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Copper deposits in the ultramafic rocks of the Semail ophiolite massifs is found to be
enormous in the region of northern OmanMountains, United Arab Emirates. For this study,
samples of copper were gathered from 14 different sites in the investigation area and were
analyzed in the laboratory using the X-ray diffraction, GER 3700 spectroradiometer, and
Inductively Coupled Plasma-Mass Spectrometer. Detection and mapping of copper-
bearing mineralized zones were carried out using different image processing
approaches of minimum noise fraction, principal component analysis, decorrelation
stretch, and band ratio which were applied on Landsat 8 (OLI) data. The spectra of
malachite and azurite samples were characterized by broad absorption features in the
visible and near infrared region (0.6–1.0 µm). The results obtained from the principal
component analysis, minimum noise fraction, band ratio, decorrelation stretch, spectral
reflectance analyses, and mineralogical and chemical analyses were found to be similar.
Thus, it can be concluded that multispectral Landsat 8 data are useful in the detection iron
ore deposits in arid and semi-arid regions.
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INTRODUCTION

Multispectral and hyperspectral remote sensing data (Landsat 8, ASTER, AVIRIS, and Hyperion) are
important in the prior phases of exploration of mineral deposits, particularly in arid and semi-arid
regions. Mineral exploration and geological mapping in these environments are examined using
numerous image processing techniques, such as minimum noise fraction (MNF), principal
component analysis (PCA), band ratio (BR), and image classification (Rowan and Mars, 2003;
Qaid et al., 2009; Ciampalini et al., 2012; Pour and Hashim, 2012; Liu et al., 2014; Son et al., 2014).

The discrimination of rock units of the Semail ophiolite and hydrothermal mineralized zones
were carried out by several authors using ASTER data (e.g., Rajendran et al., 2012; Rajendran et al.,
2013; Rajendran and Nasir, 2014; Rajendran and Nasir, 2015; Rajendran and Nasir, 2017). In these
studies different remote sensing techniques were selected such as decorrelation stretching (DS), BR,
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linear spectral unmixing, and mixture tuned matched filtering.
Least Square Fit, BR, and MNF were used to distinguish copper
mineralization in the northern west of Iran using ASTER data
(Nouri et al., 2013). Several image processing techniques such as
BR, PCA, MNF, and support vector machine, were applied to
ASTER and Sentinel-2A to map the Shibanjing ophiolite complex
of Beishan orogenic in Inner Mongolia, China (Ge et al., 2018).
Various methods of remote sensing such as BR, false color
combinations, Least Square Fit, PCA, and spectral angle
mapper were applied to ASTER data to identify copper
alterations in Sarbishe, Iran (Shirazi et al., 2018). Fan and
Wang (2020) used ASTER and IKONOS data to identify

copper–lead–zinc deposits in the Heiqia area of the West
Kunlun Mountains, China. The results showed that in
IKONOS (band 3, 2, and 1 synthesis) images, the copper
mineralization zone exhibits interlaced graywhite, blue-gray,
and blue tones in a narrow strip-like pattern. The target of
this study is to detect and map high economic areas of copper
mineralization in the Moho transition zone in the ultramafic
rocks forming the Semail massifs. Various image transform
techniques, such as PCA, MNF, BR, and DS were used for
analysis. Remote sensing results were validated through
comparison with X-ray diffraction (XRD) analysis, field
reconnaissance, and laboratory spectral measurements.

FIGURE 1 | Geological and location map of the Wadi Ham area. The locations of copper occurrence are shown in red circles.

FIGURE 2 | Modified geological map of the Hatta region, updated after Glennie et al. (1974).
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AREA OF STUDY AND GEOLOGIC SETTING

