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In contrast to the historical forecast test which is temporally successive with a near-steady
forecast skill, the real-time forecast made at any one moment produces a forecast time-
series whose skill rapidly decreases as the forecast lead time increases; thus, only the
leading section of the latter is adopted in practical applications. As compared with the
intraseasonal filtered historical forecast, the real-time extended-range forecast has a lower
skill in the absence of filtering. In addition, it is difficult to estimate the intraseasonal phases
near the end of the real-time forecast time-series due to missed information afterward. The
current work developed a simple but useful method to improve the real-time forecast skill
from the above two aspects for an empirical extended-range forecast scheme. The
scheme is devoted to predict the intraseasonal variabilities of Indian summer monsoon
precipitation, in which the boreal summer intraseasonal oscillation acts as the precursor.
The intraseasonal signals in the previous observations, the better forecast skills of shorter
lead times, the implicit information regarding the intraseasonal phases in the forecast of
longer lead times, and the data-adaptive intraseasonal filter are adopted in the improving
method, so as to extract intraseasonal signals as much as possible from the currently
available information at each forecast moment. A practical comparison shows that the
forecast skills of the real-time forecast improved by this method are close to or even better
than the intraseasonal filtered historical forecast. Even at the longest acceptable forecast
lead time that the forecast after which is considered to be worthless, it helps extract useful
information regarding the intraseasonal phases.

Keywords: extended-range forecast, Indianmonsoon precipitation, boreal summer intraseasonal oscillation, Hilbert
transform, variational mode decomposition

INTRODUCTION

Each summer, the Indian summer monsoon (ISM) brings about 80% of annual rainfall over
Peninsular India and affects more than one billion people living there. While the precipitation
experiences a smooth climatological seasonal cycle that onsets in late May, maximizes during July,
and slowly decreases through September, in any one year it comprises several wet episodes (“active”
phases) and dry episodes (“break” phases), each lasting 10–30 days (Raghavan 1973; Krishnamurti
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and Bhalme 1976; Hartmann and Michelsen 1989; Krishnan
et al., 2000; Annamalai and Slingo 2001; Goswami and Mohan
2001; Goswami et al., 2003; Gadgil 2003; Krishnamurthy and
Shukla 2007, 2008). These quasi-periodic active and break phases
are generally accompanied with alternative occurrence of severe
floods and droughts, and lead to a large intraseasonal variability
of the ISM precipitation whose magnitude is far greater than the
interannual change of seasonal mean (Webster et al., 1998;
Waliser et al., 1999; Krishnamurthy and Shukla 2000;
Goswami and Mohan 2001; Carvalho et al., 2016). More
importantly, as discussed in Webster and Hoyos (2004), the
smoothness of the mean annual cycle implies that even a
perfect seasonal prediction contains no information on the
intraseasonal timescale, which exerts large socioeconomic
impacts. Therefore, real-time extended-range forecast of
monsoon rainfall with high accuracy is of great importance.

The boreal summer intraseasonal oscillation (BSISO, Wang
and Xie 1997; Lee et al., 2013; Wang et al., 2018; Wang and Li
2020; Li et al., 2020) plays a crucial role in modulating the onset
and active/break cycles of the ISM (Kang et al., 1999; Annamalai
and Slingo 2001; Goswami and Mohan 2001; Gadgil 2003;
Hoyos and Webster 2007). Two canonical modes of the
BSISO are identified. One is characterized by a
northwest–southeast tilted rainband propagating northward/
northeastward over the ISM region with a period of
30–60 days (Yasunari, 1979; Yasunari, 1980; Krishnamurti
and Subrahmanyam 1982; Lau and Chan 1986; Annamalai
and Sperber 2005). Another is mainly active over the western
North Pacific/East Asian region and propagates northwestward
with a relatively shorter period of 10–30 days (Krishnamurti and
Ardanuy 1980; Chen and Chen 1993; Fukutomi and Yasunari
1999; Kemball-Cook and Wang 2001). Both BSISO modes have
been recognized as dominant modulators of the active/break
cycles of the ISM precipitation (Ding and Wang 2009; Goswami
2012; Lee et al., 2017). Therefore, the extended-range prediction
of ISM precipitation in numerical models essentially relies on
the forecast skills of the BSISO. For empirical predictions, the
BSISO-associated variables are chosen as predominant
predictors.

