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Spatial downscaling is an effective way to obtain precipitation with sufficient spatial details.
The performance of downscaling is typically determined by the empirical statistical
relationships between precipitation and the used auxiliary variables. In this study, we
conducted a comprehensive comparison of five empirical statistical methods for spatial
downscaling of GPM IMERG V06B monthly and annual precipitation with a relatively long
time series from 2001 to 2015 over a typical semi-arid to arid area (Gansu province, China).
Thesemethods included two parametric regressionmethods (univariate regression, or UR;
multivariate regression, or MR) and three machine learning methods (artificial neural
network, or ANN; support vector machine, or SVM; random forests, or RF), which
were used to downscale the satellite precipitation from 0.1° (∼10 km) to 1 km spatial
resolution. Five commonly used indices which were normalized differential vegetation
index (NDVI), elevation, land surface temperature (LST), and latitude and longitude were
selected as auxiliary variables. The downscaled results were validated using a total of 80
rain gauge station data during 2001–2015. Results showed that latitude had the overall
largest correlation with IMERG annual precipitation, also evidenced by feature importance
measurements in RF. The downscaled results at monthly scale were overall consistent with
the results at annual scale. The machine learning-based methods had better predictive
ability of the original IMERG precipitation than parametric regression methods, with larger
coefficient of determination (R2) and smaller root-mean-square error (RMSE) as well as
relative root-mean-square error (RRMSE). The downscaled 1 km IMERG precipitation by
parametric regression methods had obvious underestimations (positive residual errors) in
the south and east of Gansu province and overestimations (negative residual errors) in the
west. In addition, the validation results of parametric regression downscaling methods
showed large improvements after residual correction, while the improvements were small
in the machine learning-based methods. However, the interpolation algorithm included in
residual correction can cause certain errors in the downscaled results due to the ignorance
of precipitation spatial heterogeneity. The machine learning-based RF downscaling had
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the smallest residual errors and the overall best validation results, showing great potentials
to provide accurate precipitation with high spatial resolution.

Keywords: GPM IMERG V06B, machine learning, residual correction, satellite precipitation, spatial downscaling

INTRODUCTION

Precipitation is a key variable in hydrological cycle and climate
change, and the grid-based precipitation with finer
spatiotemporal resolution and high accuracy is essential for
hydrological, meteorological, and climatology research in local
basins and regions (Duan and Bastiaanssen, 2013; Liu et al., 2016;
Ma et al., 2020). Traditional rain gauge-based ground
observations are sparse in space, especially over the remote
mountainous areas. Satellite-based precipitation has the
advantages of complete coverage and convenient access to the
data, which is an effective way to obtain precipitation at a regional
or global scale (Kidd and Levizzani, 2011). The research on
satellite precipitation has received increasing interests, and
various satellite precipitation estimates have been produced,
such as Global Satellite Mapping Precipitation (GSMaP)
(Kubota et al., 2007), Precipitation Estimation from Remote
Sensing Information using Artificial Neural Network-Climate
Data Record (PERSIANN-CDR) (Ashouri et al., 2015),
Tropical Rainfall Measurement Mission (TRMM) Multisatellite
Precipitation Analysis (TMPA) (Huffman et al., 2007), and
IMERG [Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (GPM)] (Hou et al., 2014).
However, the relatively low spatial resolutions (e.g., 0.1°–0.5°)
of the existing satellite precipitation products are too coarse for
hydrological simulation at the catchment scales.

Spatial downscaling techniques provide an effective way to
bridge the spatial scale gap between the low/coarse resolution and
the high/fine resolution. There are two major categories of
downscaling techniques: statistical downscaling and dynamical
downscaling (Sachindra and Perera, 2016). The dynamic
downscaling is based on the mathematical representations of
the complex physical process of atmosphere, ocean, and land
surface, which limits its applicability due to the intensive
computational cost and the requirement of huge volume data
(Wilby and Wigley, 2000; Sachindra and Perera, 2016). Instead,
statistical downscaling depends on the empirical statistical
relationships between object variable and auxiliary variables,
which is of high efficiency and has been widely used for
satellite precipitation downscaling in recent studies (Duan and
Bastiaanssen, 2013; Jia et al., 2011; Chen et al., 2015; Shi et al.,
2015; Ma et al., 2018; Sharifi et al., 2019).

The performance of statistical downscaling is typically
influenced by their auxiliary variable(s) and the empirical
statistical relationships. At present, most satellite precipitation
downscaling studies are conducted by selecting the auxiliary
variables that have high correlation with precipitation. The
normalized differential vegetation index (NDVI) is the most
widely used auxiliary variable because of the close NDVI-
precipitation relationship (Foody et al., 2003), especially in
arid and semi-arid regions where the growth of vegetation is
mainly fed by precipitation. By establishing the statistical

relationship between NDVI and TMPA satellite precipitation
at a coarse resolution of 0.25° (∼25 km), the accurate 1 km
precipitation was obtained using the statistical downscaling
method (Immerzeel et al., 2009; Duan and Bastiaanssen,
2013). The elevation-precipitation relationship also varies
spatially, and thus the introduction of elevation in the
downscaling method can better predict the precipitation
distribution in the areas with complex terrain (Jia et al., 2013).
However, the relationship between precipitation and land surface
characteristics (NDVI, elevation, geographical location, and so
on) is spatially nonstationary. Therefore, the representation of
precipitation spatial variability by NDVI-precipitation
relationship or elevation-precipitation relationship alone is
insufficient (Xu et al., 2015). Fang et al. (2013) found that
precipitation is also affected by the geographic location
(latitude and longitude). Chen et al. (2015) firstly introduced
the Moderate Resolution Imaging Spectroradiometer (MODIS)
land surface temperature (LST) to improve the downscaling
results for TMPA precipitation over an arid to semi-arid area.
It has also been found by Jing et al. (2016) and López et al. (2018)
that LST and slope as well as aspect had significant influences on
satellite precipitation downscaling. On the whole, the inclusion of
auxiliary variables from single one to multiple ones can better
describe the complicated relationships between precipitation and
land surface characteristics.

