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Imaging the internal structure of volcanoes helps highlighting magma pathways and
monitoring potential structural weaknesses. We jointly invert gravimetric and muographic
data to determine the most precise image of the 3D density structure of the Puy de Dôme
volcano (Chaı̂ne des Puys, France) ever obtained. With rock thickness of up to 1,600m along
the muon lines of sight, it is, to our knowledge, the largest volcano ever imaged by combining
muography and gravimetry. The inversion of gravimetric data is an ill-posed problem with a
non-unique solution and a sensitivity rapidly decreasing with depth. Muography has the
potential to constrain the absolute density of the studied structures but the use of the method
is limited by the possible number of acquisition view points, by the long acquisition duration
and by the noise contained in the data. To take advantage of both types of data in a joint
inversion scheme, we develop a robust method adapted to the specificities of both the
gravimetric andmuographic data. Ourmethod is based on a Bayesian formalism. It includes a
smoothing relying on two regularization parameters (an a prioridensity standard deviation and
an isotropic correlation length) which are automatically determined using a leave one out
criterion. This smoothing overcomes artifacts linked to the data acquisition geometry of each
dataset. A possible constant density offset between both datasets is also determined by
least-squares. The potential of the method is shown using the Puy de Dôme volcano as case
study as high quality gravimetric and muographic data are both available. Our results show
that the dome is dry and permeable. Thanks to the muographic data, we better delineate a
trachytic dense core surrounded by a less dense talus.

Keywords: joint inversion method, Bayesian inversion, gravimetry, muography, volcanology, lava dome, Puy de
Dôme

1 INTRODUCTION

The density structure of volcanoes is classically inferred from the inversion of gravimetric data
(Camacho et al., 1997; Cella et al., 2007; Linde et al., 2014). Gravimetry provides measurements of the
gravity field throughout the study area, corresponding to the integrated effect of the whole Earth, but
also sensitive to the local density variations. The inversion of gravimetric data is well-known to be
non-unique and ill-posed, requiring a priori geological information or a combination with other
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geophysical data, such as seismic travel times (Onizawa et al.,
2002; Coutant et al., 2012), to constrain the models. Muography is
a recent imaging method which emerged from the field of particle
physics (Alvarez et al., 1970; Nagamine et al., 1995). It provides
images of integrated densities of an edifice using atmospheric
muons generated by the interaction of cosmic rays with the
atmosphere. The muons are charged elementary particles, like
electrons but about 200 times heavier, that interact with matter in
a stochastic way depending on their energies and on the density
and composition of the medium (Groom et al., 2001; Nagamine,
2003). At high energy, traveling along straight paths, they can
penetrate up to kilometers of rocks. Their trajectories are
reconstructed thanks to multi-layer muon detectors. As muons
come from the atmosphere, the muon detectors can only image
structures higher in elevation. This makes muography
particularly suitable to image lava domes like the Puy de
Dôme (Châıne des Puys, France). Application of muography
to the imaging of volcanoes has been developed in the last
two decades (Tanaka et al., 2001; Lesparre et al., 2012;
Kusagaya and Tanaka, 2015; Oláh et al., 2018). The rate of
muons crossing the target along a given direction depends, to
the first order, on the rock density integrated along this line of
sight. The 3D density reconstruction by muon tomography is
limited by the number of view points and the acquisition
duration. For example, imaging a 1,000 m thick and 1,800
kg/m3 dense structure with a precision of 5% on the density,
an angular resolution of 3° by 3° and a 1 m2 detector requires an
exposure of about 100 days of effective acquisition time
(Cârloganu et al., 2016; Niess et al., 2016).