Numerical models’ performance in predicting BSISO has been
significantly improved in recent years, particularly with coupled
models (Fu et al., 2007; Fu et al., 2013; Lee et al., 2015; Lee et al.,
2017). The predictability and prediction skill already exceed 6 and
3 weeks, respectively (Lee et al., 2015). However, it does not mean
the real-time extended-range forecast by numerical models is
near perfect. For instance, although the statistical performance
seems good, the models still have difficulty in realistically
representing individual BSISO events, which shows a much
lower practical skill than the models’ potential predictability
(Fu et al., 2013). Discrepancies between different models, and
dependencies on initial conditions, phases, and seasons also exist
(Fu et al., 2013; Lee et al., 2015).

On the other hand, empirical models through statistical
approaches have a long history in predicting the seasonal
mean ISM precipitation (Shukla and Paolino 1983; Shukla
and Mooley 1987). For the extended-range forecast that
aims at tropical intraseasonal variabilities, great efforts have

been made since the 1990s (e.g., Storch and Xu 1990; Waliser
et al., 1999; Lo and Hendon 2000; Mo 2001; Wheeler and
Weickmann 2001; Webster and Hoyos 2004; Ding and Wang
2009). With carefully chosen predictors based on the BSISO
and the wavelet-banding method that separates different
timescales, Webster and Hoyos (2004) designed a Bayesian
model for the prediction of ISM precipitation on 15- to 30-day
timescales. The anomaly correlation exceeds 0.8, 0.7, and 0.5 at
2, 4, and 6-pentad forecast lead time in their test, respectively.
Intended to forecast early warnings of extreme events but not
successive and quantitative forecast, Ding and Wang (2009)
developed an empirical method with a tropical and an ex-
tropical precursor. It is able to predict 40% of extreme events in
<1 week.

The empirical schemes for extend-range forecast of ISM
precipitation introduced above achieved great success;
however, we argue that there is still room for improvement.
As a quantitative forecast, considerable high anomaly
correlations were attained in Webster and Hoyos (2004),
indicating that most of the local extrema in the successive
time-series were captured by their prediction. However, the
magnitudes are easily underestimated in the model, particularly
during extreme events. When applied in practical real-time
forecast, the predicted time-series for analysis is generally
interrupted at the longest acceptable forecast lead time as
the skill drops rapidly. In this case, less information
regarding the intraseasonal phase near the end of the time-
series could be obtained with an underestimated amplitude. On
the contrary, Ding andWang (2009) focused only on predicting
the possible occurrence of extreme events within a few days; the
other phases and the magnitudes are not addressed in
their model.

As mentioned above, in contrast to a successive time-series
obtained from a long-time historical forecast test (namely, each
point is predicted at a fixed lead time), the real-time forecast
made at any one moment produces a time-series with a rapidly
decreasing skill as the forecast lead time increases. Our question
is: can we get information regarding the phases at the end of
such a time-series even if the predicted magnitudes have large
deviations? It could still be very useful since it tells whether a
peak or a valley is coming or decaying and when it will arrive.
Furthermore, for extended-range forecast, there is no doubt
that a significantly higher skill would be obtained after applying
an intraseasonal filter to the historical forecast result. In the
real-time forecast, however, the terminal effect of filtering
would possibly make it even worse. Can we improve the
real-time forecast quality by extracting its intraseasonal
component as much as possible? The current work is
devoted to improve the real-time forecast skill from the
above two aspects for an empirical extended-range forecast
scheme.

The rest of the article is organized as follows. The “Data and
Procedures” section introduces the data and procedures. The
“Empirical Prediction of Intraseasonal Variabilities of ISM
Precipitation Based on Precursory BSISO Signals” section
describes the empirical forecast scheme for predicting the
intraseasonal variabilities of the ISM precipitation based on its
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relationship with the BSISO. The “Improving the Real-Time
Forecast” section discusses how to improve the real-time
forecast. A summary is given in the “Summary” section.