The Oman Mountains lie at the eastern extremity of the Arabian
plate and run in a broad bend corresponding to the Gulf of Oman
coastline (Figure 1). The average width of these mountains is
about 75 km. These mountains reach a maximum of 130 km in
the central part and rise to an elevation of about 3,000 m.
Formation of the Oman Mountains can be credited to two
principle orogenic events, namely the Late cretaceous and the
mid-Tertiary. The former resulted from the Late cretaceous
(Coniacian-Maastrichtian) obduction of the Semail ophiolite
and the related sedimentary and volcanic rocks (Sumeini,
Hawasina, and Haybi groups) onto the eastern edge of the
Arabian platform (Glennie et al., 1973; Coleman and Hopson,
1981; Lippard et al., 1986; Nolan et al., 1986; Boote et al., 1990;
Robertson et al., 1990; Searle et al., 2004; Warren et al., 2005). The
latter happened in the Late Eocene-Miocene and was the main
reason for the formation of foreland folds (Warrak, 1996) and the
folding of Maastrichtian–Tertiary neoautochthonous units in the

foredeep (Boote et al., 1990). The neoautochthonous sequence
and the underlying ophiolite and allochthonous units were
deformed due to post-obduction pressure, resulting in belts of
thrust faults and folds along the western front of the Oman
Mountains.

The area of study is located along Wadi Ham (Figure 1) in the
Northern Oman Mountains, United Arab Emirates, which is an
area consisting of Semail ophiolite. The Wadi Ham zone is a
narrow NW-SE trending valley within the Semail ophiolite. The
rocks exposed along Wadi Ham include the metamorphic sole of
the Semail ophiolite.

The southern ophiolite zone extends south fromWadi Ham to
Wadi Hatta (Figure 2). The ophiolite complex is divided into two
units: The mantle sequence and the crustal sequence, which
consist of the cumulus and non-cumulus. This zone comprises
a sequence of complex north-trending belts whose composition
becomes more basic from east to west.

The layers of rock in the southern zone, which constitute the
ophiolite suite, typically shows a dip in the eastern and eastern-

FIGURE 3 |Detail of theWadi Ham copper occurrence, which is looking toward the north in figure. [FromHunting Geology andGeophysics Limited (1983), redrawn
by Robins et al. (2006).]
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northeast dip, though numerous changes occur locally in the
region. There is little evidence of small-scale folding and minor
fractures, other than those with north-westerly trends that show
no preferred orientation.

The major fractures rule the origin and the trends of many of
the larger Wadis, those are Wadi Mudayq and Wadi Munayi,
trend north-west to north-north-west and is roughly parallel to
the Wadi Ham zone. The principal copper mineralized zones
occur in these Wadis and has similar trend.

A difference in outcrop patterns of the main units is also
apparent on either side of Wadi Ham. In the south, the gabbro
units enclose areas of ultrabasic rocks, which are commonly
bounded, at least in part, by faulting. It is considered that the
contact between these two units is undulating, but essentially flat
lying. Many of the enclosed areas of ultramafics form windows
created during erosion of the overlying gabbro units. The area
that is north of Wadi Ham shows different outcrop patterns,
which may be related to a deeper erosion level. Here, it is

FIGURE 4 | Freshly exposed serpentinized peridotite of the Semail Ophiolite in an abandoned quarry along the Hatta Road. The serpentinized peridotite is pale to
dark green in the unweathered state. It becomes characteristically dark brown when weathered.

FIGURE 5 | It is very similar to one above. It shows the freshly exposed unweathered serpentinized peridotite in more detail. It also shows intense fracture zones,
some of which are joints, others are spaced faults and narrow ductile shears. Some of the close spaced fracture sets are related to the quarrying process.
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envisaged that the area of flat-lying contact zone between the two
units, which corresponds to the area that is south of Wadi Ham,
has been removed.

In the study area, the alteration processes that aided the
developing of copper mineralization at Wadi Ham are widely
varied in composition and type. Such as mineralization, some
features of sulfurization and epidotization predominate, grading
outwards into a zone of secondary Cu-mineralization (dominated
by Malachite and Mn minerals). Certain processed are well
developed in the outer zones, such as carbonization and the
production of secondary iron oxides. The zone of secondary Cu-
Mn oxides is characterized by the development of hydrated
oxides of Cu and Mn. This zone is remarkable as there is a
drastic increase in the abundance of Cu, Mg, Zn, and Ni. On the
contrary, there is a decrease in the amount of Al and trace metals,
including Sr and V. This indicates the destruction of feldspar
mineral from the original rock and the build-up of new secondary
oxide minerals. The gossan zone is characterized by remarkable