In addition to auxiliary variable, the empirical statistical
relationship between satellite precipitation and the used
auxiliary variables can also affect the downscaling results.
Several empirical statistical relationships have been developed
in downscaling models, including univariate regression (UR)
(Immerzeel et al., 2009; Duan and Bastiaanssen, 2013),
multivariate regression (MR) (Jia et al., 2013), and
geographically weighted regression (GWR) (Chen et al., 2015;
Xu et al., 2015; Zhao et al., 2017). However, these parametric
regression-based methods are difficult to reflect the spatial
heterogeneity between precipitation and land surface
characteristics (e.g., NDVI, LST, and elevation). With the
development of artificial intelligence algorithms, many
machine learning algorithms, such as artificial neural network
(ANN), support vector machine (SVM), random forests (RF),
and deep learning, have been proposed to solve the nonlinear
problems. Shi et al. (2015) have developed a RF-based
downscaling method to obtain the 1 km TMPA data. Similar
studies have been also reported by Jing et al. (2016) and Retalis
et al. (2017). However, the current studies on spatial downscaling
of satellite precipitation focus mainly on the TRMM-era
precipitation, and the downscaling studies on GPM-era
precipitation are relatively few. It is worth emphasizing that
TRMM mission came to an end on June 2015.

As the successor of TRMM, GPM opens a new era of satellite
precipitation measurements, providing more detailed
precipitation information with a 0.1° (∼10 km) spatial

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 5363372

Chen et al. Spatial Downscaling of Satellite Precipitation

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


resolution since March 2014 (Chen et al., 2018). In particular, the
latest released post-real-time Level-3 GPM IMERG Final Run
product (IMERG V06B) in June 2019 provides more accurate
precipitation estimates with a relatively long time series (June
2000 to the present), compared to the previous versions. To the
best of our knowledge, only few researchers have attempted to
downscale the GPM-era precipitation. Ma et al. (2018) have
compared the downscaled 1 km IMERG V05B and TMPA
data in 2015 using the RF method and showed that
downscaled results based on IMERG V05B performed better
than those based on TMPA. Sharifi et al. (2019) have adopted
the ANN method for the downscaling of IMERG V05B
precipitation data in 2015. However, these spatial downscaling
studies use only short-term rainfall data (1 year) and lack a
comprehensive comparison of the downscaling performances
of different empirical statistical methods, especially the
machine learning-based methods.

To fill the research gaps, this study conducted a
comprehensive comparison on the empirical statistical
methods for spatial downscaling of the IMERG V06B monthly
and annual precipitation from 2001 to 2015. A typical arid to
semi-arid region in China (Gansu province) was selected as the
study area. Five commonly used indices (i.e., NDVI, elevation,
LST, latitude, and longitude) were selected as auxiliary variables.
Two parametric regression methods (UR and MR) and three
machine learning-based nonparametric regression methods
(ANN, SVM, and RF) were compared to demonstrate their
robustness. The downscaled results with and without residual
correction were also compared and validated using a total of 80
rain gauge stations over the study area.

STUDY AREA AND DATASETS

Study Area
Gansu province is a typical arid to semi-arid region, which is
located in northwestern China (N 32°31′–42°57′, E
92°13′–108°46′) and covers a total land area of 4.26 × 105 km2

(Figure 1). The terrain of Gansu province is very complex and
inclines from southwest to northeast. Due to the effect of the
terrain and the geographical location, the precipitation spatial
distribution shows a pattern of decreasing from southeast to
northwest (Chen et al., 2015). The annual precipitation is about
700–800 mm in the southeast of Gansu province, while the
annual precipitation in the northwest is only about
40–200 mm. Precipitation is mainly concentrated in summer
months (May–September). Bare land and grass are the two
main land cover types of Gansu province, accounting for
82.4% of the total area (Figure 1). The bare land is mainly
distributed in the northwest of Gansu province. The forest and
arable land are distributed in the southeast of Gansu province,
where the climate is humid to semi-humid and precipitation is
relatively high.

Datasets
Rain Gauge Data
A total of 80 rain gauges from 2001 to 2015 in Gansu province
were used as the ground reference values for validation in this
study. The rain gauges were obtained from the China
Meteorological Administration, which provides high-quality
information of daily precipitation records from stations over
China since 1951 (Shen et al., 2010). The spatial distribution
of the rain gauge stations is uneven, with dense sites in the
southeast and sparse sites in the northwest (Figure 1). The daily
rainfall in each month/year was accumulated to obtain the
monthly/annual rainfall.

GPM IMERG V06B
The GPM mission is initiated by the Japan Aerospace
Exploration Agency (JAXA) and the United States National
Aeronautics and Space Administration (NASA), which is an
international constellation of satellites and consists of one Core
Observatory satellite and also ten partner satellites (Lu et al.,
2018) that provide the next-generation global precipitation
measurement. Compared to the TRMM, a key advancement
of GPM is the extended capability to detect light rain
(<0.5 mm/h) and solid rain by carrying the first space-borne
Ku (13 GHz) and Ka (35 GHz) bands Dual-frequency
Precipitation Radar (DPR) and a multichannel
(10–183 GHz) GPM Microwave Imager (GMI) (Hou et al.,
2014). IMERG is the level 3 multi-satellite precipitation
algorithm of GPM, which is designed to combine all
microwave estimates of the GPM constellation, infrared
estimates, and precipitation gauge analyses to build a long
record of global uniformly gridded precipitation products
over time and space. The latest released IMERG V06B
product provides half-hourly and monthly satellite
precipitation estimates at a 0.1° (∼10 km) spatial resolution
over the globe with a relatively long time series (June 2000 to
the present, delayed by about 3.5 months). The monthly GPM
IMERG V06B (abbreviated as IMERG) data from 2001 to 2015
was used in this study, which was downloaded at the website:
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_
3IMERGM.06/. The monthly precipitation was aggregated to
obtain the IMERG annual precipitation.