DATA AND PROCEDURES

Data
The datasets used in this study include data on the observed daily
outgoing longwave radiation (OLR) from the National Oceanic
and Atmospheric Administration polar-orbiting satellites
(Liebmann and Smith 1996), and the Climate Prediction
Center Global Unified Gauge-Based Analysis of Daily
Precipitation (Xie et al., 2007; Chen et al., 2008). The OLR
data have a 2.5° × 2.5° spatial resolution. The daily
precipitation data have a 0.5° × 0.5° spatial resolution and
cover the land areas only. The period 1979–2019 is used in
the research. The historical forecast tests were conducted for
16 years from 2004 to 2019. Boreal summer refers to June, July,
and August (JJA), during which the ISM precipitation is the most
enhanced.

The Empirical Forecast Scheme
The empirical forecast scheme used in the current work is based
on multiple linear regression, and the predictors are selected
according to the lagged maximum covariance analysis [MCA,
also known as singular value decomposition analysis (Bretherton
et al., 1992; Wallace et al., 1992)]. The climatological annual
cycles are removed first to obtain the anomalies. Then, a moving
average is applied to the daily data to smooth out the synoptic-
scale perturbations. The window length of the moving average is
10 days, which coincides with the typical timescale of the active/
break cycles of the ISM precipitation.

With smoothed daily anomalies, a lagged MCA is applied to
the precipitation over the India region and the OLR over the
tropical Indian Ocean. The predictors are obtained by projecting
the OLR anomalies onto the heterogeneous covariance maps of
the corresponding MCA modes. These predictors are employed
in constructing the multiple linear regression model, whose
predictand is the precipitation and the forecast lead time agree
with those in the lagged MCA. Each year for historical forecast
tests, a model is constructed with the data of the previous
25 years, so that the interannual and inter-decadal variations
of the precipitation–OLR relationships are taken into
consideration, if they exist.

Real-Time Phase Analysis and
Data-Adaptive “Variational Mode
Decomposition Filter”
The Hilbert transform is utilized in identifying the instantaneous
phase of the time-series. It is defined by

H [f (t)] ≡ 1
π
∫∞

−∞
f (t)
t − τ

dτ, for t ∈ R. (1)

The Hilbert transform H [f (t)] imparts a phase shift of −90°
to every Fourier component of the original function f (t). For

instance, the Hilbert transform of cos(t) is sin(t). For a more
detailed introduction about Hilbert transform and its discrete
application, refer to Marple (1999) and King (2009a, 2009b).

With the property of the phase shifting, the complex function
constructed with the original function as the real part and its
Hilbert transform as the imaginary part can be written in the
following form according to Euler’s formula:

A(t)eiθ(t) � f (t) + iH [f (t)], (2)

where A(t) is the instantaneous amplitude and θ(t) is the
instantaneous phase of f (t), which is equal to the phase angle
of the right-hand side of Eq. (2).

In this study, the forecast instantaneous phase (θF) is
compared with that of the observation (θO). The latter is
computed according to Eq. (2) with the successive
observational time-series. A threshold of π/4 is chosen to
determine whether they are in phase or not. Namely, if

|θF(t0) − θA(t0)|≤ π/4, (3)

the forecast phase at t0 is considered to be in phase with that of the
observation.

It is worth pointing out that the instantaneous frequency
defined by

ω(t) ≡ dθ
dt

(4)

is physically meaningful only when the signal is represented by an
intrinsic mode function (IMF; Huang et al., 1998; Huang et al.,
2009; Wang et al., 2010; Huang and Shen 2013). However, the
current study is not intended to address the instantaneous
frequency. For the instantaneous phase we care about, it is
noticed that as long as the time-series is smooth enough, the
Hilbert transform well captures its phase evolution. Namely, f (t)
has a correlation coefficient close to 1 with cos(θ), where θ is
defined in Eq. (2).

In order to obtain a smoothed signal and to extract the
intraseasonal component as well, a preprocessing that is
partially equivalent to a frequency filtering based on the
variational mode decomposition (VMD) is applied to the
time-series before calculating its instantaneous phases. The
VMD (Dragomiretskiy and Zosso, 2014) decomposes a signal
f (t) into a small number of K narrowband IMFs:

f (t) � ∑
K

k�1
uk(t) (5)

Each IMF uk is an amplitude and frequency modulated signal of
the following form:

uk(t) � Ak(t)cos(θk(t)), (6)

where Ak(t) is the envelope (amplitude function) which is
positive and slowly varying, and θk(t) is the phase function
whose time derivative, that is, the instantaneous frequency, is
also slowly varying and concentrated around a central value fk.
With the knowledge of the central frequency/period of each IMF,
those IMFs on the interested timescales (for instance, a 20- to 80-
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day period for intraseasonal timescale) are summed up to obtain
the smoothed signal. Such a preprocessing is referred to as “VMD
filter” in this article.

