributed Scatterers (DSs), it extracts the
atmospheric delay in a more robust and efficient way than the
state-of-the-art algorithms, reducing both the amount of images
needed and the computing time and reaching the same level of
accuracy. The output of such processing, as well as those derived
from the well-known Permanent Scatterers (Ferretti et al., 1999,
PSs) or Small BAseline Subset (Berardino et al., 2002; Pepe et al.,
2005, SBAS) techniques, are time series of APSs.

As a result of the interferometric techniques, which process
the difference in phase of two SAR images, the APS contains
the difference between the delay produced by the water vapor
content at the two image acquisition epochs (the slave and
master epochs). Moreover, each APS pixel contains the relative
delay affecting the signal reflected by the corresponding area on
the earth surface along the known sensor line of sight (LOS),
which is from satellite antenna to the earth surface and back.
Each APS contains also ionospheric effects, which are currently
disregarded, and the effects of the non-perfect overlapping of
the two orbits of the master and slave epochs. These orbital
errors can be estimated and removed by using GNSS water vapor
delays of a few stations in the SAR imaged area at the same time
as the APS slave and master epochs, as explained in detail by
Manzoni et al. (2020).

Differently from GNSS delays, the gridded relative delays
derived from SAR processing cannot be directly ingested into
NWP models, at least not with the currently available data
assimilation routines. The APS maps must be transformed into
absolute delay maps, and the LOS delay must be projected onto
the zenith direction of the surface imaged in each pixel. The
assimilation can then be performed as if the SAR ZTD maps
were GNSS ZTD values over a grid. It is important to notice
that, nowadays, assimilation techniques disregard the spatial
correlation of SAR observations. This implies a sub-sampling
of the available maps to reduce their spatial resolution and
correlation (Lagasio et al., 2019).

Since APS maps can be thought of as a simple difference
between the instantaneous ZTD map at the slave epoch and the
instantaneous ZTD map at the master epoch, to get the absolute
zenith delay maps, the master delay map has to be estimated.
Different solutions have been proposed in the literature for
that. Pichelli et al. (2015) used water vapor maps obtained
from the MEdium Resolution Imaging Spectrometer (MERIS)
mission. This approach requires the simultaneous acquisition
of the external data and of the SAR data, which is not always
feasible. Mateus et al. (2016) suggested the use of a reanalysis
product, opportunely oversampled over an NWP model grid,
to reach a finer spatial resolution. Mateus et al. (2018) tried
instead to obtain a relatively fine resolution master map with an
NWP model run. Lagasio et al. (2019) proposed the use of ZTD
maps produced by the Generic Atmospheric Correction Online
Service (GACOS) product (Yu et al., 2018a,b). GACOS maps are
generated from the outputs of a global weather numerical model
by applying an iterative method to estimate both the height-
dependent hydrostatic component of the delay and the turbulent
one. Pierdicca et al. (2020) proposed to use the outputs of a
3DVAR assimilation package, which is a way to combine the
physically consistent ZTD field produced by an NWPmodel with
the ZTD values observed by a GNSS network.

The goal of the present work is to compare different
approaches for the master generation and to assess how they
affect the resulting ZTD maps. To this aim, we will consider
GNSS ZTD as the truth and evaluate an L2 norm of the residuals
of the different maps with respect to them to assess whichmethod
performs the best. After shortly revising the different strategies
for the master generation (section 2.1) we introduce the test
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case and the considered data set characteristics (section 2.2).
In section 3 we report the results. In section 3.1 we show how
GNSS observations and the models compare with differential
SAR maps; in section 3.2 we assess the accuracy of the models
against GNSS observations in terms of absolute ZTD; and in
section 3.3 the absolute SAR-derived ZTD maps obtained with
different strategies are validated with GNSS. Comments on the
results conclude the paper in section 4.

2. DATA AND METHODS

2.1. From APS to SAR ZTD Maps
In this section we briefly introduce the procedure used to derive
ZTD maps from InSAR APSs, which are relative maps both in
time and space. Let P be the generic point in the APS, t, and tM ,
the slave and the master epochs. Let P0 be the point whose APS
value is unknown (for each APS map it introduces a constant
offset to be removed, as explained in what follows). Let L be
the tropospheric delay along the SAR LOS and λ the SAR signal
wavelength. Then, the APS can be modeled as

λ

4π
APS(P, P0, t, tM) =

[

L(P, t)− L(P, tM)
]

−
[

L(P0, t)− L(P0, tM)
]

+ OE(P, t, tM)+ ν0(P, t, tM) (1)

where OE is a residual orbital error due to the mismatch between
the SAR orbits in different revisits. ν0 indicates the model
errors, which include both the observational uncertainties of the
instruments and the approximations introduced in the retrieval
algorithm. It is assumed that it is a random variable with a
time-independent probability density function.

The ZTDmaps we want to derive are the zenith projections of
the component L(P, t), namely, ZTD(P, t) = L(P, t) cos(θ), where
cos(θ), which is the zenith direction of the LOS in the point P, is
considered to be constant in time. To get the ZTD we have to
estimate and remove the orbital error OE, estimate and remove
the constant term

[

L(P0, t)− L(P0, tM)
]

and obtain a reliable map
of the delay of the master epoch ZTD(P, tM) = L(P, tM)cos(θ).
Additionally, we should possibly reduce the variance of the
residual model error, as explained in what follows.

Manzoni et al. (2020) describe in details how the residual
orbital error and the constant term

[

L(P0, t)− L(P0, tM)
]

can be
properly estimated and removed exploiting the observed GNSS
ZTD within the APS imaged area. After correcting for the orbital
error and projecting the data along the zenith direction, we
obtain the differential ZTD

1ZTD(P, t, tM) =
[

L(P, t)− L(P, tM)
]

cos(θ)+ ν1(P, t, tM)

= ZTD(P, t)− ZTD(P, tM)+ ν1(P, t, tM), (2)

with ν1 indicating the residual model error of the differential
ZTD, characterized by a time-independent statistical
distribution.

The goal is to derive the best estimate of ZTD(P, t) at the
resolution requested for theNWPmodel assimilation. Nowadays,
NWP models that run at 1 km grid spacing are considered
high resolution for the forecast of heavy rainfall events since

convection is explicitly represented in the equations of motion.
However, the assimilation of observations at such high resolution
is still the object of active research (Tang et al., 2019), because
current data assimilation techniques cannot take into account the
covariances in the observation error (Bouttier andCourtier, 1999;
Lagasio et al., 2019).