FIGURE 1 | Location of Gansu province and rain gauge stations. The
elevation, climate zones, and land cover types are also presented.
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Système Pour l’Observation de la Terre Normalized
Differential Vegetation Index
The Système Pour l’Observation de la Terre (SPOT)
VEGETATION (VGT) NDVI data at 1 km spatial resolution
were used in the study. The VGT-S (synthesis) products provide
daily NDVI product (VGT-S1) and 10-day synthesis NDVI
product (VGT-S10) using the maximum value composite
(MVC) method (Maisongrande et al., 2004). The geometric,
radiometric, and atmospheric corrections have been conducted
in the data preprocessing procedures. The VGT-S10 NDVI
products from 2001 to 2015 were obtained in this study from
http://www.vito-eodata.be/collections/srv/eng/main.home. The
monthly/annual NDVI data were calculated by averaging the
VGT–S10 NDVI data in a given month/year. The monthly/
annual NDVI data with a spatial resolution of 1 km were
aggregated to 10 km by using pixel averaging for the
application purpose of spatial downscaling.

MODIS LST
The Terra-MODIS LST data used in the study is the MOD11A2
product, which provides an average 8-day per-pixel LST data at
1 km spatial resolution. The MOD11A2 product is composed
using the MVCmethod to eliminate the influence of cloud (Wan,
2008). The 8-day composed MODIS LST data from 2001 to 2015
were downloaded from the USGS website (https://e4ftl01.cr.usgs.
gov/MOLT/MOD11A2.006//). The monthly/annual LST data
were calculated by averaging the 8-day LST data in a given
month/year, and the 1 km monthly/annual LST data were
aggregated to 10 km by using pixel averaging.

Elevation and Geographic Location
The elevation data used in this study were from the Shuttle Radar
Topography Mission digital elevation model with a spatial
resolution of 90m, which is available from the public website at
https://dds.cr.usgs.gov/srtm/version2_1/SRTM30/ (Rodriguez et al.,
2006). The elevation data at 90 m resolution were aggregated to 1
and 10 km by using pixel averaging, respectively. The latitude and
longitude data at 1 and 10 km resolutions were also extracted from
the elevation data in this study.

METHODOLOGY

General Statistical Spatial Downscaling
Procedure
The general procedure of the statistical spatial downscaling is to
establish the empirical statistical relationship between the object
variable and the corresponding auxiliary variables at low/coarse
spatial resolution. The empirical statistical relationship is
considered to be also applicable at high/fine spatial resolution.
Then, the established empirical statistical relationship is applied
to the auxiliary variables at the fine spatial resolution for
obtaining the downscaled object variable at fine spatial
resolution. The flowchart of the general downscaling
procedure is shown in Figure 2.

In this study, the object variable was the IMERG monthly/
annual satellite precipitation data which was downscaled from 10

to 1 km resolution and was validated by 80 rain gauge data in the
study area. Five commonly used auxiliary variables (i.e., NDVI,
elevation, LST, latitude, and longitude) were selected according to
the previous study of Chen et al. (2015). The specific steps are
described as follows.

(1) The auxiliary variables (i.e., NDVI, elevation, LST, latitude,
and longitude) at 1 km spatial resolution were resampled to
10 km using the pixel averaging method. The outliers of
NDVI pixels (the snow and the water body pixels) were
eliminated by the threshold (NDVI < 0) (Jing et al., 2016).

(2) Two parametric regression models (UR and MR) and three
machine learning-based nonparametric regression models
(ANN, SVM, and RF) were established between IMERG
precipitation and five auxiliary variables (i.e., NDVI,
elevation, LST, latitude, and longitude) at 10 km
resolution. The residual errors, which mean the part of
the precipitation cannot be explained by the auxiliary
factors, were also calculated at 10 km resolution.

(3) The IMERG precipitation results without residual correction
at 1 km resolution of different downscaling methods were
obtained by the auxiliary variables at 1 km resolution and the
established empirical statistical relationship.

(4) The spline interpolation method (Immerzeel et al., 2009; Duan
and Bastiaanssen, 2013) was used to interpolate the residual
errors at the spatial resolution of 10 km into 1 km. Then, the
downscaled results with residual correction at 1 km resolution
could be obtained by adding the interpolated residual errors to
the downscaled results without residual correction.

Random Forests
RF is a nonparametric statistical “ensemble learning” method for
classification and regression proposed by Breiman (2001). The RF
algorithm combines a lot of tree predictors in which each tree
depends on the value of independent sampling random vector and
has the same distribution in the forest (Breiman, 2001). As an
extension of the Classification and Regression Trees (CART), RF is
designed to overcome the problem of over-fitting by introducing
randomness into the individual regression trees and averaging a
large collection of these de-correlated individual trees. There are
two main parameters (the number of trees, ntree; the number of
variables in the random subset at each node, mtry) in the RF
algorithm, making it user-friendly (Liaw and Wiener, 2002). The
main steps for implementing the RF algorithm are as follows:

(1) The ntree samples are selected using a bootstrap sample that
contains two-thirds of the training data. The remaining one-
third of the training data referred to the out-of-bag data
(OOB sample) are left out of the bootstrap sample.

(2) The unpruned regression tree is grown to this sample. For
each node, the mtry random subset of the variables (tree
predictors) is selected at random and the best variables of the
mtry variables are chosen to split the data.

(3) The new samples can be predicted by averaging the
predictions of the ntree trees. In the training process, the
OOB samples are used to estimate the prediction error:
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P � 1
N

∑N
i�1

Pi(t), (1)

where N represents the number of trees and Pi(t) represents the
prediction of each regression tree. It is noted that RF can provide
the estimation of feature/variable importance by comparing the
changes of OOB error when the specific variable is randomly
permuted and other variables keep unchanged. In this study, the
Matlab tools for the RF model (Windows-Precompiled-
RF_Mexstandalone-v0.02toolbox) were used; it can be freely
downloaded from https://code.google.com/archive/p/
randomforest-matlab/downloads.