The combination of muography and gravimetry in a joint
inversion scheme better constrains three-dimensional density
models (Davis et al., 2011; Davis and Oldenburg, 2012; Okubo
and Tanaka, 2012; Nishiyama et al., 2014b; Rosas-Carbajal et al.,
2017; Cosburn et al., 2019). However, the joint inversion problem
is still ill-posed and a regularization is needed, tuned by some
parameters. These regularization parameters are determined
either based on a checkerboard test (Nishiyama et al., 2014b),
based on a classical L-curve (Rosas-Carbajal et al., 2017), or
arbitrarily (Nishiyama et al., 2017a). However, so far inversions
have shown artifacts related to the muography acquisition
geometry and to the limited number of muon detectors. Based
on synthetic data, Barnoud et al. (2019) designed a Bayesian
inversion scheme where two regularization parameters, an a
priori density standard deviation and a correlation length, can
be determined in a robust way using a Cross-Validation Sum of
Squares criterion, such as the Leave One Out (LOO). Using this
approach, the resulting 3D density models are free of artifacts
linked to the acquisition geometry, even with a limited number of
muographic view points. Besides, comparing the inversions of
synthetic data with one and three muographic view points,
Barnoud et al. (2019) show that the resolution of the resulting
density model is improved when using multiple points of view.
Another difficulty in such a joint inversion is that the density
estimated bymuography is often lower than the density estimated
by gravimetry due to the detection of 1) non-ballistic low-energy
muons scattered by the volcanic edifice (Nishiyama et al., 2014a,
2016; Gómez et al., 2017; Rosas-Carbajal et al., 2017), 2) muons

coming from the backward direction (Jourde et al., 2013) and 3)
other charged particles (Oláh and Varga, 2017; Saracino et al.,
2017). Tests on synthetic data (Barnoud et al., 2019) show that
this offset leads to artifacts in the inversion results so that it
should be corrected. To overcome this, the determination of a
constant relative density offset can be taken into account in the
inversion process (Rosas-Carbajal et al., 2017). Using synthetic
data, Lelièvre et al. (2019) explore and compare various methods
to automatically determine the offset and recommend a least-
squares approach. In this paper, we combine the most robust and
efficient techniques identified by Barnoud et al. (2019) and
Lelièvre et al. (2019). We use a Bayesian formalism with a
least-squares automatic computation of a potential constant
density offset. The regularization parameters, namely the a
priori density standard deviation and the isotropic correlation
length, are determined using an LOO criterion.

We apply our method to gravimetric and muographic data
acquired on the Puy de Dôme volcano to recover the 3D density
structure of the edifice. The Puy de Dôme volcano is the highest
volcano (1,465 m a.s.l.) of the Châıne des Puys located in the
French Massif Central (Figure 1, top left). The Châıne des Puys is
a complex field of about 80 monogenetic volcanic edifices aligned
following a north-south direction. These volcanoes are built on a
Variscan granitic basement whose top is situated around
800–1,000 m a.s.l. (Portal et al., 2016). The word “puy” refers
to an isolated hill in the Auvergne area of the Massif Central. The
Puy de Dôme is an 11,000-year-old monogenetic, composite
trachytic dome (Boivin et al., 2017). The dome itself is about
400 m high and is about 1,800 m wide at its base (Figure 1). The
Puy de Dôme volcano is a good natural laboratory to assess the
methods for joint gravimetric and muographic inversions as high
quality gravimetric and muographic datasets are available.
Moreover, it is extinct and its structure does not change,
ensuring a stable image during the six months of muography
campaign required to get a sufficient resolution. With up to
1,600 m of rock thickness along the muon lines of sight, it is, to
our knowledge, the largest lava dome presently imaged
combining muography and gravimetry.

2 JOINT INVERSION METHOD

The medium is described with a three-dimensional mesh of
equally spaced nodes of densities ρ. The density in the whole
volume of interest is computed by trilinear interpolation of the
densities assigned to the eight surrounding nodes. The
gravimetric effect γ produced by the volume of interest at the
observation locations can be modeled using

Gρ � γ (1)

where the matrix elements Gij contain the modeled contribution
of each node j of unitary density to each observation location i.
The sensitivity matrix G is computed taking into account the
topography (Coutant et al., 2012; Barnoud et al., 2016). The
muographic data consist of densities averaged in conic bins of
azimuth and elevation in the angle of view of the muon detector.
These averaged densities μ are estimated from the flux of muons
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crossing the edifice (Cârloganu and the TOMUVOL
Collaboration, 2018; Niess et al., 2018b) and are linearly
related to the subsurface densities ρ via the sensitivity matrix M:

Mρ � μ. (2)

We use the joint linear Bayesian inversion method of Barnoud
et al. (2019). To determine a constant offset between densities
inferred from gravimetric data and muographic data, we adapt
and implement the automatic least-squares determination
proposed by Lelièvre et al. (2019). We therefore consider the
following linear joint inversion problem:

[ G
M

]ρ � [ γobs
μobs − ce

]. (3)

where e is a vector of ones with the same length as μobs and c is a
constant accounting for the potential density offset between the
two datasets.