We also compared other filtering algorithms, such as the Fast
Fourier Transform-based filter. Since the VMD is data adaptive, it
performs better in most cases, particularly for short time-series
whose length is comparable with the timescale of filtering. This is
especially useful for real-time forecast.

EMPIRICAL PREDICTION OF
INTRASEASONAL VARIABILITIES OF ISM
PRECIPITATION BASED ON PRECURSORY
BSISO SIGNALS

The intraseasonal standard deviations during boreal summer
for daily OLR over the Indo-western Pacific region, and
precipitation over South Asia are shown in Figures 1A,B,
respectively. While higher intraseasonal variabilities are
near-evenly distributed over tropical Indian Ocean and the
western Pacific, the largest perturbations of precipitation are
found along the Western Ghats, followed by a wide area of

northern Peninsular India, and the foothills of Himalayas to the
north of the Bay of Bengal.

The precipitation over South Asia and the large-scale tropical
OLR anomalies share some common features in the power
spectrum distributions. For instance, for the raw pentad
anomalies of precipitation over northern Peninsular India and
OLR over southwestern equatorial Indian Ocean (Figure 2A),
their power spectrums are both peaked at around 40–50 days, and
the secondary peak of OLR at around 20–30 days also
corresponds well with one of the most significant frequency
bands of the precipitation (Figure 2B). The time-series of
these two variables have a maximized correlation coefficient of
−0.21 when the OLR leads the precipitation by 16 days, indicating
a potential intraseasonal predictability of the latter.

As revealed in the lagged MCA (Figure 3), a large portion of
the intraseasonal variabilities of precipitation over Peninsular
India is connected with the precursory OLR anomalies over the
tropical Indo–western Pacific. The MCA is conducted between
the 10-day moving-averaged precipitation and OLR anomalies
during 1986–2010 JJA, with the OLR leading by 20 days. The first
two modes account for about 75% of the total square covariance.
In contrast, the other modes account for <10% each. Thus, the
two leadingMCAmodes reveal the dominant precursor signals of
tropical OLR anomalies for intraseasonal precipitation over India
at a lead time of 20 days in advance.

Essentially, these two leading MCA modes captured the
northeastward-propagating BSISO1 mode and its lagged
impact on precipitation (Lee et al., 2013; Lee et al., 2017).
There are distinct northwest–southeast tilted band structures
in the heterogeneous correlation maps of the OLR anomalies,
so that precipitation over the land areas is part of such a zonally
elongated rainband, which also explains the high correlations
between precipitation over Peninsular India and southern coasts
of the Indochina Peninsula. In addition, the precipitation and
OLR anomalies (multiplied by a negative sign) are generally
reversed in the same MCA mode, indicating a 30- to 40-day
period oscillation. A lead–lag correlation analysis for the time-
series of the OLR anomalies reveals a maximum when the first
mode leads the second one by about 11 days, suggesting that they
are two stages of such a propagating systemwith an interval of 1/4
period.

With the knowledge of the precursor signals revealed by the
MCA, a multiple linear regression model is constructed, in
which the predictand is the precipitation anomalies, and the
predictors are the projections of the OLR anomalies onto the
corresponding heterogeneous covariance maps of the MCA.
The lead time of the OLR anomalies agrees with that in the
lagged MCA, and so is the period for estimating the regression
coefficients. For instance, based on the MCA results exhibited in
Figure 3 and by utilizing the multiple linear regression model
constructed with the data obtained during 1986–2010, an
empirical prediction scheme for 10-day moving-averaged
precipitation anomalies at a lead time of 20 days in advance
is established for 2011 summer. Forecasts for the other years and
different lead times require their own MCAs and regression
models.