By inverting the previous equation, it is clear that, with an
estimate of the ZTD map at the master epoch, the ZTD at the
slave epoch can be found as

ZTD(P, t) = 1ZTD(P, t, tM)+ ZTD(P, tM), (3)

where all the terms have their uncertainty. As already mentioned
in the Introduction, previous works have used different external
independent sources to get the master image, such as direct
satellite observations (Pichelli et al., 2015), oversampled or
dynamically downscaled reanalysis products (Mateus et al., 2016,
2018), iteratively downscaled global NWP outputs provided
by GACOS (Lagasio et al., 2019), or the outputs of a data
assimilation regional NWP model (Pierdicca et al., 2020). If
we derive the instantaneous master map from an external
independent source, for each considered pixel P, the model error
variance of the slave ZTD(P, t), denoted with σ 2{ν}, will be
the sum of the model error variance of 1ZTD, σ 2{ν1}, plus
the model error variance of the considered master ZTD(P, tM),
σ 2{νM}, namely,

σ 2{ν} = σ 2{ν1} + σ 2{νM}. (4)

Alternatively, following Pichelli et al. (2015), we can derive
the master as the difference between the time average of some
absolute delaymaps derived from an external independent source
ZTDx(P, t) and the time average of the corresponding InSAR-
derived 1ZTDmaps, namely,

ZTD(P, tM) =
1

N

N
∑

i=1

ZTDx(P, ti)−
1

N

N
∑

i=1

1ZTD(P, ti, tM). (5)

This approach derives from the fact that the time average of the
InSAR-derived 1ZTD(P, ti, tM) maps can be modeled as the time
average of the actual ZTD maps minus the master map itself.
We will use the name of “master time-averaged estimate (TAE),”
or “TAE of the master,” when referring to this approach. Notice
that, despite the name, the resultingmap is an instantaneous ZTD
map at the master epoch. This master estimate has a model error
variance equal to

σ 2{νM} =
1

N2

N
∑

i=1

σ 2{νx} +
1

N2

N
∑

i=1

σ 2{ν1}

=
1

N
σ 2{νx} +

1

N
σ 2{ν1}, (6)

where σ 2{νx} is the model error variance of the external source
of data and the second equality applies with the hypothesis that
the model error variances σ 2{νx} and σ 2{ν1} do not change in
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time. In this case, the variance of the model error of the ZTD at
the slave epoch is

σ 2{ν} = σ 2{νM} + σ 2{ν1} =
1

N
σ 2{νx} +

N + 1

N
σ 2{ν1}. (7)

The advantage of this approach becomes evident in the limit of
highN, where the contribution of the master variance tends to be
negligible and the factor in front of the variance of the differential
ZTD model error tends to one, meaning that the ZTD is known
with the same level of accuracy as the observed differential ZTD.

2.2. Data
All the analyses of this study were performed over an area of
roughly 60,000 km2 in Northern Italy, shown in Figure 1. This
area has been chosen because it is characterized by both complex
orography, reaching over 3,000 m a.s.l., and a very flat area in
order for the effect of the orography on the master estimation can
be assessed. The time span considered in this study covers the
period from January 11 to November 25, 2017, for the GACOS
and SAR data sets, while the 3DVAR have been performed
between April 11 to July 4, 2017, because of computational
power limitations. The time resolution of the data is dictated by
the Sentinel 1 satellite revisit time, which is roughly 6 days in
this area.

2.2.1. GNSS ZTD Time Series

Dry air and water vapor molecules in the troposphere affect
GNSS signals by lowering their propagation velocities with
respect to vacuum (Saastamoinen, 1973; Bevis et al., 1992). A
diminished speed results in a time delay in the signal propagation
along the satellite-receiver path, which, multiplied by the vacuum
speed of light, adds an extra distance to the satellite-receiver
geometrical one. While from the positioning point of view this
delay is just a systematic error to be removed, it enables the use
of GNSS as a tool for the remote sensing of the troposphere water
vapor content.

In this study only satellites of the GPS constellation are
used. The dual-frequency observational files (RINEX Version
3 format), collected by 26 geodetic receivers (see Figure 1)
of the SPIN network (Interregional Positioning Service for
the Lombardia, Piemonte, and Valle D’Aosta regions, https://
www.spingnss.it/), characterized by an interdistance or roughly
30–40 km, are processed with the goGPS software (Realini
and Reguzzoni, 2013; Herrera et al., 2016). In particular, the
goGPS software applies the PPP technique (Zumberge et al.,
1997), by means of undifferenced phase observation processing,
with precise products provided by International GNSS Service
(IGS) and by applying ionosphere-free combination, to estimate
both coordinates and ZTD values for each epoch by daily
processing sessions.

ZTD is known to be the sum of a hydrostatic contribution, the
Zenith Hydrostatic Delay or ZHD, and a wet contribution, the
ZenithWet Delay, which is related to the presence of water vapor
(Bevis et al., 1992). The value of ZHD is basically the weight of the
air column, i.e., the surface pressure (Saastamoinen, 1973), which
has an exponential-like decay with height and is characterized
by relatively small variations in time. ZWD, instead, is a highly

turbulent field; it is very complex to model, and, even if it is
one order of magnitude smaller than the ZHD, it is the most
important term from a dynamical standpoint. As mentioned in
the Introduction, ZWD is related to PWV. The conversion factor
5 = PWV/ZWD depends on the vertical average of the inverse
of the temperature weighted by the water vapor density and is
roughly equal to 0.15 (Bevis et al., 1994). The goGPS software,
after retrieving the ZTD, interpolates the ZHD from the gridded
ZHD maps provided by the Vienna Mapping Function servers
(Kouba, 2008) and get the ZWD as the difference ZWD = ZTD−

ZHD. As a general remark, as the ZHD is much larger than the
ZWD, the strong dependence of the ZHD on the height of the
terrain is reflected in the ZTD field, as discussed in Fornaro et al.
(2015).