Support Vector Machine
SVM is a machine learning technique based on the
VapnikChervonenkis (VC) dimension of statistical learning
theory (Chang and Lin, 2011), which can capture the
nonlinear relationship and thus perform better than
conventional parametric regression. SVM was first developed
by Vapnik (1995) for solving the classification problems and had
been mainly used for regression and classification problems with
small-and high-dimensional samples. The SVM regression uses a
nonlinear mapping to map the input x into a high-dimensional
feature space, so that the original nonlinear problem can be
transformed into a linearly separable problem. A linear model
is then constructed in this high-dimensional space. The linear
model can be expressed as

f (x) � 〈w ·Φ(x)〉 + b, (2)

where Φ represents a high-dimensional feature space, which is
nonlinearly mapped from the input space; b is the bias; and w is
the weight vector. The kernel function is applied to avoid the
disaster of dimension without increasing the complexity of
calculation.

The libsvm developed by Chang and Lin (2011) is currently
one of the most widely used SVM software (Song et al., 2012).
Thus, the version 3.24 libsvm tools of the Matlab code were used
in this study, which can be freely downloaded from http://www.

csie.ntu.edu.tw/∼cjlin/libsvm. The important parameters in the
libsvm include the kernel function, gamma in kernel function,
and capacity parameter cost.

Artificial Neural Network
ANN is a statistical learning algorithm used in machine learning.
It has been proposed more than half a century ago and has been
successfully applied for downscaling purpose in several fields
(Nourani et al., 2018). ANN has a strong ability to deal with
nonlinear problems, and it is widely used to model the nonlinear
relationships between object variable and auxiliary variables at
different scales. ANN has three layers: an input layer, output
layer, and one or more hidden layers. The neurons are the basic
processing elements in ANN, and the weights are connections
between neurons. Neural networks provide a learning rule to
modify their weights and neurons based on input/output data.
The general function of the ANN can be expressed as

y � f⎛⎝∑n
i�1

xiwi − θ⎞⎠, (3)

where y is the output layer; xi is the input of the ith neuron; wi is
the weight of the ith neuron; f is the activation function; and θ is
the threshold.

In this study, the backpropagation training algorithm (BP)
(Sharifi et al., 2019), which has a three-layer network and has
been integrated in Matlab tools, was used to train the network
between the IMERG precipitation data and the auxiliary
variables. The nonlinear sigmoid activation function was
applied to hidden layers as well as output layers of the neural
network. More details about BP neural network can be found in
Retalis et al. (2017) and Sharifi et al. (2019).

Univariate Regression and Multivariate
Regression
The UR andMRmethods have been widely used to downscale the
satellite precipitation in many previous studies (Immerzeel et al.,
2009; Jia et al., 2013). In the URmethod (Eq. 4), only one auxiliary

FIGURE 2 | Flowchart of the general statistical spatial downscaling procedure. The superscripts HR and LR refer to the high/fine resolution and the low/coarse
resolution, respectively.
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variable which has a large correlation with IMERG precipitation
was adopted to construct the regression relationship. Then,
various regression methods (e.g., linear regression, exponential
regression, logarithm regression, and polynomial regression) were
compared to choose the best one (Chen et al., 2015):

PUR � a + bX + ε, (4)

where PUR represents the IMERG precipitation data in the UR
method; a is the intercept of the auxiliary variable; b is the slope of
the auxiliary variable (e.g., NDVI and latitude in this study); and ε
represents the residual error.

In the MR method (Eq. 5), five auxiliary variables (i.e., NDVI,
elevation, LST, latitude, and longitude) were used in this study.
The formula of MR can be expressed as follows:

PMR � a +∑5
i�1

biXi + ε, (5)

where PMR represents the IMERG precipitation data in the MR
method;Xi represents the ith auxiliary variable (i.e., NDVI, elevation,
LST, latitude, and longitude in this study); and bi is the ith slope of
the auxiliary variables used in the MR method. It was noted that
before the establishment of the statistical relationships in the MR
downscaling method, logarithmic transformation of the input
variables had been conducted to avoid the influence of variable
skewness distribution. The stepwise regressionmethodwas also used
in the MRmethod to define which auxiliary variables are useful and
to find the strongest relationship between auxiliary variables and
object variable (Lu et al., 2018).

Validation
Several commonly used validation indicators, including the
spearman correlation coefficient (ρ), coefficient of determination
(R2), root-mean-square error (RMSE), and relative root-mean-
square error (RRMSE), were selected to evaluate the spatial
downscaling performance of the GPM IMERG V06B monthly
and annual precipitation. To validate the downscaling results
with rain gauge data, the rain gauge station at the grid scale was
extracted and matched to the nearest satellite pixel of the
downscaled GPM IMERG V06B precipitation data using the
nearest neighbor method (Ma et al., 2016; Chen et al., 2020).

RESULTS

Model Performances of Different
Downscaling Methods at Annual Scale
Table 1 shows the mean R2 of the regression analysis results
between annual GPM IMERG V06B satellite precipitation and

five commonly used auxiliary variables (i.e., NDVI, elevation, LST,
latitude, and longitude) from 2001 to 2015. In the UR method, the
linear regression between satellite precipitation and auxiliary
variables was conducted from 2001 to 2015, and the variables
with the best correlation with GPM IMERG V06B precipitation
were considered as the auxiliary variables. Then, various regression
methods (e.g., linear regression, exponential regression, logarithm
regression, and polynomial regression) were compared to choose
the best regression method. It could be seen that latitude had the
largest mean R2 (0.861) with IMERG annual precipitation and
NDVI had the second largest R2 (0.806), while there was no
significant correlation between elevation and IMERG annual
precipitation in the study area. Therefore, both of NDVI and
latitude were finally selected to establish the regression function in
the UR method, and the two UR downscaling methods were
named UR-NDVI and UR-Lat, respectively. The linear
regression was finally selected in the UR method because of the
largest result of R2 among various regressionmethods in this study.
In the MR method, all five auxiliary variables were adopted to
construct the multiple linear regression function for downscaling
the IMERG annual precipitation. The stepwise regression results
from 2001 to 2015 showed that NDVI and latitude are useful
auxiliary variables in the MR method (results are not shown for
conciseness). Table 2 shows the parameter sets for three machine
learning-based downscaling methods (ANN, SVM, and RF). The
optimal parameters for three machine learning-based methods
were obtained by a grid search algorithm, and the parameter sets
with the best training result were selected. The input variables and
output variable were normalized to between 0 and 1 in three
machine learning-based downscaling methods before the
establishment of the training models.