reddish-brown colors of hematite and limonite. This zone is
particularly developed at the roof and also on sides of the
orebody. The wide gossan zone is the outermost alteration
zone of Cu mineralization in Wadi Ham due to the high
mobility and abundance of Fe in the secondary environment.
The zone is characterized by a remarkable increase in Cu, MgO,
V, Zn, and Ni. This indicates that most of the Fe and its associated
elements are derived from the alteration of pyrite and other
sulfide minerals together with mafic minerals, such as pyroxene
and amphiboles. The gossan zone is remarkably depleted in
alumina, thereby demonstrating the decomposition of feldspar
from the original parent rock and its mobility.

The copper mineralization along Wadi Hamm, south of
Masafi (location shown on Figure 13) is one of more than
120 known occurrences of copper mineralization in the United
Arab Emirates, all located in the mountain areas between Dibba
and Kalba. In the Wadi Hamm occurrence the main ore is a
50–60 m long thin massive sulfide lens extending north and

TABLE 1 | Spectral characteristics of remote sensing data used in this study.

Sensor Subsystem Channel number Spectral-range (µm) Ground spatial
resolution (m)

Swath width
(km)

Landsat-8 VNIR 1 0.433–0.453 30 185
2 0.450–0.515
3 0.525–0.600
4 0.630–0.680

SWIR 5 0.845–0.885
6 1.560–1.660
7 2.100–2.300

Pan — 0.500–0.680 15
SWIR 9 1.360–1.390 30
TIR 10 10.30–11.30 100

11 11.50–12.50

FIGURE 6 | A close-up view of the serpentinized peridotite showing natural fracture sets. There are black manganese oxide stains and brown ferric hydroxide
fracture coating related to minor weathering. There are also white carbonate and sulfate encrustations along minor fractures related to groundwater evaporation in the
arid climate conditions.
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dipping steeply. This ore body is not evident at the surface but has
been proved by drilling and geophysical survey (Robins et al.,
2006). The ore body is controlled by two NW-trending shear
zones of the Wadi Hamm Fault. The mineralization is located at
the intersection of these shears with high temperature
metamorphic rocks including calc-silicate gneisses, amphibolite
and gneissic quartzites. The primary ores consist of chalcopyrite,
pyrite and pyrrhotite, associated with quartz gangue, forming
mineralized veins and stockworks at surface exposures (Robins
et al., 2006). The deposit was investigated by Hunting Geology
and Geophysics Limited (1983) and found to be sub-economic
with estimated reserves of about 1,000 T Cu. The grade is low,
typically 1% Cu in the sulfide-bearing rocks and reaching 7% Cu
in selected samples.

It was originally supposed that the deposit was a Cyrus-type
volcanic exhalative, however, detailed mapping has shown it to be
a hydrothermal deposit of probable metamorphic origins. The

original disseminated sulfides have been oxidized to form a
limonitic gossan with copper carbonate and minor manganese
oxides remobilized in the weathering zone.

The structure of the deposit is shown in Figure 3 from
Hunting Geology and Geophysics Limited (1983), which was
redrawn by Robins et al. (2006). The figure shows that the
disseminated sulfides bodies form lenses and irregular bodies
within the schist and calc-silicate rock.

MATERIALS AND METHODS

Spectral Properties of Landsat 8 Data
On 4th February, 2013, Landsat-8 was launched from
Vandenberg Air Force Base, California. Landsat 8 image
comprises of 11 spectral channels; five in the visible and near-
infrared (VNIR) region, two in the thermal infrared region, two in

FIGURE 7 | Photographs of malachite and azurite.

FIGURE 8 | Azurite sample diffractogram.
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the shortwave infrared red region, and one panchromatic channel
(band 8) (Roy et al., 2014). The spatial resolutions of these bands
vary from 15 to 100 m (Table 1). Two additional bands, which
represent the difference between Landsat 7 ETM+ and Landsat 8
are shortwave-infrared cirrus band and deep blue coastal/
aerosol band.