Following Tarantola (Tarantola, 2005), we use a Bayesian
formalism where the solution minimizes the objective function

φ(ρ) � ∣∣∣∣∣∣∣∣∣∣Gρ − γobs
∣∣∣∣∣ 2c +

∣∣∣∣∣∣∣∣∣∣Mρ − μobs + ce
∣∣∣∣∣ 2μ +

∣∣∣∣∣∣∣∣∣∣ρ − ρprior
∣∣∣∣∣ 2ρ.
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (4)

The first term of the objective function (Eq. 4) is the gravimetric
data misfit∣∣∣∣∣∣∣∣∣∣Gρ − γobs

∣∣∣∣∣ 2c � (Gρ − γobs)TC−1
c (Gρ − γobs)∣∣∣∣∣ (5)

where Cc is the gravimetric data covariance matrix. This matrix is
usually diagonal as the gravimetric data errors are considered

uncorrelated. The diagonal elements correspond to the data
variances. The second term of the objective function (Eq. 4) is
themuographic datamisfit, accounting for a constant density offset c:

∣∣∣∣∣∣∣∣∣∣Mρ − μobs + ce
∣∣∣∣∣ 2μ � (Mρ − μobs + ce)TC−1

μ (Mρ − μobs + ce)∣∣∣∣∣
(6)

where Cµ is the muographic data misfit. Depending on the
processing applied to obtain the averaged densities, this matrix
might be diagonal (uncorrelated data) or it might be sparse and
banded with non-diagonal elements. The third term of the
objective function is the regularization term which consists of
a distance to an a priori model with a smoothing applied:

∣∣∣∣∣∣
∣∣∣∣∣∣ρ − ρprior

∣∣∣∣∣∣ 2ρ � (ρ − ρprior)TC−1
ρ (ρ − ρprior).

∣∣∣∣∣∣ (7)

The a priori density covariance matrix Cρ is constructed with a
Gaussian spatial covariance function:

Cρ,ij � σ2
ρexp( − D2

ij/λ2) (8)

where σρ is the a priori density standard deviation,Dij is the distance
between the two nodes i and j, and λ the spatial correlation length.

To obtain the density offset c, we seek the minimum of the
objective function (Eq. 4) with respect to c. This is achieved by
canceling its derivative with respect to c, leading to:

c � − e
TC−1

μ (Mρ − μobs)
eTC−1

μ e
� bT(Mρ − μobs) (9)

FIGURE 1 | Simplified geological map of the Puy de Dôme and neighboring cones, adapted from Boivin et al. (2017). Top left: Location of the Chaı̂ne des Puys in
France. Blue square: Study area of the present paper (Figures 2, 7).
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where we define the vector

b � − C−1
μ e

eTC−1
μ e

. (10)

In the particular case of a diagonal muographic data covariance
matrix (uncorrelated data) with all the data variances being equal,
Cμ � σ2μ I and the offset formulation (Eq. 9) simplifies to (Lelièvre
et al., 2019):

c � − eT(Mρ − μobs)
Nμ

(11)

where Nµ is the number of muographic data.
We rewrite the muographic data term of the objective function

(Eq. 6) by replacing the expression of the constant offset c (Eq. 9):
∣∣∣∣∣∣∣∣Mρ − μobs + ce

∣∣∣∣∣∣∣∣2μ
� [(I + ebT)(Mρ − μobs)]TC−1

μ [(I + ebT)(Mρ − μobs)]
� ∣∣∣∣∣∣∣∣BMρ − Bμobs

∣∣∣∣∣ 2μ
∣∣∣∣∣

(12)

where we define the matrix

B � I + ebT � I − eeTC−1
μ

eTC−1
μ e

. (13)

Hence, solving the linear joint inverse problem with a Bayesian
formalism and a constant offset (Eq. 3) is equivalent to
minimizing the objective function