In the time period of interest for this study (between January
and November 2017), GNSS data are processed with goGPS
to obtain a reference data set. To validate its reliability, a
comparison test with atmospheric soundings was performed.
Sounding balloons are extensively used in meteorological
forecasting and research because they enable in situ recording
of atmospheric variables with high temporal frequency and
precision. The test was carried out in terms of ZTD and the
results are in line with the literature with a standard deviation
on ZTD differences of almost 1 cm (Mascitelli, 2020). Another
validation test was performed with the radiometer. In particular,
a pilot test was done comparing 1 year data from a four-channel
Ka-band/W-band radiometer, located in the main campus of
Politecnico di Milano, to the same data from a GNSS dual-
frequency receiver (MILA), a part of a regional network and
installed in the same campus, 280 m away from the radiometer.
Also in this case, outputs were in line with literature, showing
a standard deviation on PWV differences of almost 1.4 mm
(Mascitelli, 2020).

Figure 2 shows the time series of the spatial statistics of both
ZTD and ZWD of the 2017 data set. By looking at the spatial
mean values of ZTD and ZWD (Figures 2A,C), it is evident
that the ZTD seasonal cycle is due to the increased amount of
water vapor that characterizes the summer season. In fact, the
ZTD summer to winter difference is of the order of 150 mm,
as shown in Figure 2A, which is the amplitude of the ZWD
seasonal cycle, as in Figure 2C. Instead, by looking at the time
series of the spatial standard deviation (Figures 2B,D), one can
notice that the variability due to the presence of the orography
is much larger than the variability of the water vapor field itself.
In fact, the ZTD standard deviation is of the order of 160–170
mm, and the ZWD standard deviation is five times smaller. Only
the ZWD standard deviation seems to have a seasonal cycle,
which suggests that the summer increase in water vapor is not
homogeneously distributed, also because the water vapor has a
stratified component.

2.2.2. SAR APS Maps

SAR interferometry exploits the backscattering of the satellite
radar electromagnetic signals by various targets on earth for
various geodetic and remote sensing applications. In general,
InSAR information is carried by the phase shift of the signal
between subsequent passages over the same observed area.
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FIGURE 1 | Map of the orography of the region. The gray rectangle indicates the footprint of the SAR observations, while the red rectangle is the area where GACOS

data have been downloaded. The green dots indicate the GNSS stations with their code name and altitude, h.

Since the atmospheric state affects the propagation of the radar
signal, in particular with the presence of water vapor, InSAR
observations can be used to map the ZTD over relatively large
areas (Hanssen et al., 1999; Mateus et al., 2017).

SqueeSAR (Ferretti et al., 2011) is a state-of-the-art
InSAR technique that is generally applied to estimate crustal
deformations, and returns, as a by-product, APSs. It exploits
information coming both from Permanent and Distributed
Scatteres (PSs and DSs, respectively). PSs are relatively small
objects that show a long phase stability over the observation
period, such as rocks and man-made infrastructures. DSs
instead cover larger areas and are stable over a shorter period
of time (Ferretti et al., 2011; Manzoni et al., 2020). In order
to properly estimate the crustal deformation effects, a large
number of images is needed, making the algorithm quite
computationally expensive.

To have a more detailed description of the algorithm, the
reader is referred to the original work of Ferretti et al. (2011).
Alternatively, one could read the works of Lagasio et al. (2019)
and Manzoni et al. (2020), that briefly introduce the SqueeSAR
algorithm because they make use of the same data set of the
present work.

Forty-five APS maps are considered, starting from January 23
to November 25, 2017. During their processing, they all have
January 11, 2017, as themaster epoch and they are geo-referenced
in a geographic WGS84 frame of reference, with grid spacing
of roughly 90 m. Their footprint is shown in Figure 1 as a
gray rectangle.

2.2.3. GACOS Maps

The acronym GACOS stands for Generic Atmospheric
Correction Online Service. This service delivers high resolution
ZTD maps aimed at the correction of atmospheric artifacts in
InSAR products (Yu et al., 2017, 2018b). The high resolution
ZTD maps, hereon referred to as GACOS model, are obtained
by properly interpolating ZTD derived from the ECMWF
atmospheric model at 0.125◦ and 6 h time resolution. Current
products (such the ones used in the present paper) do not include
observational ZTDs, although experiments using GNSS data
have also been successfully performed (Yu et al., 2018a).

Here, the main characteristics of the Iterative Troposheric
Decomposition (ITD) interpolation model used in GACOS are
described. The ZTD of a generic ECMWF grid knot Pk is
decomposed in a stratified component depending on the height
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FIGURE 2 | ZTD and ZWD spatial statistics as measured by the 26 GNSS

stations of the SPIN network described in the main text. (A,B) are the mean

and standard deviation of the ZTD; (C,D) for the ZWD. Note the different y-axis

scales.

of Pk plus a turbulent component depending on the considered
position of Pk and a model error εk

ZTD(Pk) = S(hk)+ T(Pk)+ εk. (8)

The stratified component S(hk) is expressed in terms of an
exponential height scaling function (Xu et al., 2011) depending
on two unknown parameters S0 and β . These unknown
parameters are estimated by applying an iterative procedure
involving the ECMWF ZTD values falling in a given area (of
the order of 100 km radius) surrounding the prediction point
itself. The first estimate of the unknown parameters is done
by performing a least squares adjustment of the ECMWF ZTD
values in the area, modeled in terms of stratified components (the
turbulent term is initially set to zero). The residuals between the
ZTDs in the area and this first estimate of the stratified model
are then removed from the original ZTDs. The residuals obtained
in this step are used to predict the turbulent component on
the ECMWF points themselves by applying an inverse distance
weighting technique (e.g., Li et al., 2006). The obtained predicted
turbulent components are then removed from the original ZTDs,
obtaining new stratified values used for a new estimate of the
unknown exponential model. The procedure is repeated until

the unknown parameters converge to stable values. The final
values of the stratified component and the turbulent ones are
separately used to predict the ECMWF ZTDs onto the GACOS
high resolution grid.