FIGURE 1 | Standard deviations of 20- to 80-day filtered daily anomalies
of (A) OLR over the Indo-western Pacific, and (B) rainfall over South Asia
during 1981–2010 summer (JJA). The contours in (B) have an interval of
4 mm/day.
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The forecast skill of the empirical scheme described above
varies with the lead time and the number of MCA modes
employed in the regression model. Based on 16 years of
historical forecast tests from 2004 to 2019, we found that as
long as the two leadingMCAmodes are included, introducing the
other modes into the regression model does not significantly
improve the forecast skill. In some cases, it could be even worse.
For simplicity, only the forecast results based on the two leading
MCA modes are analyzed below.

Such a simple mode with two predictors captures the
dominant intraseasonal variabilities over Peninsular India
2–3 weeks in advance. Figure 4 shows how the forecast skill
varies with spatial locations and lead times from the perspective
of anomaly correlations. A 20- to 80-day band-pass filter has been
applied in order to evaluate the forecast skill on an intraseasonal
timescale. Higher (>0.5) and significant anomaly correlations are
found over areas of large intraseasonal variabilities when the
forecast lead time is <20 days, particularly for the Western Ghats
and northern Peninsular India. The higher predictability extends
to the southern Indochina Peninsula due to the elongated band-
like structure of the BSISO as discussed before, although the area
of precipitation anomalies in the MCA is confined to the Indian
region. There is no significant anomaly correlation over the
foothills of the Himalayas where the climatological
intraseasonal variability is also large, implying that the area

could be dominated by intraseasonal sources other than the
BSISO. The forecast skill drops rapidly as the lead time
increases, and there is almost no predictability after 25–30 days.

IMPROVING THE REAL-TIME FORECAST

The anomaly correlations shown in Figure 4 reveal the general
performance of the empirical forecast scheme during a long
period; however, the skills for individual forecast moments are
not estimated. The latter is more important for practical real-time
forecast. Thus, a wide area (72.5–87.5°E, 17.5–22.5°N) covering
most parts of the Western Ghats and the rest of the northern
Peninsular India with higher predictability is chosen. The area-
averaged time-series of observational and forecast anomalies over
this region are analyzed.

Figure 5 shows a comparison between the observational
anomalies and the historical forecast made at a lead time of
15 days averaged over the particular region described above.
First, we found that the forecast anomaly has a serious
underestimation of the amplitude. Fortunately, such an
underestimation is systematic and seems to be time-
independent; hence, multiplying a fixed factor well
compensates it. This factor is estimated empirically (2.0 in
this case). Next, the intraseasonal components of the

FIGURE 2 | (A) Pentad anomalies of OLR over southwestern equatorial Indian Ocean (60°–85°E, 10°–2.5°S, gray area), and precipitation over northern Peninsular
India (69.5°–85.5°E, 14.5°–25.5°N, blue line) during 2004–2019 JJA. (B) Power spectrums of the time-series in (A) and the corresponding red-noise spectrums at 95%
confidence level (denoted by dashed lines).
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observational and forecast anomalies obtained by the VMD
filter (see “Real-time phase analysis and data-adaptive
“Variational Mode Decomposition Filter”” section) are
compared. The anomaly correlation reaches 0.65 and is
generally higher than those shown in Figure 4B, mainly due
to the smoothing by the area-average. The circle markers in
Figure 5 indicate the moments that the observational and
forecast anomalies are instantaneously in phase with each
other on the intraseasonal timescale. The ratio of the in-
phase moments to the entire period is 66.7%, which is
comparable with the anomaly correlation.

As discussed in the Introduction, a realistic problem in real-
time forecast is that the successive forecast time-series like that in
Figure 5 is interrupted; hence, the real-time filtering is
unworkable. Figure 6A gives an example for such a
circumstance, in which the forecast time-series of a fixed lead
time (orange line) is unavailable (dashed style) after the current
time of forecast (diamond markers). Although the intraseasonal
peak at this moment is roughly captured in the historical forecast
test, the real-time forecast result is very likely to be considered as a

transitional phase due to the underestimated amplitude and
missed information afterward.