φ(ρ) � ∣∣∣∣∣∣∣∣Aρ − d
∣∣∣∣∣∣∣∣2d + ∣∣∣∣∣∣∣∣ρ − ρprior

∣∣∣∣∣∣∣∣2ρ
� (Aρ − d)TC−1

d (Aρ − d) + (ρ − ρprior)TC−1
ρ (ρ − ρprior)

(14)

where A is the modified sensitivity matrix

A � [ G
BM

], (15)

d is the modified data vector

d � [ γobs
Bμobs

], (16)

and Cd is the data covariance matrix

Cd � [Cc 0
0 Cμ

]. (17)

According to Tarantola (2005), minimizing the objective function
(Eq. 14) leads to the estimated density

~ρ � ρprior + CρA
T(ACρA

T + Cd)− 1(d − Aρprior) (18)

which is the center of the a posteriori Gaussian density distribution
with the associated a posteriori covariance matrix (Tarantola, 2005)

~Cρ � Cρ − CρA
T(ACρA

T + Cd)− 1ACρ. (19)

The diagonal elements of ~Cρ are the a posteriori variances of the
estimated densities ~ρ for each node. The modeled data computed
from the estimated density ~ρ are given by:

dcal � [ G~ρ
M~ρ + ce

]. (20)

The inversion result (Eqs 18 and 19) is tuned by two
regularization parameters, namely the a priori density standard
deviation σρ and the spatial correlation length λ. We use the LOO
criterion to estimate the optimal regularization parameters σρ and
λ for the inversion as advocated by Barnoud et al. (2019). The
inversion is performed as many times as the number of data N,
one data being ignored each time. We retain the regularization
parameters that minimize the error L:

L(σρ, λ) � 1
N

∑N
l�1

[(A~ρ)l − dl]2
σ2
d,l

. (21)

3 APPLICATION TO THE PUY DE DÔME
VOLCANO

3.1 Data
The gravimetric data were acquired and processed by Portal et al.
(2016). We use the 650 measurements covering the dome itself
(Figure 2). The data processing includes the Earth tide correction
using the Longman formula (Longman, 1959) and the
instrumental drift. The free-air anomaly is computed using the
Somigliana formula (Somigliana, 1930) and theWGS84 reference
ellipsoid (Moritz, 2000). The Bouguer correction for unitary
densities is computed (Coutant et al., 2012; Barnoud et al.,
2016). The contribution of masses outside the area of interest
and up to 160 km is corrected using a density of 2,670 kg/m3 (far-
field). Close to the target, we determine the correction density
with the Parasnis method (Parasnis, 1972). Using the full
gravimetric dataset of Portal et al. (2016), we correct for the
masses outside the volume of interest and up to about 4.5 km
from the summit with a density of 2,420 kg/m3 (mid-field). For
masses inside the volume of interest, we estimate the optimal
density of correction of 1,890 kg/m3 (near-field). Finally, we
remove the mean value of −15.97 mGal from the gravity data
to account for the regional field component. The residual
Bouguer anomaly, used as input data for the inversions, is
shown on Figure 2. The uncertainties (i.e., data standard
deviations), on the Bouguer anomaly is estimated to
0.039 mGal (Portal et al., 2016), including uncertainties from
gravimetric and positioning measurements as well as from gravity
corrections.

In this paper, we use as muographic data a preliminary result
(Cârloganu and the TOMUVOL Collaboration, 2018; Niess et al.,
2018a) from an acquisition campaign performed in 2015–2016, at
a single view point. The map of average densities (Figure 3B)
computed from the muon acquisition was provided by the
TOMUVOL (TOmography avec des MUons atmosphériques
de VOlcans) collaboration. The muon detector was installed at
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1,080 m a.s.l. at the Col de Ceyssat (CDC), located at about
1,200 m from the summit of the Puy de Dôme edifice in the
south-west direction (Figure 2). The TOMUVOL muon
detector (Cârloganu et al., 2013; Ambrosino et al., 2015) is
composed of four 1 m2 layers of Gas Resistive Plate Chambers

(GRPCs), similar to the ones developed for the detection of
hadrons in the framework of the CALICE experiment (The
CALICE Collaboration, 2016). The spacing between the outer
layers is about 1.8 m. A 10 cm wall of lead is placed in the
middle to deviate the trajectories of low energy particles. The

FIGURE 2 | Residual Bouguer anomaly data of the Puy de Dôme volcano using correction densities of 2,670 kg/m3 (far-field), 2,420 kg/m3 (mid-field) and
1,890 kg/m3 (near-field). The gravimetric measurements are from Portal et al. (2016). The extent of this map is indicated by a blue square in Figure 1. The location of the
muon detector installed at the Col de Ceyssat (CDC) is indicated (black square) as well as the angle of view of the detector (gray shaded area). The two black lines locate
the slices of the inversion results shown in Figures 6, 7.