2.2.4. 3DVAR Maps

The Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) is an NWP model that solves the
non-hydrostatic fully compressible Euler equations using
mass-based terrain-following coordinates. It is commonly used
in research applications as well as in operational forecasting
centers. In this work, its Data Assimilation package (Barker et al.,
2012, WRFDA) has been used to generate ZTD maps at O (1
km) horizontal resolution to be interpreted as physically-based
interpolations of the GNSS measurements. Figure 3 shows
the numerical domains used for the NWP runs which have a
grid spacing of 13.5, 4.5, and 1.5 km going from the largest to
the smallest domain. Concerning the choice of the numerical
parameterizations used in the WRF simulations, the reader
is referred to Lagasio et al. (2019). An important aspect to be
underlined is that to guarantee the numerical stability of the code,
the orography used by the model is smoother that the realistic
high-resolution Digital Elevation Model (DEM) associated to the
SAR observations or to the real altitude measured by the GNSS
stations. The differences can reach a few hundred meters and
can, if not taken into account, result in ZTD discrepancies of the
order of 10 cm, considering a surface atmospheric refractivity of
about 300.

The 3DVAR maps shown here are based on simulations
that are initialized at 1200UTC using the ECMWF-IFS
fields (European Center for Medium-Range Weather Forecasts
Integrated Forecasting System). Simulations are run for the SAR
dates on the January 11, 2017, initially used as a master, and
between April 11 and the July 4, 2017, for a total of 15 dates. The
simulations run for 5 h, and at 17:00UTC, which corresponds to
the time of the passage of Sentinel 1 above the area of interest
(the precise time is 17:17UTC), the GNSS values are assimilated
with WRFDA. To make sure that the numerical spinup that
characterizes the first hours of every numerical simulation has
faded out, the zonal wavenumber spectra of the horizontal
wind components at 500 hPa are calculated. Then, following
Skamarock (2004)’s approach, it has been checked that the spectra
become steady at high wavenumber before the assimilation is
performed, meaning that there are no numerical artifacts and the
meteorological fields are realistic (not shown).

The 3DVAR assimilation technique (Bouttier and Courtier,
1999; Barker et al., 2012) aims at providing an optimal estimate
of the atmospheric state using a previous estimate (coming,
for example, from a forecast run or a global model) and a set
of observations, weighted by their respective covariance error
matrices. Mathematically, this is performed by minimizing the
cost function of Equation (9) (Ide et al., 1997)

J(x) =
1

2

(

x− xb
)T

B−1
(

x− xb
)

+
1

2

(

y− y0
)T

R−1
(

y− y0
)

,

(9)
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FIGURE 3 | WRF model orography with the outline of the three numerical

domains. From the outermost domain (d01) to the innermost one (d03) the

grid spacing is 13.5, 4.5, and 1.5 km. The small light blue rectangle indicates

the area covered by the SAR observations.

where x is the analysis to be found, xb is the first guess coming
from the NWP model, y0 is the assimilated observation, and
y = H(x) is the model-derived observation transformed from the
analysis x by the observation operator H for comparison against
y0. The solution of (9) represents an a posteriori maximum
likelihood estimate of the true state given the two sources
of data (the first guess xb and the observation y0) weighted
by the estimates of their errors. These are represented by B

and R, which are the background error covariance matrix
and the observation error covariance matrix, respectively. The
R matrix contains error coming from the observational (i.e.,
instrumental) uncertainties and the representativity errors, which
are introduced by the observation operatorHwhenmanipulating
the model data to be compared with the observations. In
WRF 3DVAR, as in most of the assimilation systems (Bouttier
and Courtier, 1999), R is diagonal, which assumes that the
errors in the observations introduced by the various instruments
are independent.

After performing the 3DVAR, the ZTD maps are calculated
on the model grid by vertical integration of the atmospheric
refractivity following Bevis et al. (1992), which is consistent with
what is implemented in the WRF code. Finally, since there is
a significant difference between the elevation of the DEM of
the SAR measurements and the orography that WRF uses in
the simulations, a correction to the ZTD is calculated as in
Lagasio et al. (2019). In particular, when the model orography
is higher than the GNSS station altitude, the modeled ZTD is
underestimating the observed one, and a positive correction to
the ZTD is added using the first model level refractivity and
the height difference (remember that the ZTD is the vertical
integral of the atmospheric refractivity). Instead, when the model
orography is lower than the GNSS station height, the model is
overestimating the observed ZTD and a negative correction is

calculated by vertically integrating the model refractivity up to
the GNSS station height.

3. RESULTS

3.1. Accuracy Assessment on Differential
ZTD
SAR calibrated differential maps are used to validate the time
evolution of the atmospheric state simulated by the models
under consideration. A comparison between the GNSS and
the SAR observational products is performed as well. Note
that the use of different wavelengths in the GNSS and SAR
measurements, L-band and C-band, respectively, does not
prevent their direct comparison for two reasons. Firstly, the
troposphere is not dispersive for frequencies <30 GHz (Hanssen,
2001). Secondly, there is evidence in the literature that in case
of simultaneous multi-frequency interferograms, the differential
phases only show volumetric effects due to different penetration
with frequency (Rosen et al., 1996). For the comparisons, ZTD
values from GNSS, GACOS, and 3DVAR are therefore time
differentiated using January 11, 2017, as the master epoch, while
SAR maps are projected onto the zenith direction, obtaining the
1ZTD products defined in Equation (2).

The nearest neighbor method is used to coregister GACOS
and SAR maps, whose spatial resolution is comparable. To
account for the different spatial resolution of SAR and 3DVAR
maps, SAR data are averaged and undersampled to the coarser
1.5 km grid of 3DVAR. The same procedure is applied whenever
necessary. It is worth underlining that the goal of the present
analysis is to validate each product at the maximum of its spatial
resolution and time coverage, to assess its accuracy using SAR
observations as a benchmark. Therefore, the sample size of the
different products is kept as it is, unless a direct comparison
between the GACOS and 3DVAR is performed. To this aim, we
will denote with the star *, namely GACOS*, the GACOS maps
undersampled over the 3DVAR grid. In the following analysis, it
is considered only in the dates when the 3DVAR is available.