Image Preprocessing of Landsat 8 Data
Data processed in the present study is of L1T type—Landsat 8
(OLI), which were acquired on December 20, 2017. The Landsat 8
L1T data processing included systematic geometric correction,
radiometric calibration, precision correction assisted by ground
control chips, and the use of a digital elevation model to correct
parallax error due to local topographic relief (Lee et al., 2014).
ENVI 5.1 (the Environment for Visualizing Images) software is
used for processing the Landsat 8 data.

The Quick Atmospheric Correction method (ITT 2009) is
performed here for calibration of Landsat 8 L1T data to
reflectance data. Red–Green–Blue (RGB) color combination

images were primarily selected on the basis of the reflectance
spectra of dominant rock types in the study area (Cloutis et al.,
1986; Crosta and Moore, 1989; Evans and Hill, 1990).

Image Processing
PCA used the principal components transformation technique to
reduce dimensionality of the correlated multispectral data.
Investigation was based on multivariate statistical techniques
that chose uncorrelated linear combinations (eigenvector
loadings) of variables such that each successively extracted
linear combination, or principal component, had a smaller
variance (Singh and Harrison, 1985). MNF transformation is a
data reduction method designed to increase apparent signal-to-
noise by calculating noise statistics from the data, and segregating
it to higher order eigen channels, while still retaining much of the
original signal (Green et al., 1988).

The MNF transformation is same as PCA transformation,
except the fact that MNF considers the noise separately from
the noise, whereas PCA considers the overall data variation
using a single covariance matrix (Smith et al., 1985; Richards,
1994). Generally, the signal which is a high information
content, is concentrated in the lower order eigenchannels,
whereas the noisy bands are concentrated in the higher
order eigenchannels.

BR is used to display the spectral variations (Goetz et al., 1983;
Shalaby et al., 2010) by dividing the brightness values (digital
numbers, DN) at peaks/maxima and troughs/minima in a
reflectance curve, after removing the atmospheric affects
(Jensen, 1996; Vincet, 1997). DS is used to enhance (stretch)
the color differences found in a color image. It also includes the
removal of inter-channel correlation found in the input pixels

FIGURE 9 | Malachite sample diffractogram.

TABLE 2 | Heavy metal analysis for the collected azurite and malachite samples.

Element Azurite (mg/kg) Malachite (mg/kg)

Barium (Br) 96.5 53.5
Cadmium (Cd) 9.5 782.75
Chromium (Cr) 914.5 20.25
Copper (Cu) 392,975 691,775
Potassium (K) 1995 3,750
Manganese (Mn) 33,875 247.5
Nickel (Ni) 3,000 50
Lead (Pb) 137.5 19,900
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(Alley, 1996). This method requires three bands for input, which
should be stretched byte data or may be selected from an open
color display.

Field Verification and Spectral
Measurement
Azurite and malachite samples were collected from 14 different
sites in the study area (Figure 7). A photograph was taken for

each sample, and the geographic coordinates of each locality were
noted using the GPSMAP 276C. All the powder samples were
analyzed for mineralogy using XRD. The chemical analysis of the
collected samples was carried out using the ICP-MS, and included
the analysis of Br, Cd, Cu, K, Mn, Ni, and Pb.

Reflectance spectra derived in Laboratory in the visible to
shortwave infrared region of the electromagnetic spectrum
(0.4–2.5 µm) were measured for all the collected azurite and
malachite samples using a GER 3700 spectrometer

FIGURE 10 | Reflectance spectra of the collected samples.

FIGURE 11 | United States Geological Survey spectral reflectance curves of selected iron, sulfur, copper minerals (Clark, 1999).
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(Geophysical and Environmental Research Corporation 1999).
GER 3700 spectrometer measurements require an outer light
source with a distance of approximately 25 cm between the sensor
and sample. The source of illumination was a halogen lamp
500W, which was set at around 45°. The spectrometer sensor
position was located vertically above the sample. The instrument
had 640 channels between 315 and 2,519 nm with spectral
sampling between 1.5 and 12 nm. The ground field of view
was approximately 100 cm2. GER 3700 spectrometer has been
selected in this study because of its very fast scan time (50 ms and
up) and the relatively small weight of the optics head (approx.
10 kg). This instrument can be operated in a helicopter as well as
mounted on the goniometer or on a normal tripod in the field.
The instrument is calibrated using a reflectance standard

(Spectralon panel) made from polytetrafluoroethylene. The
standard is a white reflecting material and has been selected
because of its qualities in spatial and spectral uniformity and
stability with time.