FIGURE 3 | Preliminary muographic data of the Puy de Dôme volcano as observed from the Col de Ceyssat with the TOMUVOL detector and associated errors
(Cârloganu and the TOMUVOL collaboration, 2018; Niess et al., 2018a). The location of the muon detector is indicated in Figure 2. (A) Thickness of rock along the muon
trajectories. (B) Averaged densities estimated from the muon count. (C) Statistical error (i.e., standard deviation). (D) Systematic error (i.e., bias).
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campaign lasted for six months, resulting in three months of
effective acquisition time (99.6 effective days of data tracking).
The high resolution of the TOMUVOL detector allows
tracking muons crossing up to about 1,600 m of rocks
(Figure 3A). We only consider the muon path above 6°

above the horizontal so that only the Puy de Dôme relief is
crossed by the muons. Below this elevation, muons also cross
the Petit Puy de Dôme, situated to the north-east of the Puy de
Dôme (Figure 1), which is outside the region of interest in this
study. We recall here the key steps of the process (Niess et al.,
2016; Cârloganu and The TOMUVOL Collaboration, 2018;
Niess et al., 2018a; Niess et al., 2018b; Niess et al., 2020). The
muon tracks are summed up in bins of 1° by 1° in azimuth and
elevation. A kernel method is used to increase the muon count
per bin, hence decrease the statistical uncertainty in the
estimate of the transmitted flux of muons (Cârloganu et al.,
2016; Cârloganu and The TOMUVOL Collaboration, 2018).
The observed rate of muons is the convolution of the
transmitted flux with the effective surface of the detector.
For each bin, the density best fitting the observed muon rate is
retained. The muographic data used for the inversion
therefore consist of a map of densities averaged along the
lines of sight (Figure 3B). The overall density of the Puy de
Dôme, averaged and weighted by the rock thickness (Figures
3A,B), is 1,565 kg/m3, which is 325 kg/m3 lower than the
averaged density estimated from the gravimetric data. This
difference can partly be explained by the fact that the
muographic data do not encompass the dense lava flows to
the west and to the south-east of the dome (Figure 2). The
statistical and systematic errors are estimated using a
bootstrap procedure (Niess et al., 2018b; Niess et al., 2018a;
Niess et al., 2020). The statistical errors correspond to the
measurement standard deviations. The estimated standard
deviations are below 100 kg/m3 in most of the dome, with
larger values close to the surface and to the south-east

(Figure 3C). The systematic errors are the biases
(i.e., offsets) between the measured value and the true
value. The estimated biases are about one order of
magnitude lower than the standard deviations (Figure 3D),
with values lower than 20 kg/m3 for most of the bins. The bias
is therefore underestimated compared to the 325 kg/m3 offset
of the averaged density with respect to the gravimetric data.

In addition to these data, density measurements have been
performed on a collection of 45 rock samples from the Puy de
Dôme, including the ones from Portal (Portal, 2015). The
densities for dry samples range from 1,300 kg/m3 to 2,080
kg/m3 with an average of 1,839 kg/m3 (Figure 4), in accordance
to the mean density estimated from the gravimetric data. When
water-saturated, the average density reaches 2,044 kg/m3 with
densities up to 2,200 kg/m3. The trachytes that constitute the
Puy de Dôme therefore present densities lower than usual
massive trachytes, such as the ones from New Zealand for
instance (Tenzer et al., 2011). This low density can be
explained by the high porosity of the samples (Boudon et al.,
2015; Portal, 2015).