Figure 3 presents the evaluation results of different
downscaling methods using the original 10 km GPM IMERG

TABLE 1 | Regression analysis results between annual GPM IMERG V06B satellite precipitation and auxiliary variables from 2001 to 2015.

Variables NDVI LST Elevation Latitude Longitude

R2 0.756–0.831 0.147–0.395 0.019–0.104 0.808–0.897 0.563–0.768
Mean R2 0.806 0.235 0.068 0.861 0.664

TABLE 2 | Parameter settings for three machine learning-based downscaling
methods.

Downscaling
methods

Parameters Parameter set

ANN Number of the hidden
layers

5

Param.epochs (maximum
training number)

100

Param.lr (learn rate) 0.1
Param.goal (training
accuracy)

0.00001

SVM Kernel type Radial basis function
Cost 1.0
Gamma 3.0

RF Ntree 100
Mtry 1

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 5363376

Chen et al. Spatial Downscaling of Satellite Precipitation

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


V06B data at each year from 2001 to 2015. The R2 results by
different downscaling methods showed a similarity from 2001 to
2015. The RF downscaling method had the largest R2, while the
UR-NDVImethod had the smallest R2. The R2 results of the ANN
and SVM downscaling methods were very close. As a whole, the
performances of R2 of different methods were in the order UR-
NDVI (worst, R2 � 0.805) < UR-Lat (R2 � 0.860) < MR (R2 �
0.921) < ANN (R2 � 0.978) < SVM (R2 � 0.984) < RF (best, R2 �
0.996). In terms of RRMSE and RMSE, they showed similar
results with RF having lowest values and UR-NDVI having largest
values. Table 3 shows the mean evaluation results from 2001 to
2015 of different downscaling methods, compared to the original
GPM IMERG V06B precipitation data. The mean R2 was 0.805 in
the UR-NDVI method, but the mean R2 was greatly improved in
the RF method (0.996). The RF downscaling method also had the
smallest mean RRMSE (0.044) and mean RMSE (13.407 mm),
compared to the other downscaling methods, demonstrating the
best prediction capability of IMERG annual precipitation spatial
variation.

Figures 4A,B present the mean feature importance from 2001
to 2015 and feature importance for each year in the RF
downscaling method, respectively. The variables of NDVI,
latitude, and longitude had relatively large values of mean
feature importance in Figure 4A, of which the mean feature
importance of latitude was the largest. Elevation had the smallest
mean feature importance among the five auxiliary variables. It
was noted that the feature importance of different variables were
changing at different years. For example, the most important
feature was latitude in 2004, whereas it was NDVI in 2006.

Downscaled Results of Different
Downscaling Methods at Annual Scale
Figures 5A–F show the downscaled IMERG precipitation at 1 km
resolution without residual correction in 2015 by UR-NDVI, UR-
Lat, MR, ANN, SVM, and RF. Figure 5G shows the spatial
distribution of the original 10 km GPM IMERG V06B
precipitation data in 2015. Since the GPM Core Observatory
was launched on February 27, 2014, the IMERG data in 2015 can
better represent the GPM-era precipitation. Therefore, the year of
2015 was selected for qualitative comparison. It could be seen that
precipitation decreases from the southeast to the northwest,
which is related to the humid and arid climatic zones. The
white pixels in the downscaled results represent the outliers,
including the extreme values caused by over-fitting and the blank
values caused by the negative NDVI values. The downscaled
IMERG precipitation could provide more detailed information
due to the fine resolution (1 km) when compared with the
original 10 km IMERG satellite precipitation data. However,
the downscaled 1 km IMERG precipitation by UR-NDVI
showed a larger spatial variability in Gansu province, which
significantly overestimated the precipitation in region A and
underestimated the precipitation in region C. The downscaled
1 km precipitation by UR-Lat had a smooth spatial continuity,
which overestimated precipitation in region B and had an
overfitting in the north of Gansu province. Since both of
NDVI and latitude were adopted in the MR downscaling
method, the precipitation distribution by MR presented a
combination performance of two UR-based downscaling
methods. Compared to the above parametric regression based
methods, three machine learning-based nonparametric
regression methods (ANN, SVM, and RF) had better
applicability to capture precipitation distribution. Three
machine learning downscaling methods had overall similar
results in regions A, B, and C. In particular, the RF

FIGURE 3 | Evaluation results of different downscaling methods using
the original GPM IMERG V06B data at each year from 2001 to 2015 (A-C)R2,
RRMSE, and RMSE.

TABLE 3 | Mean evaluation metrics of different downscaling methods using the
original GPM IMERG V06B precipitation data.

Downscaling methods R2 RRMSE RMSE (mm)

UR-NDVI 0.805 0.312 94.952
UR-lat 0.860 0.264 80.384
MR 0.921 0.199 60.358
ANN 0.978 0.104 31.409
SVM 0.984 0.089 27.112
RF 0.996 0.044 13.407
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downscaling method could capture precipitation spatial
heterogeneity well, especially in region A.

