AUTHOR=Gao Hongkai , Wang Jingjing , Yang Yuzhong , Pan Xicai , Ding Yongjian , Duan Zheng TITLE=Permafrost Hydrology of the Qinghai-Tibet Plateau: A Review of Processes and Modeling JOURNAL=Frontiers in Earth Science VOLUME=Volume 8 - 2020 YEAR=2021 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2020.576838 DOI=10.3389/feart.2020.576838 ISSN=2296-6463 ABSTRACT=Permafrost covers 40% of the Qinghai-Tibet Plateau (QTP), a region which contains the headwaters of numerous major rivers in Asia. As an aquiclude, permafrost substantially controls surface runoff and its hydraulic connection with groundwater. The freeze-thaw cycle in the active layer significantly impacts soil water movement direction, velocity, storage capacity, and hydraulic conductivity. Under the accelerating warming on the QTP, permafrost degradation is dramatically altering regional and even continental hydrological regimes, attracting the attention of hydrologists, climatologists, ecologists, engineers, and decision-makers. A systematic review of permafrost hydrological processes and modeling on the QTP is still lacking, however, leaving a number of knowledge gaps. In this review, we summarize the state-of-the-art understanding of permafrost hydrological processes and applications of some permafrost hydrological models of varying complexity at different scales on the QTP. We then discuss the current challenges and future opportunities, including observations and data, the understanding of processes, and model realism. The goal of this review was to provide both a clear picture of where we are now, and to describe future challenges and opportunities. We concluded that urgent studies are needed to conduct long-term field measurements, employ more advanced observation technologies, and develop flexible and modular models to deepen our understanding of permafrost hydrological processes and to enhance our ability to predict the future response of permafrost hydrology to climate change.