An analogous real-time forecast is shown in Figure 7, in
which the forecast results are unfiltered raw anomalies. The
smoothed forecast time-series from 30 days before to a
particular time of forecast is used to estimate the
instantaneous phase at that time, since it is supposed that
the forecast after that is unavailable. Apparently, as
compared with the intraseasonal filtered historical forecast
(Figure 5), the anomaly correlation has dropped from 0.65
to 0.58 due to the absence of filtering. The ratio of in-phase has
a larger decrease from 66.7 to 43.6%.

From another point of view, the significant improvement of
the intraseasonal filtered historical forecast implies that the
intraseasonal signal does exist in the unfiltered and interrupted
real-time forecast result. It is thus speculated that for the real-time
forecast, extracting intraseasonal signals as much as possible from
the currently available information would be an approach to
improve the forecast skill. The following facts or assumptions are
thus utilized in achieving this purpose:

FIGURE 3 | Heterogeneous correlation maps of the first (A, B) and second (C, D)MCAmodes between daily precipitation (A, C) and OLR (B, D) anomalies during
1986–2010 JJA, with the OLR leading by 20 days. Areas for MCA are 70°–90°E, 10°–30°N (precipitation) and 60°–135°E, −10° to 7.5°N (OLR). The square covariance
fractions explained by each mode is 59.9% and 14.9%, respectively. The correlation coefficient between the MCA time-series is 0.38 and 0.33 for each mode,
respectively. Both modes passed the significance test at the 95% level using a Monte Carlo approach. The signs in the OLR maps are reversed so that positive
(negative) anomalies correspond to enhanced (suppressed) tropical convections. Both precipitation and OLR anomalies are preprocessed by a 10-day moving average.
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(1) The previous observations contain intraseasonal signals.
(2) The forecast of a shorter lead time has better skills.
(3) Even if the forecast anomalies have large deviations as the

lead time increases, there could still be information regarding
the intraseasonal phases.

(4) An intraseasonal filter is favorable for extracting the
intraseasonal signal.

Based on the above premises, a simple but useful method is
proposed for improving the real-time forecast. Figure 6B shows
a schematic representation of it. First, a successive time-series
(dash-dotted line) is constructed by linking up two components.
One is the observational anomalies before the initial time of
making the forecast (denoted by circles), whose length is “KB.”
Another is the forecast made at the initial time for every day
after it, which stops at “KF” days after the originally demanded
time of forecast (diamond markers). Next, a 20-day low-pass
VMD filter is applied to such a time-series, and the result
(purple line) is used to estimate the instantaneous phase and
the amplitude at the time of forecast. The low-pass filter is
intended to retain the mean and trend components of the
constructed time-series, since its anomaly is meaningless and
introduces high-frequency perturbations into the final result. In
the example shown in Figure 6B, although the forecast

deviation amplifies rapidly as the lead time increases, implicit
information regarding the intraseasonal phases is extracted by
the VMD filter. Thus, a more accurate phase estimation can be
made; namely, the diamond mark is in the vicinity of an
intraseasonal peak. The above procedures are repeated at
each time step of forecast.

The improved real-time forecast based on the method
described above is shown in Figure 8. Notice that the
forecast instantaneous phase is not calculated with the time-
series shown in the figure (red line) but with the constructed and
filtered time-series at each point. Both the anomaly correlation
and ratio of in-phase improved significantly relative to the
regular real-time forecast (Figure 7) and are even higher
than those in the intraseasonal filtered historical forecast
(Figure 5). Very weak high-frequency perturbations are
introduced into the improved real-time forecast result mainly
because different constructed time-series are applied for
filtering at each point. It is also worth pointing out that the
initial status of iteration in VMD could result in a slight
difference in each calculation.

The sensitivity of the forecast skill to different KBs and KFs in
the improved real-time forecast is tested and shown in Table 1.
The forecast lead time of 20 days is chosen here, since there is a
sudden fall in the forecast skill after it (Figure 4). Although the

FIGURE 4 | Anomaly correlations of the observed and forecast precipitation anomalies on the intraseasonal timescale (20- to 80-day band-pass filtered) during
2004–2009 JJA at different forecast lead times (indicated at the top-right corners). Dotted areas passed the significance test at the 95% level (Student’s t test based on
the effective degree of freedom). Contours start from 0.2 with an interval of 0.2.
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intraseasonal filtered historical forecast has an anomaly
correlation of 0.63 [first line, ACC (VMD)], it is only 0.51 in
the regular real-time forecast [first line, ACC (Raw)]. Normally, it
is the lower limit for an acceptable forecast, and the forecast of a
longer lead time is ignored (interrupted) in practical applications.
We would like to see if our method could make improvement in
such an extreme case.