Figures 6A–F show the spatial distribution of the interpolated
residual errors at 1 km spatial resolution in 2015 by UR-NDVI,
UR-Lat, MR, ANN, SVM, and RF. The positive residual errors
represent that precipitation is underestimated by the auxiliary
variables, while the negative residual errors mean the
overestimation. The large positive residual errors in the south
and east of Gansu province by UR-NDVI, UR-Lat and MR
showed the underestimation in these regions, while the large
absolute residual errors (negative values) in region B by UR-Lat
and MR and in region A by UR-NDVI, UR-Lat, and MR showed
the overestimation. Three machine learning-based downscaling
methods had small absolute residual errors, of which the RF
downscaling method had the smallest absolute residual errors.
Table 4 shows the statistical results of spearman correlation
coefficient (ρ) between auxiliary variables and residual errors
of different downscaling methods in 2015. Overall, the
statistical results of ρ between residual errors and different
auxiliary variables in the MR, ANN, SVM, and RF
downscaling models were very small. The residual errors in
UR-NDVI decrease as latitude increases (ρ � −0.392) and
increase as longitude increases (ρ � 0.458), while the residual
errors in UR-Lat decrease as LST increases (ρ � −0.340).

Figures 7A–F show the downscaled 1 km IMERG
precipitation after residual correction in 2015 by the UR-
NDVI, UR-Lat, MR, ANN, SVM, and RF downscaling
methods. Compared to the downscaled results without residual
correction in Figure 5, the downscaled results after residual
correction by UR-NDVI, UR-Lat, and MR had significant
changes in space. It could be seen that the downscaled results
after residual correction of all the downscaling methods had a
similar spatial pattern with the original 10 km GPM IMERG
V06B precipitation data in 2015.

Validation of the Downscaled Results With
Rain Gauges at Annual Scale
Figures 8, 9 show the validation results of the downscaled
IMERG precipitation at 1 km resolution using the rain gauge
observations from 2001 to 2015 without and with residual
correction, respectively. It could be seen in Figure 8 that the

R2 by UR-NDVI, UR-Lat, MR, ANN, SVM, and RF was 0.332,
0.677, 0.781, 0.834, 0.864, and 0.878, respectively, showing an
improved performance from UR-NDVI to RF. On the contrary,
the RRMSR (from 0.396 by UR-NDVI to 0.181 by RF) and RMSE
(from 162.468 mm by UR-NDVI to 74.104 mm by RF) showed a
degraded performance. The RF downscaling method had the best
validation result, whereas the UR-NDVI method had the worst
result. After the residual correction in Figure 9, the significant
increase in R2 and decrease in RRMSE and RMSE were found.
The UR-NDVI downscaling method had the worst performance
with the smallest R2 and the largest RRMSE as well as RMSE. The
UR-Lat, MR, and ANN methods had the approximate results
after residual correction. The SVM and RF methods have better
results with larger R2 and smaller RRMSE as well as RMSE. In
particular, we also computed the direct downscaled result by
spline interpolation of the original IMERG precipitation data
without any auxiliary variable (Figure 9G) and the validation
result of the original IMERG precipitation (Figure 9H). The
original IMERG annual precipitation data had high consistency
with rain gauge data (R2 � 0.884, RMSE � 74.113 mm). The direct
spline spatial interpolation had better performance (R2 � 0.884,
RMSE � 74.095 mm) when compared with UR-NDVI, UR-Lat,
MR, and ANN. However, the RRMSE and RMSE of spline
interpolation were larger than those of SVM and RF.

Table 5 shows the comparison of the mean validation results
of different downscaling methods from 2001 to 2015 with and
without residual correction. After residual correction, the
evaluation metrics had better performances than those without
residual correction. Especially, the mean RMSE in Table 5 was
reduced by 44.2, 53.0, 35.7, 14.7, 7.1, and 1.8% for UR-NDVI, UR-
Lat, MR, ANN, SVM, and RF, respectively, presenting an overall
decreasing tendency. The parametric regression-based methods
had generally great improvements, whereas the machine
learning-based methods had small improvements, especially
for the RF method.

Performance of Different Downscaling
Methods at Monthly Scale
The downscaling methods were also applied at monthly scale in
accordance with the spatial downscaling procedure at annual scale.
Figure 10 shows the evaluation results of different downscaling

FIGURE 4 | Feature importance in the RF downscaling method: (A) mean feature importance; (B) feature importance for each year.
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methods using the original GPM IMERGV06B data at each month
from 2001 to 2015. The model performances by different
downscaling methods at monthly scale were overall consistent
with the results at annual scale, except for the relatively poor
performance of the ANN downscaling method at monthly scale.
Compared to the parametric regression downscaling methods (UR-
NDVI, UR-Lat, and MR), the nonparametric regression
downscaling methods (SVM and RF) had the obvious

advantages, with larger R2 and smaller RRMSE as well as RMSE.
In terms of the monthly variability, the results of RMSE were large
at the rainy seasons because of the relatively large rainfall. On the
contrary, the results of RRMSE were small at the rain seasons.

Table 6 shows the comparison of the evaluation metrics of
different downscaling methods at monthly scale from 2001 to
2015 with and without residual correction. The SVM and RF
methods had better results at monthly scale with and without

FIGURE 5 | (A–F) Downscaled 1 km IMERG precipitation without residual correction in 2015 by UR-NDVI, UR-Lat, MR, ANN, SVM, and RF; (G) original 10 km
GPM IMERG data in 2015.
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residual correction. The parametric regression-based methods
had great improvements after residual correction at monthly
scale, whereas the machine learning based methods had small

improvements. The evaluation results at monthly scale were
consistent with the results at annual scale.

DISCUSSION

It has been widely acknowledged that the used auxiliary
variables (land surface characteristics) in the statistic
downscaling models have significant influences on the
performances of the downscaled results (Jing et al., 2016;
Zhang et al., 2018). NDVI is the most employed auxiliary
variable in downscaling models (Duan and Bastiaanssen,
2013; Immerzeel et al., 2009; Xu et al., 2015). In this study,
it was found that latitude had the largest correlation (mean R2 �

FIGURE 6 | Interpolated residual errors at 1 km spatial resolution in 2015: (A–F) UR-NDVI, UR-Lat, MR, ANN, SVM, and RF.