The following spatial and temporal statistics of model-SAR
and GNSS-SAR time differential 1ZTDs are computed. Let x
denote one of the products under consideration: GNSS, GACOS
or 3DVAR. The spatial mean and standard deviation of the
differences between differential ZTD products (k = 1, . . . , Lx is
the spatial index) that change in time (i = 1 . . . ,Nx is the time
index) are, respectively,

µx1ZTD

s (ti, tM) =
1

Lx

Lx
∑

k=1

[

1ZTDx(Pk, ti, tM)

− 1ZTDSAR(Pk, ti, tM)
]

(10)

and

σ x1ZTD

s (ti, tM) =

{

1

Lx

Lx
∑

k=1

[

1ZTDx(Pk, ti, tM)

− 1ZTDSAR(Pk, ti, tM)− µx
s (ti, tM)

]2
}1/2

, (11)
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where the number of spatial points considered Lx changes for
each product (GNSS, GACOS, and 3DVAR).

The time series of the statistics defined in the previous
equations are displayed in Figure 4, the mean in Figure 4A and
the standard deviation in Figure 4B. The GNSS-SAR average
time series in Figure 4A is the result of the calibration procedure
described in section 2.1. The GNSS-SAR standard deviation
time series in Figure 4B shows a good agreement between the
two techniques. The discrepancies, always below 15 mm, are
due to the different observation techniques and modeling. Such
discrepancies increase in summer, when more water vapor is
present in the atmosphere and its turbulent component is more
difficult to be estimated.

GACOS shows to reproduce the spatial distribution of the SAR
maps within the observational uncertainty from roughly October
to May when the water vapor values are low. During summer and
early fall, instead, when the atmosphere is moister, it has lower
skills. It has a negative bias of O(5) mm, with standard deviations
below 15 mm. The bias doubles in summer with an increase of
the standard deviation to 25 mm.

In the dates where 3DVAR is available, its mean and
standard deviation behavior follow GACOS ones. Note that the
comparison between the two models is done after reducing
the resolution of GACOS to that of 3DVAR. This change in
resolution, however, has no significant impact in the comparison
with SAR map (compare GACOS*-SAR with GACOS-SAR in
Figure 4).

The temporal statistics for Lx points (k = 1, . . . , Lx) that
evolve over Nx time steps (i = 1, . . . ,Nx), for each x product
(GNSS, GACOS, or 3DVAR) are calculated as

µx1ZTD

t (Pk, tM) =
1

Nx

Nx
∑

i=1

[

1ZTDx(Pk, ti, tM)

− 1ZTDSAR(Pk, ti, tM)
]

(12)

and

σ x1ZTD

t (Pk, tM) =

{

1

Nx

Nx
∑

i=1

[

1ZTDx(Pk, ti, tM)

− 1ZTDSAR(Pk, ti, tM)− µx
t (Pk, tM)

]2
}1/2

. (13)

The above statistics are reported in Figure 5 for the GNSS-SAR
comparison and in Figure 6 for the GACOS-SAR, GACOS*-
SAR, and 3DVAR-SAR comparisons. The statistics are referred
to the GNSS sparse locations, and to the original GACOS and
3DVAR grids.

The temporal average of the GNSS-SAR 1ZTD differences is
always below 15 mm (SALO has the largest bias of 12.5 mm,
very likely because it is near a lake, which is known to introduce
errors in the SAR observations), the largest biases in absolute
value being in mountainous areas. There seems to be a large-scale
trend, with zero spatial mean value, which is interpreted to be
due to the different measuring algorithms of GNSS and SAR or
to a systematic error contained in the SAR measurements, that

depends on the master epoch of the observations. It also appears
that in the plain the standard deviations are smaller than in the
areas characterized by orography, which is reasonable because
both GNSS and SAR are known to have issues in measuring
tropospheric delays in such areas.

Figure 6 shows the maps of the temporal statistics calculated
for the differences between the numerical models (GACOS and
3DVAR) 1ZTDs and the SAR 1ZTDs. Figures 6A,C show the
mean difference of GACOS-SAR and 3DVAR-SAR, respectively,
calculated at the full spatial resolution of the products and over
the entire duration of the data sets. These two panels indicate that
in mountainous areas there is a clear imprint of the orography
and, in general, the model performances are worse than over
the plain. Figure 6B is meant to be used to compare the two
models: it shows the spatial mean GACOS*-SAR difference with
GACOS undersampled over the 3DVAR grid and averaged on
the same dates where the 3DVAR is available. Thus, comparing
Figures 6B,C shows that GACOS have a larger temporal bias
than 3DVAR, especially over the mountains in the eastern part
of the domain, where there is a relatively large region with a
bias lower than −15 mm. In general, we can say that in both
products the bias in the mountainous region follows the spatial
structure of the orography quite well, whereas the bias is much
smoother over the plain. However, the values of the bias remain
quite low (<15 mm) in most of the domain, meaning that
even if the orography influences the spatial dependence of the
temporal bias, it does not introduce a large systematic difference.
In the middle of the domain, especially in the 3DVAR-SAR map
in Figure 6C, one can see a blue area that corresponds to the
relatively large urban area around the city of Milan. This bias can
be interpreted with the fact that the WRF model was run with
no urban physics parameterization, which lead to discrepancies
in the surface fluxes and, thus, in the water vapor content
and its time evolution. We argue that the large-scale residual
of the averaged differences could be due to processing errors
related to the master choice, such as phase signal unwrapping
ambiguities, or the lack of estimation of systematic contributions,
such as the ionospheric one. This aspect is not investigated
in the present paper but could be a future development of
this work.

Concerning the temporal standard deviation of the same
1ZTD differences, shown in Figures 6D–F, it is quite clear that,
especially for GACOS, Figure 6D, the valleys are the place where
the temporal variability of the difference is the highest. When
looking at Figure 6E, GACOS*, and Figure 6F, 3DVAR, it is
possible to directly compare the two products; it appears that
they have the same range of variability. In the 3DVAR map
there are some spatial features with high standard deviation,
such as the tongue in the lower left corner of the domain or
the bubble in the lower right corner, that can be recognized
as instantaneous in some maps (not shown). This could be
explained by the fact that the finer resolution over which the
atmospheric dynamics is resolved in WRF with respect to
GACOS leads to the representation of smaller and more intense
atmospheric structures that, if they are misplaced in space or
time, contribute to a larger deviation with respect to the observed
SAR maps.
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FIGURE 4 | Time series of the spatial statistics of GNSS-SAR and model-SAR 1ZTD differences: mean values in (A) and standard deviation in (B).