Table 1 shows that, generally, the increase in both KB and
KF leads to a better forecast. With the same KF, a higher KB
corresponds to a higher skill, possibly because the signal
before the time of forecast (observations and forecast of a
shorter lead time) contains more available information than
the forecast after that. An upper limit of improvements is
reached when KF extends to about 15 days, possibly due to
the larger deviation of the forecast of a longer lead time. It is
also noted that in most cases, the VMD filter on the
constructed time-series improves the forecast skill (“VMD”
vs. “Raw”). The highest anomaly correlation that can be
reached in the improved real-time forecast is 0.55, which
is still lower than that of the intraseasonal filtered historical
forecast (0.63) but higher than that of the regular one (0.51).

The ratio of in-phase, on the other hand, reaches 56.6%,
which is close to that in the intraseasonal filtered historical
forecast (57.8%). Therefore, even at the longest acceptable
forecast lead time, the forecast after which is considered to be
worthless, we can still extract information to improve the
forecast of intraseasonal phases.

SUMMARY

In contrast to the historical forecast test which is temporally
successive with a near-steady forecast skill, the real-time forecast
made at any one moment produces a forecast time-series whose
skill rapidly decreases as the forecast lead time increases.
Generally, such a real-time forecast is interrupted and only the
leading section with a relatively higher skill is adopted in practical
applications. The interruption brings two problems. Due to the
terminal effect, the real-time filtering is unworkable. Hence, as
compared with the intraseasonal filtered historical forecast, the
real-time extended-range forecast has a significantly lower skill in
the absence of filtering, even though the intraseasonal signal does

FIGURE 5 | Time-series of 10-day moving-averaged daily precipitation over northern Peninsular India (72.5–87.5°E, 17.5–22.5°N) during 2004–2019 JJA for raw
observational anomalies (thin-gray lines), 20- to 80-day VMD-filtered observational anomalies (thick-black lines), and 20- to 80-day VMD-filtered forecast anomalies
made at a lead time of 15 days in advance (thick-red lines). Points marked by circles indicate that the 20- to 80-day observational and forecast anomalies are
instantaneously in phasewith each other. The ratio of in-phase is 66.7% over the entire period, and their anomaly correlation is 0.65 (denoted on the top-right corner
by “In-phase” and “ACC,” respectively). The forecast time-series has been multiplied by a fixed factor of 2.0 to compensate the systematic underestimation of the
amplitude. The discontinuities between 2 years should be ignored.
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exist as proved by such a comparison. In addition, it is difficult to
estimate the intraseasonal phases near the end of the interrupted
forecast time-series due to missed information afterward,
particularly when the forecast amplitudes have a large
deviation. The current work developed a simple but useful
method to improve the real-time forecast skill from the above
two aspects for an empirical extended-range forecast scheme.

The empirical scheme used in the current work is devoted to
predict the intraseasonal variabilities of the ISM precipitation, in
which the BSISO acts as the precursor. A lagged MCA is applied
to the 10-day moving-averaged daily anomalies of precipitation
over the Indian region and the OLR over the tropical Indian

Ocean for JJA. The projections of the OLR anomalies onto the
heterogeneous covariance maps of the two leading MCA modes
are employed in constructing the multiple linear regression
model for precipitation, whose forecast lead time agrees with
that in the lagged MCA.

The anomaly correlation and the ratio of in-phase on the
intraseasonal timescale are applied in evaluating the forecast skill.
The instantaneous phase is estimated by the phase angle of the
complex function whose real part is the original signal and the
imaginary part is its Hilbert transform. A VMD filter on
intraseasonal timescale is applied on the time-series before
estimating its instantaneous phase. As long as the phase

FIGURE 6 | An example for regular (A) and improved (B) real-time forecast. The blue lines represent the observational anomalies, and the orange lines in (A)
represent the historical forecast anomalies made at a fixed lead time for each point. The dashed curves indicate the unknown parts at the initial time of making the forecast
(denoted by circles). The dash-dotted line in (B) indicates the forecast anomalies of different lead times made at the same initial point, linked with the observational
anomalies before that point. The purple line in (B) is the 20-day low-pass VMD-filtered result of the dash-dotted line and is used to improve the estimation of the
intraseasonal phase at the time of forecast (denoted by diamond markers).
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difference between the forecast and observational anomalies is
less than or equal to π/4, they are considered to be in phase with
each other. The instantaneous phase could be a useful indicator in
evaluating the forecast skills for individual moments and spatial
locations in addition to the magnitude, particularly when the
latter has large and uncertain deviations.