TABLE 4 | Statistical results of Spearman correlation coefficient (ρ) between
auxiliary variables and residual errors of different downscaling methods
in 2015.

ρ Residual errors

UR-NDVI UR-Lat MR ANN SVM RF

NDVI 0.120 0.212 −0.080 0.016 0.006 0.019
LST −0.040 −0.340 0.028 −0.007 0.003 0.013
Elevation 0.033 −0.015 −0.128 0.017 0.011 −0.019
Latitude −0.392 0.024 0.095 −0.019 −0.008 −0.072
Longitude 0.458 0.107 −0.056 0.013 0.001 0.058
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0.861) with IMERG annual precipitation from 2001 to 2015 in
Gansu province (Table 1). However, latitude does not vary
with the year, making it limit to describe the interannual
variation of precipitation distribution. Because the growth of
green vegetation mainly depends on precipitation in Gansu
province, the relationship between NDVI and rainfall shows
high interannual variability. Therefore, both of NDVI and
latitude were adopted in the UR-based downscaling models.
As expected, the UR-Lat method had better performance than

the UR-NDVI with larger R2 and smaller RRMSE as well as
RMSE both at monthly and annual scales (Table 3; Figures 3,
10). Many studies have reported that elevation has a strong
effect on precipitation (Kumari et al., 2017; Tang et al., 2018);
however, the relationship between elevation and precipitation
was not significant in Gansu province (Table 1). The strong
correlation between precipitation and elevation may be
modulated in the whole study area, because the high
complexity of the region is mainly distributed in the

FIGURE 7 | (A–F) Downscaled 1 km IMERG precipitation after residual correction in 2015 by UR-NDVI, UR-Lat, MR, ANN, SVM, and RF; (G) original 10 km GPM
IMERG data in 2015.
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southern part of Gansu province. These results were generally
consistent with the stepwise regression in the MR method and
the feature importance in the RF method (Figure 4).
Considering that relationship between precipitation and
land surface characteristics is spatially nonstationary (Foody,
2003), five common and easily available indices (i.e., NDVI,
elevation, LST, latitude, and longitude) were employed as the
auxiliary variables in the MR downscaling model and three
machine learning-based downscaling models. The mean R2

increased and mean RRMSE as well as mean RMSE decreased
from the UR methods to the MR method (Table 3), which
indicated the IMERG precipitation could be better
characterized by multiple auxiliary variables.

Several parametric and nonparametric regression methods
have been developed to downscale the satellite precipitation in
the previous studies (Chen et al., 2015; Jing et al., 2016; Retalis
et al., 2017). However, this was the first study to conduct a
comprehensive comparison of different algorithms for spatial
downscaling of IMERG precipitation data with a relatively long
time series at monthly and annual scales. It was found that the
parametric regression methods had small R2 and large RRMSE
as well as RMSE (Figures 3, 10; Table 3), and the downscaled
1 km IMERG precipitation had obvious underestimations in
the south and east of the study area and overestimations in the
west (Figures 5, 6) when compared to the original 10 km
IMERG precipitation. This is mainly because the UR and
MR methods are global regression and the fitted functions
are established in the entire region, which easily lead to
overfitting and are limited to specific geographical areas
where the spatial relationship between precipitation and
auxiliary variables is consistent (Zhang et al., 2018).
Different from parametric regression downscaling methods,

the nonparametric SVM and RF downscaling methods had
large R2 (Figures 3, 10; Table 3) and small absolute residual
errors (Figures 6D–F). It is because nonparametric regression
methods have a high nonlinear adaptation and can make full
use of information in the auxiliary variables (Yuan et al., 2017).
As a whole, the RF downscaling method showed the best
performance when compared to other downscaling methods
at monthly and annual scales, demonstrating that RF algorithm
could better predict the spatial heterogeneity of IMERG
precipitation and was more suitable for the satellite
precipitation downscaling. Similar performances of the RF
algorithm for downscaling various variables (e.g., LST and
leaf area index) have also been reported in other literatures
(Hutengs and Vohland, 2016; Yuan et al., 2017). It is mainly
because RF is a nonparametric statistical ensemble learning
method, which can effectively avoid the overfitting and has
better generalization ability. However, it should be noted that
the predictive range of downscaled IMERG precipitation by the
machine-learning based methods is restricted to the range
covered by the training data (Hutengs and Vohland, 2016).
Therefore, all pixels over the entire region (Gansu province) at
10 km resolution were used as the training data in this study to
avoid this limitation.

The performance of residual correction has been
preliminarily discussed in the previous studies (Jing et al.,
2016; Xu et al., 2015). The purpose of residual correction is
to reduce the residual errors (the part of the precipitation cannot
be explained by the auxiliary factors) in the downscaling
procedure. In this study, we found that the downscaled
IMERG precipitation after residual correction had more
similar spatial patterns to the original 10 km GPM IMERG
V06B precipitation data (Figure 7), compared to the

FIGURE 8 | Validation results of the downscaled 1 km IMERG precipitation without residual correction using the rain gauge observations from 2001 to 2015: (A–F)
UR-NDVI, UR-Lat, MR, ANN, SVM, and RF.
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downscaled IMERG precipitation without residual correction
(Figure 6). Especially for the parametric regression methods
(UR-NDVI, UR-Lat, and MR), the validation results of
downscaled precipitation with and without residual
correction had significant differences (Figures 8, 9). Xu et al.
(2015) have pointed out that the residual error is an important
error source of the downscaled results in the MR downscaling
method, which can be alleviated after residual correction.
However, it has been reported by Jing et al. (2016) that the
accuracy of the downscaled results has no improvement after
residual correction. The residual errors represent the
precipitation variation, which cannot be explained by the
auxiliary variables. In this study, the reduced percentage of
RMSE after residual correction decreased from UR-NDVI to RF
(Tables 5, 6). The parametric regression methods had large
improvements, while the improvements were very small for the
machine-learning based methods, especially for RF. It was mainly
because the spatial variation of IMERG precipitation at monthly
and annual scales had beenwell predicted by themachine learning-
based downscaling models before residual correction. It should be

noted that, at present, the residual error at 1 km resolution is
generally obtained using the sample spline interpolation method
(Immerzeel et al., 2009; Jia et al., 2013). This interpolation
algorithm included in residual correction also faces the
challenge of precipitation spatial heterogeneity (Chen et al.,
2015) and can cause certain errors in the downscaled results.
Therefore, we recommend using the downscaling method with
better predictive ability of precipitation spatial heterogeneity (e.g.,
SVM and RF) to avoid residual correction.