3.2 Inversion Results and Discussion
We describe the volume using a mesh of 85 × 85 × 29 density
nodes with a regular spacing of 25 m. This mesh extends up to
1,000 m away from the Puy de Dôme summit and up to an
elevation of 800 m, i.e., more than 600 m below the summit. The
Châıne des Puys is covered by a Lidar Digital Elevation Model
(DEM) with a 50 cm spatial resolution and a 10 cm precision. We
use this DEM for the computation of the gravimetric and
muographic data sensitivity matrices. We present here the
inversion of the gravimetric data alone, the inversion of the
muographic data alone and the joint inversion of the
gravimetric and muographic data with offset determination.
The LOO criterion is used to determine the optimal set of
correlation length λ and a priori density standard deviation σρ

for each inversion (Figure 5). Synthetic tests presented by
Barnoud et al. (2019) show the impact of these two
regularization parameters on the density model and that the
LOO is a robust criterion to determine them. This is particularly
important in the present case where only one muographic view
point is available. The density models resulting from the
inversions using the optimal regularization parameters are
shown in Figure 6 with two perpendicular slices extracted
from the 3D resulting density models (see Figure 2 for
locations). We show the a posteriori mean density, the a
posteriori standard deviation, and a random realization within
the a posteriori distribution.

The optimal inversion result for the gravimetric inversion is
obtained for (σρ, λ) � (50 kg/m3, 150 m) (Figure 5A). As
indicated by the a posteriori standard deviation (Figure 6A),
the corresponding density model is well resolved laterally and
close to the surface while the resolution decreases in the core of
the dome and at depth, which is typical of the inversion of
gravimetric data.

Here, the inversion of the muographic data alone is not
meaningful by itself, as one cannot retrieve a 3D distribution
from a single view point, but it is shown for the purpose of

FIGURE 4 | Densities measured on dry and water-saturated samples of
trachyte from the Puy de Dôme volcano. The dashed histogram corresponds
to the normalized distribution of the 3D density model resulting from the joint
inversion (Figure 7).
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illustrating the specificities of the method. The optimal
muographic inversion result is obtained for
(σρ, λ) � (2, 100 kg/m3, 40 m), where the a priori density
standard deviation is poorly constrained as indicated by the

horizontal elongation of the area of lower values of L (Eq. 21)
on the map (Figure 5B). However, with further improvements of
physical simulations in muography, we expect muographic data
to become closer to the true absolute density in the future.

FIGURE 5 |Maps of the Leave One Out (LOO) criterion L (Eq. 21) for (A) the gravimetric independent inversion, (B) the muographic independent inversion and (C)
the joint inversion. White dots indicate minimal values of L obtained for the optimal sets of a priori density standard deviations σρ and spatial correlation lengths λ

according to the Leave One Out criterion.

FIGURE 6 | Inversion results: mean of the a posteriori density distribution (blue to red color scale), standard deviation (gray scale, the darker the better resolved) and
random realization of the posterior distribution (blue to red color scale). The blue to red color scales of all panels have the same range of ±400 kg/m3. (A) Independent
inversion of the gravimetric data. The density color scales are centered on 1,890 kg/m3, corresponding to the optimal density correction determined with the Parasnis
method from the gravimetric data. (B) Independent inversion of the muographic data. The density color scales are centered on 1,565 kg/m3, corresponding to the
weighted averaged of densities from themuographic data. Note that the gray colorscale for the a posteriori standard deviation is different than for the gravimetric and joint
inversion results. (C) Joint inversion. The density color scales are centered on 1,890 kg/m3, as for the gravimetric inversion, to ease the comparison between the results.
The locations of the SSW-NNE and WNW-ESE sections are indicated on Figure 2.
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Therefore, the a priori density standard deviation could rather be
determined from density distribution of the data themselves so
that only the spatial correlation length could be determined with
an LOO criterion. With a single view point, the inversion spreads
out the average densities along the conical bins, resulting in
spread out densities in the SSW-NNE slice parallel to the view
direction of the detector (Figure 6B, top) and in densities looking
similar to the initial map (Figure 3B) in the perpendicular
WNW-ESE slice (Figure 6B, bottom).