For areas of large intraseasonal variabilities of ISM
precipitation, the empirical scheme used in the current work
has an acceptable forecast skill when the forecast lead time is
<20 days. However, relative to those in the intraseasonal filtered
historical forecast, both the anomaly correlation and the ratio of
in-phase have a significant fall in the real-time forecast, as
expected. The ratio of in-phase drops more sharply.

Amethod for improving the real-time forecast is developed. For
each forecast moment, a successive time-series is constructed by
linking up the observational anomalies before the initial time of
making the forecast, and the forecast made at the initial time for
every day after it. The latter is 10–20 days longer than the originally
demanded forecast lead time. Next, a 20-day low-pass VMD filter is
applied to such a time-series, and the result is used to estimate the
instantaneous phase and the amplitude at the time of forecast. The
intraseasonal signals in the previous observations, the better
forecast skills of shorter lead times, the implicit information
regarding the intraseasonal phases in the forecast of longer lead
times, and the data-adaptive intraseasonal filter are adopted in this

method so as to extract the intraseasonal signal as much as possible
from the currently available information at each forecast moment.

A practical test for the method described above shows that for
the forecast lead time of 15 days, both the anomaly correlation
and the ratio of in-phase in the improved real-time forecast are
even slightly higher than those in the intraseasonal filtered
historical forecast. For the lead time of 20 days, which is
normally the longest acceptable lead time of our forecast
scheme and is close to the interrupting point in regular
applications, the improving method increases the ratio of in-
phase so that it is close to that in the intraseasonal filtered
historical forecast. The anomaly correlation has also increased
for the lead time of 20 days, although it is still lower than the
filtered one. Hence, this method does improve the real-time
forecast skill. Even at the longest acceptable forecast lead time
that the forecast after which is considered to be worthless, it helps
extract useful information regarding the intraseasonal phases.

The current work is not intended to design a better empirical
forecast scheme than before (such as Webster and Hoyos, 2004) but
is devoted to explore how to improve the quality of real-time
extended-range forecast, so that it could be close to or even
better than the intraseasonal filtered historical forecast.
Apparently, the application of such an improving method is not
confined in empirical forecast schemes. It could also be applied in
numerical forecast results. The currently used empirical scheme has

FIGURE 7 | Same as in Figure 5, but the raw forecast anomalies are displayed. A forecast time-series from 30 days before to a particular moment is used to
estimate the forecast instantaneous phase at that moment.
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room to improve as well, for instance, by adopting more widely and
carefully chosen predictors. These issues will be investigated in our
future work.
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FIGURE 8 | Same as in Figure 5, but the forecast anomaly and the instantaneous phase estimation at each point are obtained from the constructed time-series of
KB � 15 and KF � 15, processed by a 20-day low-pass VMD filter (see the text for details).

TABLE 1 | Ratio of in-phase and anomaly correlation (ACC) of improved real-time
forecast at different KBs and KFs.

Lead KB KF In-phase (Raw/VMD) (%) ACC (Raw/VMD)

20 N/A N/A 42.9/57.8 0.51/0.63
20 0 0 25.1/26.0 0.51/0.53
20 0 5 47.6/47.3 0.51/0.50
20 0 15 49.3/49.9 0.51/0.51
20 0 30 49.4/49.9 0.51/0.51
20 15 0 37.8/38.6 0.51/0.51
20 15 5 52.7/54.1 0.51/0.54
20 15 15 54.0/56.6 0.51/0.55
20 15 30 52.5/55.3 0.51/0.53

The first line is for the result in the regular real-time forecast and intraseasonal filtered
historical forecast. The latter and the best improved results are marked by red.
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