Although rarely discussed, it must be pointed out that the
accuracy of the original satellite precipitation data has a great
influence on the downscaling results, regardless of the
downscaling methods and the auxiliary variables. A large
number of studies have shown that the GPM-era precipitation
products have better accuracy as well as higher resolution than those
in the TRMM-era (Tang et al., 2016; Chen et al., 2018; Peng et al.,
2020). A comparative study has shown that the downscaled results
based on IMERG V05B precipitation had better performance than
those based on TMPA precipitation over the Tibetan Plateau in
2015 (Ma et al., 2018). Therefore, the spatial downscaling of the

FIGURE 9 | Validation results of the downscaled 1 km IMERG precipitation after residual correction using the rain gauge observations from 2001 to 2015: (A–F)
UR-NDVI, UR-Lat, MR, ANN, SVM, and RF; (G) spline interpolation; (H) validation result of the original IMERG precipitation.
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latest released IMERGprecipitationwith a relatively long time series
may practically provide more accurate precipitation data for the
hydrological application at catchment scales. In addition, the
downscaling procedure is based on the assumption that the
empirical statistical relationship established at low/coarse spatial
resolution is also applicable at high/fine spatial resolution. Our
previous study has shown that the precipitation-NDVI
relationships are approximate at different scales (0.25°–1.0°) in
Gansu province (Chen et al., 2015). Therefore, it was assumed
that the statistical relationship is scale independent in this study.
However, Immerzeel et al. (2009) found that the optimal fitting
resolution of precipitation-NDVI relationships at multiple scales
(0.25°–1.25°) was 0.75°. The scale-independent issue should be paid
special attention in future studies. Since the main purpose of this
study was to compare the performance of different downscaling
methods, we just selected five commonly used auxiliary variables.
However, it should be noted that the auxiliary variables usually have
different performances in different regions or even in the same
region but with different temporal scales (Jing et al., 2016; Ma et al.,
2020). Therefore, a comparison study of the performance of
different downscaling methods in different regions and on
different temporal scales (e.g., weekly and daily scales) could be
interesting topics in future studies.

CONCLUSION

A comprehensive comparison study of different methods for spatial
downscaling of GPM IMERG V06B monthly and annual
precipitation with a relatively long time series from 2001 to 2015
was conducted by selecting five commonly used auxiliary variables.
Latitude had the largest correlation with IMERG annual precipitation
in Gansu province, but it is limited to describe the interannual
variation of precipitation distribution. Themost employedNDVI had
the second largest R2 with IMERG annual precipitation. The
performances of different downscaling methods showed a
similarity from 2001 to 2015. On the whole, the performances of
the different downscaling methods at annual scale were in the order
UR-NDVI (worst) <UR-Lat <MR < ANN < SVM < RF (best). The
downscaled results at monthly scale were overall consistent with the
results at annual scale. The downscaled 1 km IMERGprecipitation by

TABLE 5 | Comparison of the mean evaluation metrics of the different
downscaling methods from 2001 to 2015 with and without residual
correction.

Downscaling methods Mean R2 Mean
RRMSE

Mean RMSE
(mm)

UR-
NDVI

No residual
correction

0.306 0.390 160.653

Residual correction 0.664 0.273 111.401
UR-lat No residual

correction
0.660 0.277 114.348

Residual correction 0.874 0.183 74.720
MR No residual

correction
0.777 0.252 103.187

Residual correction 0.861 0.187 76.027
ANN No residual

correction
0.823 0.208 84.742

Residual correction 0.874 0.182 73.905
SVM No residual

correction
0.854 0.188 76.919

Residual correction 0.880 0.176 71.831
RF No residual

correction
0.872 0.180 73.607

Residual correction 0.874 0.177 72.307

FIGURE 10 | Evaluation results of different downscaling methods using
the original GPM IMERG V06B data at each month from 2001 to 2015 (A-C)
R2, RRMSE, and RMSE.

TABLE 6 |Comparison of the evaluation metrics of different downscalingmethods
at monthly scale from 2001 to 2015 with and without residual correction.

Downscaling methods R2 RRMSE RMSE (mm)

UR-NDVI No residual correction 0.550 0.648 20.628
Residual correction 0.696 0.526 16.878

UR-lat No residual correction 0.645 0.582 18.556
Residual correction 0.817 0.409 13.136

MR No residual correction 0.700 0.521 16.788
Residual correction 0.815 0.413 13.208

ANN No residual correction 0.706 0.517 16.502
Residual correction 0.804 0.424 13.496

SVM No residual correction 0.807 0.431 13.740
Residual correction 0.810 0.431 13.731

RF No residual correction 0.815 0.414 13.201
Residual correction 0.810 0.420 13.380
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parametric regressionmethods had obviously deviations, whereas the
machine learning-based methods could capture the spatial
heterogeneity of precipitation, with larger R2 and smaller RMSE
as well as RRMSE. The deviations caused by the parametric
regression methods could be compensated after residual
correction; however, the residual correction is not recommended
since the involved spline interpolation procedure may cause certain
errors in the downscaled results. The machine learning-based RF
downscaling method had the most robust performance with smallest
residual errors and the overall best validation results, which could be
an effective way to provide accurate precipitation with sufficient
spatial details for hydrological application at the catchment scales.
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