The optimal regularization parameters for the joint inversion
are (σρ, λ) � (50 kg/m3, 150 m) (Figure 5C), i.e., the same as the
ones obtained for the gravimetric inversion. In our case study, the
joint inversion is driven by the gravimetric data due to the dense
coverage of these data and to the balance between the
uncertainties of the gravimetric data and of the muographic
data. As indicated by the mean density models (Figure 6C),
the information contained in the muographic data slightly
improves the imaging of the core structures of the dome
compared to the gravimetric independent inversion. We can
note that a low density structure at around 1,000 m of
elevation on the WNW-ESE profile appears in the joint
inversion and that the high density core below the summit is

better delineated at depth. However, standard deviations indicate
that this improvement is very subtle. This can be attributed to the
availability of only one muographic view point. This is supported
by tests on synthetic data with the topography of the Puy de
Dôme (Barnoud et al., 2019; Lelièvre et al., 2019). The addition of
view points greatly helps constraining the model close to the
surface (Barnoud et al., 2019), in this way improving the imaging
at depth (Lelièvre et al., 2019).

The automatic least-squares determination of a constant
offset allows to easily invert residual Bouguer anomaly data
jointly with averaged densities from muographic data. The
constant offset determined in the joint inversion from Eq. 9
is c � 1,650 kg/m3. We recall that the residual Bouguer
anomalies have been obtained by substracting a constant
density of 1,890 kg/m3, while the muographic data
correspond to absolute densities. Consequently, the offset c
corresponds to a mean difference of 240 kg/m3 between the
muographic and the gravimetric data. This is lower than the
difference of 325 kg/m3 observed from the data indicating that
the joint inversion helps the resulting density model to be
consistent with the two datasets. Note that we have assumed
here a constant density offset, taken into account using a

FIGURE 7 | 3D density model of the Puy de Dôme volcano resulting from the joint inversion of muographic and gravimetric data, with geological map wrapped on
topography. The lateral extent of the model is indicated by the blue square on Figure 1. The averaged density is 1,890 kg/m3. Iso densities of 1,690 and 2,090 kg/m3,
corresponding to the averaged density ±200 kg/m3, are chosen to highlight low and high density zones in blue and red respectively. The SSW-NNE and WNW-ESE
vertical sections are the same as in Figure 6 (locations indicated on Figure 2). The numbered features indicate the structures discussed in the article. The black
square and dashed lines indicate the location of the muon detector at Col de Ceyssat (CDC) and its angle of view.
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mathematical model. To take into account a non constant
density offset, a comprehensive physical model would be
necessary to fully estimate the bias contained in the data. To
ease the comparison with the gravimetric inversion result, we
choose the average gravity density of 1,890 kg/m3 as central
value for the joint inversion result. The statistical distribution of
the densities resulting from the joint inversion is shown in
Figure 4. This distribution is closer to the distribution of the dry
rock sample densities (average of 1,839 kg/m3) than to the
distribution of the water-saturated rock sample densities
(averaged of 2,044 kg/m3). Even if the joint inversion result
was centered on the average density from the muographic data
(1,565 kg/m3) or on an intermediate density value, the whole
densities would decrease by a few hundreds of kg/m3, still more
consistent with the distribution of the dry rock samples than
with the distribution of the water-saturated samples. This
supports the idea of a dry dome, highly permeable, so that
water quickly flows at depth, in accordance with the literature
(Lecoq, 1831; Boudon et al., 2015).