3.2. Accuracy Assessment on Absolute
ZTD
After evaluating the performances of the models in the SAR
observational space, we now compare directly the ZTD maps
produced by GACOS and 3DVAR with the GNSS ZTD. The
following statistics are used to evaluate the accuracy of themodels
in terms of differences with respect to our best observational
product of the ZTD. In particular, we evaluate the spatial statistics
of the differences (L being the number of the GNSS stations),
namely the mean

µx ZTD

s (ti) =
1

L

L
∑

k=1

[

ZTDx(Pk, ti)− ZTDGNSS(Pk, ti)
]

(14)

the standard deviation

σ x ZTD

s (ti) =

{

1

L

L
∑

k=1

[

ZTDx(Pk, ti)− ZTDGNSS(Pk, ti)− µx
s (ti)

]2
}1/2

,

(15)
and the temporal statistics, the mean

µx ZTD

t (Pk) =
1

Nx

Nx
∑

i=1

[

ZTDx(Pk, ti)− ZTDGNSS(Pk, ti)
]

(16)

and the standard deviation

σ x ZTD

t (Pk) =

{

1

Nx

Nx
∑

i=1

[

ZTDx(Pk, ti)− ZTDGNSS(Pk, ti)− µx
t (Pk)

]2
}1/2

.

(17)
Figure 7 shows the time series of the spatial statistics for

GACOS, GACOS*, and 3DVAR. Looking at the year-long time
series of the mean bias of GACOS in Figure 7A, one can see
that there is an increase, in absolute value, in summer, of the
same amplitude as the one observed in Figure 4A. August 9
and September 14 stand out for their bias larger than 15 mm
(negative). The standard deviation, shown in Figure 7B also
indicates that the models struggle more in representing the ZTD
in summer, as previously highlighted.

The effect of decreasing the spatial resolution of the GACOS
maps to 1.5 km grid spacing is visible when comparing the
GACOS time series and the GACOS* one. It changes the mean
value by about 1–2 mm, and the standard deviation by about 7–8
mm. The comparison between GACOS* and 3DVAR time series,
then, highlights that the NWP model has a slightly larger bias,
which is however always smaller than 15 mm, and a standard
deviation that is roughly 1.5 times larger than the GACOS values.

The spatial variability of the differences of 3DVAR against
GNSS doubles that of GACOS despite the fact that 3DVAR is
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FIGURE 5 | Map of the temporal statistics of the difference between GNSS 1ZTD values and SAR 1ZTD values.

assimilating the GNSS ZTD values. It is worth remarking that the
3DVARmodel is corrected to account for the difference in height
between the WRF DEM and the Shuttle Radar Topography
Mission (SRTM) DEM, which is common to the GACOS model.
To better interpret this discrepancy, it is insightful to look at
the GACOS and 3DVAR ZTD dependence on the height, as
displayed in Figure 8 for May 5, 2017. Figure 8A shows GACOS
data and Figure 8B shows 3DVAR data. Both ZTD products
have a strong dependence on the height, as expected from the
definition of ZHD. However, for a given altitude, the spread
of GACOS ZTD is much lower than the spread of 3DVAR
ZTD. This is linked to how the small scale variability is handled
in the two models: GACOS method produces a ZTD with
a strong dependence on the height, while 3DVAR solves the
atmospheric equations of motion over a smoothed orography
and makes use of parameterizations to account for the sub-grid
scale phenomena, such as turbulence. If one takes the range
(maximum–minimum) of ZTD values at a given height, an
estimate of the spatial standard deviation is given by dividing
the range by six, assuming a normal distribution. For instance,
for the reference height of 2,000 m, the standard deviation of
the ZTD is roughly 25 mm for GACOS ZTD and 65 mm for
3DVAR, more than the double. This higher spatial variability
of the ZTD modeled by 3DVAR, associated with the fact that
the water vapor turbulent fluctuations cannot be well-estimated
by the point-wise and averaged GNSS ZTD explains why the
spatial standard deviation of the 3DVAR ZTD-GNSS ZTD

difference is larger than the standard deviation of the GACOS
ZTD-GNSS ZTD.

A confirmation of this comes from further analysis that
evaluate the relative role of the GNSS assimilation in the NWP
model and the height correction introduced at the end of
section 2.2.4, which accounts for the height discrepancy between
the model orography and the real terrain using the modeled
refractivity. In particular, Figure 9 shows the spatial statistics
calculated on three more data sets:

• the outputs of the WRF model before performing the GNSS
assimilation and with no correction of the height difference
between model and InSAR DEM, named “WRFNC” in the
figure;

• theWRF outputs with no data assimilation but with the height
difference correction, named “WRF”;

• the WRFDA outputs with no height correction, named
“3DVARNC.”

The fourth time series shown in the figure comes from the
3DVAR output that have been corrected for the height difference,
as shown in Figure 7.

Figure 9A shows that the correction due to height discrepancy
between the WRF and InSAR DEM, that was described at the
end of section 2.2.4, clearly improves the modeled ZTD with
respect to GNSS by an amount of 10–15 mm, in both the 3DVAR
and WRF cases. As the height correction is not homogeneously
applied to all the points (the largest discrepancies between WRF
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FIGURE 6 | Map of the temporal statistics, mean and standard deviations, of the difference between the models 1ZTD maps and the SAR 1ZTD maps. (A,D) For

GACOS at its original spatial resolution and using the entire data set; (B,E) for GACOS undersampled on the 3DVAR grid and considering only the dates where

3DVAR is available; (C,F) for 3DVAR.

and InSAR DEM are in fact located in the mountainous areas),
the spatial variability of the ZTD differences of non-corrected
models is higher than that of the corrected ones, as is clearly
shown in Figure 9B. The statistics of WRF-GNSS and 3DVAR-
GNSS are not significantly different.

Figures 10–12 show the map of the temporal statistics of the
difference between GACOS ZTD-GNSS ZTD, GACOS* ZTD-
GNSS ZTD, and 3DVAR ZTD-GNSS ZTD, respectively. Again,
GACOS has a good agreement with GNSS ZTDs, the majority
of stations having a mean absolute difference below 10 mm
and a standard deviation below 15 mm. In comparison with
3DVAR, made on the reduced GACOS*, it behaves similarly
everywhere, except for few stations in the mountain regions,
where it performs slightly worse. Both 3DVAR and GACOS
temporal means are generally negative over the mountains and
positive over the plain.

3.3. Impacts of the Master Retrieval
Strategy on SAR ZTD Maps
An assessment of the accuracy of the final SAR ZTDmaps, either
obtained by adding a single master map from an external product
or by adding a master TAE, as in Equation (5), is now performed.
Only the GACOS data set is used, both because it covers the entire

year and because it has been shown to be more accurate than the
3DVAR data set.

It is worth remarking that, in what follows, we change the
master time of a stack of 1ZTD(Pk, tj, tM) maps referred to the
master epoch tM . This is done by removing from all the maps the
1ZTD(Pk, ti, tM) of the new master ti with respect to the current
one, namely

1ZTD(Pk, tj, ti) = 1ZTD(Pk, tj, tM)− 1ZTD(Pk, ti, tM). (18)

This means that, when using the TAE approach with a single
master (N = 1), if the new master epoch ti is different from
the original master epoch tM , we are simply changing the master
epoch so that, instead of having

ZTDSAR(Pk, tj; tM) = ZTDx(Pk, tM)+ 1ZTDSAR(Pk, tj, tM),
(19)

which would be the standard single master epoch approach, we
have

ZTDSAR(Pk, tj; ti) = ZTDx(Pk, ti)+ 1ZTDSAR(Pk, tj, ti) (20)

even if the 1ZTD were originally referred to the tM epoch. Note
that here we explicitly write the dependence of the SAR ZTD on
themaster ti as we study how different choices of themaster affect

Frontiers in Earth Science | www.frontiersin.org 11 October 2020 | Volume 8 | Article 359

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Meroni et al. Absolute InSAR ZTD Maps Strategy

FIGURE 7 | Time series of the spatial statistics of the differences between model ZTDs and GNSS ZTDs: mean values in (A) and standard deviation in (B).

the resulting absolute map. In the TAE approach, the final SAR
ZTD map at the slave epoch tj does not depend on the initial
master epoch tM , but only on ti or, in the case ofN > 1, on all the
epochs used in the time average ti, i = 1, . . . ,N.

In the case of TAE with N > 1, the SAR ZTD is

ZTDSAR(Pk, tj; ti|i=1,...,N) =

= 1ZTDSAR(Pk, tj, tM)+
1

N

N
∑

i=1

ZTDx(Pk, ti)−

1

N

N
∑

i=1

1ZTDSAR(Pk, ti, tM) =

=
1

N

N
∑

i=1

[

ZTDx(Pk, ti)+ 1ZTDSAR(Pk, tj, ti)
]

=

=
1

N

N
∑

i=1

ZTDSAR(Pk, tj; ti), (21)

where ZTDSAR(Pk, tj; ti) is the SAR ZTD obtained with a single
master map ti, as introduced in Equation (20). This shows that
the TAE approach is equivalent to averaging in time the SARZTD
obtained using all the epochs ti, i = 1, . . . ,N as master epochs.

The spatial bias of the final SAR ZTD maps for N > 1, with
respect to the GNSS ZTD, writes

µSARZTD
s (tj; ti|i=1,...,N) =

1

L

L
∑

k=1

[

ZTDSAR(Pk, tj; ti|i=1,...,N)

− ZTDGNSS(Pk, tj)
]

=
1

N

N
∑

i=1

µSARZTD
s (tj; ti) (22)

where we exploit (21) to express it as the temporal mean of the
spatial biases of the SAR ZTD maps with N = 1 in the time
interval of interest.

The bias of the SAR ZTD at the slave epoch tj for N = 1 with
ti as the master epoch can be written as

µSARZTD
s (tj; ti) =

1

L

L
∑

k=1

[

ZTDx(Pk, tj)− ZTDGNSS(Pk, tj)
]

+

−
1

L

L
∑

k=1

[

1ZTDx(Pk, tj, ti)− 1ZTDSAR(Pk, tj, ti)
]

. (23)
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FIGURE 8 | Scatterplot of the GACOS ZTD values and the InSAR DEM height (A) as well as of the 3DVAR ZTD values and the WRF model height (B).

FIGURE 9 | Spatial statistics of the ZTD differences with respect to the GNSS ZTD. The time series of the mean value are shown in (A) and the time series of the

standard deviation are shown in (B). “WRFNC” indicates the model outputs with no data assimilation and no height correction; “WRF” are the outputs of WRF

corrected for the height difference with the InSAR data; “3DVARNC” shows the model output after assimilating the GNSS with no height discrepancy correction;

“3DVAR” denotes the time series of the 3DVAR output corrected for the height difference.

The first term is the spatial bias of the modeled ZTD with respect
to the GNSS ZTD at the slave epoch tj, µ

x ZTD
s (tj), as defined in

Equation (14). This, as Figure 7 shows, has a seasonal cycle with

the poorest performances in summer, as discussed in section 3.2.
However, also the second term, which is the spatial bias of the
modeled 1ZTD with respect to the SAR 1ZTD, has a similar
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FIGURE 10 | Map of the temporal statistics of the difference between GACOS ZTD and GNSS ZTD. In this figure, GACOS has been taken with its original spatial

resolution and for all 46 dates.

seasonal cycle with similar values (see section 3.1). Figure 4,
in particular, shows this spatial bias, µx1ZTD

s (tj, ti) defined in
Equation (10), with ti equal to the 11 January 2017, which is the
original master epoch of the data set. Thus, for a given master
epoch ti, the quantity µSARZTD

s (tj; ti) is the difference between
two terms that have a similar seasonal cycle and that roughly
compensate themselves on this temporal scales. For a given
master ti, the SAR ZTD bias is, then, almost constant throughout
the year with respect to the slave epoch tj. This is clearly shown

by Figure 13, where µSAR
s (tj; ti) is plotted for the entire GACOS

data set.
Concerning the dependence of the SAR ZTD bias on the

master epoch ti, instead, Equation (23) shows that only the
second term, the bias of the modeled 1ZTD, depends on it. This
suggests that a seasonal cycle is expected because there cannot be
a compensation. In fact, note that the 1ZTD is anti-symmetric
with respect to the master and slave epoch choice, namely

1ZTDx(Pk, tj, ti) = −1ZTDx(Pk, ti, tj), (24)

by its definition. This means that, for any fixed slave tj, the
dependence of the SAR ZTD bias on the master ti has the
functional form of

µSARZTD
s (ti; tj) = const +

1

L

L
∑

k=1

[

1ZTDx(Pk, ti, tj)

−1ZTDSAR(Pk, ti, tj)
]

, (25)

meaning that the minimum is attained in summer, as shown,
again, in Figure 4. This is also visible in Figure 13, which proves
that the ti master epoch choice is what really determines the bias
of the final SAR ZTD maps. In particular, the summer master
epoch generally introduces a larger bias with respect to epochs
chosen in other seasons.