The 3D density model resulting from the joint inversion
allows to identify several key structures of the Puy de Dôme
volcano (Figures 6C, 7). In addition to the SSW-NNE and
WNW-ESE cross-sections of densities and associated standard-
deviations (Figure 6C), the 3D density structure of the Puy de
Dôme is shown using isosurfaces of 1,690 kg/m3 and 2,090
kg/m3, corresponding to the averaged density of 1,890 kg/m3 ±
200 kg/m3 (Figure 7). These isosurfaces highlight low and
high density zones inside the edifice but should not be
considered as sharp limitations of the structures. Instead, the
extent of the structures (especially the depth extent) is better
shown by the random realization of densities from the a
posteriori distribution (Figure 6C). We interpret the main
identified structures (Figure 7) with regards to the
geological map (Figure 1) and the available literature on the
area (Miallier et al., 2010; Portal et al., 2016; Boivin et al., 2017;
Portal et al., 2019; Deniel et al., 2019). Three main low density
anomalies are identified (noted 1, 2 and 3 on Figure 7): 1) to the
north-east of the Puy de Dôme, toward the Petit Puy de Dôme
edifice, 2) below the north-west slope of the Puy de Dôme at
depth, in the Corneboeufs area (Miallier et al., 2010) and 3) at
the location of Puy Redon. These three low density anomalies
correspond to scoria and cinder Strombolian cones erected
before the construction of the Puy de Dôme (Boivin et al.,
2017). To the north-west of the Puy de Dôme, higher density
anomalies are found in the area covered by basaltic rocks
(Boivin et al., 2017) (lava flow noted 4 on Figure 7) which
are known to be denser than trachytes. The model also
highlights the trachytic core of the dome (noted 5 on
Figure 7), denser than the surrounding trachytic breccia,
and an associated feeding conduit located to the NNW of
the summit. This structure is typical of volcanic domes, with
a compact core surrounded by a clastic talus resulting from
rockfalls (Hale et al., 2009), as at Soufriere Hills volcano in
Montserrat, Lesser Antilles (Sparks and Young, 2002). Another
example is the Showa-Shinzan lava dome, Usu, Japan, where
the joint gravimetric and muographic inversion results of
Nishiyama et al. (2017b) show a massive cylindrical lava

block of about 300 m in diameter. We also identify similar
higher densities in the area of the Cratère Kilian (noted 6 on
Figure 7) which presents trachyte rocks similar to those of the
Puy de Dôme (Boivin et al., 2017). Finally, the model brings out
a linear high density structure to the south-east, at the bottom
of the edifice (noted 7 on Figure 7). This structure is oriented in
a north 30° direction and might correspond to an old
underlying trachy-basaltic or basaltic lava flow (Figure 1)
(Boivin et al., 2017). As shown by the standard-deviations in
Figure 6C, the whole density model is better resolved in the
first 200–300 m below the surface. The dense trachytic core of
the Puy de Dôme 5) and the low density material of the Puy
Redon 3) are better delineated at depth thanks to the addition of
the muographic data, as indicated by the standard-deviations
show in Figures 6A,C. However, structures such as the high
density body of the Cratère Kilian 6) or the buried lava flow 7)
are located outside the angle of view of the muon detector and
are mostly constrained by the gravimetric data. These
structures are therefore well constrained laterally, but their
depth extents are poorly resolved. Note that, in general, even
when some structures are situated outside the angle of view of
the muon detector, their imaging is likely to be improved by the
joint inversion. Indeed, the gravimetric and muographic
datasets are linked in the inversion process, so that the
model improvement is global. Nevertheless, the gain in
resolution depends on the distribution of gravimetric data
(lateral extent and density of coverage), hence on the
resolving power of the gravimetric data at depth.

4 CONCLUSION

We have presented a robust Bayesian joint inversion method
developed in order to reconstruct the 3D density structure of a
1,600 m large volcanic dome. The determination of the two
optimal inversion regularization parameters with an LOO
algorithm overcomes the artifacts linked to the acquisition
geometry. The automatic determination of a constant density
offset accounts for a possible bias between the density inferred
from the two datasets.

For the case study of the Puy de Dôme volcano, the final 3D
density structure is free of data acquisition artifacts and the
recovered structures are in accordance with previous geological
and geophysical studies. In particular, our results confirm that
the Puy de Dôme is dry and permeable, with low density porous
trachytic rocks. The muographic data acquired at one location
bring a slight improvement to the model compared to the
gravimetric data alone. The trachytic core of the dome and
its surrounding less dense talus are better delineated. The
recovered structure is typical of a lava dome such as
Soufriere Hills, Montserrat. The resolution improvement
could be amplified thanks to muon acquisitions from
complementary view points as shown with synthetic tests
(Barnoud et al., 2019; Lelièvre et al., 2019).

The joint inversion method presented in this paper,
combined with improved high resolution muon detectors
and multiple acquisition view points, has the potential to
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better image the structure and plumbing system of kilometer
size volcanic edifices. Beyond imaging, the method could be
used to monitor slow processes including fracturing and flanks
instabilities.
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Niess, V., Barnoud, A., Cârloganu, C., and Le Ménédeu, E. (2018b). Backward
monte-carlo applied to muon transport. Comput. Phys. Commun. 229, 54–67.
doi:10.1016/j.cpc.2018.04.001
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