For N > 1, replacing Equation (23) in Equation (22) one gets
that the SAR ZTD bias is given by the difference of the bias of
the modeled ZTD (with respect to the GNSS ZTD) and the time
average of the bias of the modeled 1ZTD (with respect to SAR
1ZTD), namely

µSARZTD
s (tj; ti|i=1,...,N ) =

1

L

L
∑

k=1

[

ZTDx(Pk, tj)− ZTDGNSS(Pk, tj)
]

+

−
1

N

N
∑

i=1

{

1

L

L
∑

k=1

[

1ZTDx(Pk, tj, ti)− 1ZTDSAR(Pk, tj, ti)
]

}

.(26)

Thus, the dependence on the ti, i, . . . ,N master epochs is
explicitly on the time average of their bias. For sake of simplicity,
we calculate µSARZTD

s (tj; ti|i=1,...,N), the time average of the SAR
ZTD single-master bias, using a running mean of N master
epochs. The SAR ZTD bias is shown in Figure 14 as a function
of tj, the slave epoch, and ti, the central master epoch of the
sliding window (with N = 3 in Figure 14A and N = 11 in
Figure 14B), calculated for the entire GACOS data set. Note that
the initial and final (N − 1)/2 values of ti are missing, because of
the width of the sliding window. However, remind that one could
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FIGURE 11 | Map of the temporal statistics of the difference between GACOS* ZTD and GNSS ZTD. Note that here, the statistics for GACOS are computed after

undersampling it on the 3DVAR grid and only on the 14 dates where 3DVAR is available.

FIGURE 12 | Map of the temporal statistics of the difference between 3DVAR ZTD and GNSS ZTD.
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FIGURE 13 | SAR ZTD bias with a single master epoch µSARZTD
s (tj; ti ), as defined in Equation (23), calculated for the entire GACOS data set.

arbitrarily choose the master epochs over which to calculate the
time average.

Figure 14 shows that also for N > 1, the dependence of the
bias on the slave epoch tj is much weaker than on the master
epochs ti, i = 1, . . . ,N. Moreover, it is confirmed that even with
the TAE approach summer master epochs introduce a larger bias
and should be avoided. In particular, this suggests that in the limit
of using all the maps available for time averaging, the resulting
bias is larger than the bias obtained by choosing a single (or
few) master epoch(s) in late fall, winter, or spring. This happens
because the seasonality of the 1ZTD bias has a non-zero average
value, and, thus, it is more convenient to average on a subset
of master epochs with a small bias (typically avoiding summer
epochs), than to consider all of them.

To summarize, as there is a seasonal behavior in the 1ZTD
bias, which propagates to the SAR ZTD bias through the choice of
the ti master epoch, the accuracy of the final ZTD maps depends
on the dates chosen in the TAE approach (even in the case of a
single master epoch, N = 1). Thus, the dates have to be chosen
when themodel performances are good, which has been shown to
happen when there is a little amount of water vapor. Even if in the
present section only GACOS was used; note that the equations
apply for any modeled ZTD product used as an external source.

In particular, similar conclusions could be drawn for 3DVAR
because a very similar seasonal behavior, with evidence of poor
performances of the model during summer, is observed.

4. CONCLUSIONS

A systematic comparison of various methods to obtain absolute
ZTD maps from InSAR APS has been performed. In particular,
the online product GACOS and the outputs of a data assimilation
package of a state-of-the-art NWP model have been validated
with respect to SAR and GNSS observations and have been
compared to each other. The master map was obtained both
by taking a single image from the two products (GACOS and
3DVAR), and by taking a time average of these products and the
corresponding APS maps following the approach introduced by
Pichelli et al. (2015).

A first result is that, in terms of the NWP products, the
assimilation of ZTD GNSS observations introduces a smaller
variation with respect to the correction due to the height
difference between the numerical model orography and the
fine-scale InSAR DEM. This is unavoidable because the NWP
model needs to solve the equations of motion on a smoother
orography for numerical stability constraints. Moreover, NWP
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FIGURE 14 | SAR ZTD bias with a N = 3 (A) and N = 11 (B) master epochs µSARZTD
s (tj; ti |i=1,...,N ), as defined in Equation (22), calculated for the entire GACOS data

set. A sliding window centered on the ti epochs is used.

models use parameterizations to take into account sub-grid scale
phenomena, such as turbulence. These two aspects lead to the
conclusion that the fine-scale spatial features of the water vapor
field cannot be captured by the NWP models to a degree of
accuracy higher than a simpler iterative method, such as the
one implemented in GACOS, where the ZTD dependence on
the height is stronger. Thus, it is not worth implementing the
3DVAR approach to derive the master map because it is more
numerically Demanding.

The analysis of the SAR ZTD bias as a function of the slave and
master epochs, both using a single master epoch or a time average
of them, suggest that it is crucial to choose a reliable master map
(or a set of them), meaning that it compares (they compare) well
with GNSS, which is a reference measurement of the absolute
ZTD. In fact, if the master has a large bias with respect to
the observations, this uncertainty propagates to all the absolute
ZTD maps derived. Moreover, time averaging external ZTD
maps and the corresponding APSs does not guarantee that the
master is better, as, if the instants included in the estimate have
a large bias, the resulting master map will also be significantly
different from the observations. Care must be taken in summer,
where the models have more difficulty in reproducing the water
vapor spatial distribution. Additionally, mountainous areas are
characterized by larger biases, and, thus, if they are included in
the region of interest, they contribute to a larger uncertainty in
final absolute ZTD maps.

Finally, the present work shows some metrics that can be
useful to assess the uncertainty associated to the InSAR-derived

absolute maps. This is an important aspect for data assimilation
experiments, which are one of the most promising applications
of such novel high-resolution products.
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