RESULTS AND DISCUSSION

Mineralogical and Geochemical Analyses
The XRD results tells that the gathered samples were mainly
composed of azurite and malachite (Figures 8, 9). Table
summarizes the chemical analysis of the studied samples. The
results demonstrated that copper concentrations in the collected
azurite and malachite samples were 322,975 and 691,775 mg/kg,

FIGURE 12 | Lithology and main geological features in study area.
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respectively. The azurite samples were dominated by Cu, Mn, K,
and Cr, whereas Cu, K, Cd, and Mn dominated the malachite
samples (Table 2).

Interpretation of the Spectral
Measurements
The laboratory spectra investigated from the gathered samples
that were measured using the GER 3700 spectroradiometer are
shown in Figure 10. Figure 11 shows the United States
Geological Survey (Clark, 1999) spectral reflectance curves of
selected iron, sulfur, and copper-containing minerals (e.g.,
hematite, pyrite, chalcopyrite, azurite, and malachite).
Hematite showed intervalence charge transfer and Fe3+ crystal
field bands in the VNIR wavelength range. The absorption
features located at about 0.53, 0.63, and 0.88 µm distinguished
the spectrum of hematite.

According to Abrams et al. (1988), the spectrum of serpentine
shows a relatively flat spectral response. The reflectance spectra of
serpentines show a characteristic absorption peak at 2.3 µm as a
result of vibrational processes of Mg-OH bond (Rajendran and
Nasir, 2014). In addition, according to the spectral features of
serpentine minerals displayed in Figure 6, there is an absorption
feature located at 1.4 µm due to OH. The VNIR reflectance
spectra of azurite and malachite exhibited a characteristic
spectral signature, showing blue and green peaks at around
0.54 and 0.4 μm, respectively. A broad absorption feature in

the range of 0.6–1.0 μm characterized the spectra of malachite
and azurite. The spectra also displayed absorption features at
2.3 μm due to the presence of CO (Glennie et al., 1973). The most
important absorption features on igneous rock surfaces were due
to the presence ofMg–OH and Al–OH in clays, micas, serpentine,
and amphiboles. Absorptions produced around 2.2 μm is due to
Al–OH, whereas Mg–OH produced features at about 2.3 μm.
There were features in the infrared region due to vibrations
within molecular water (Hunt et al., 1971; Hunt, 1977; Hunt
and Ashley, 1979; Rajendran et al., 2011).

Mineralization: Delineation and Mapping
The bands 7–4–2 Landsat 8 image (Figure 13) was selected in
order to highlight geological features of the study area. Generally,
these color-combinations show little color variation
corresponding to serpentinized peridotite, gabbro, and
metamorphic sole.

Spatially coherent information is clearly indicated in PC1, PC2,
PC3, PC4, and PC6. PCAbands 1, 2, and 3 in RGBwith respect to the
studied region are shown in Figure 14. The gabbro, serpentinized
peridotite, gabbro, and metamorphic sole present in the investigation
area are discriminated using false color PCA composite image.
Copper zones are mainly associated with peridotite and gabbro
rocks. Some copper is found in the metamorphic sole. MNF
results showed that MNF1, MNF2, MNF3, MNF4, and MNF5
contain most of the spatially coherent information. Figure 15

FIGURE 13 | Red–Green–Blue (RGB) (R: 7, G: 4, B: 2) composite image of the study area. The metamorphic sole is represented by the light pixels,
where the dark pixels represent gabbro and peridotite rocks. The geographic reference for the location of the Wadi Hamm copper occurrence is 417,984
and 2,792,388.
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showsMNF band 2 with respect to the study area. Metamorphic sole
is shown in white pixels, while gabbro and serpentinized peridotite
rocks exhibit dark colors.

The whitest zones in the 7/6 BR image represented the
distribution of metamorphic sole in the examined area
(Figure 16), while the dark pixels represent peridotite and
gabbro. A decorrelation-stretched image of the study area is
shown in Figure 17 (R: band 7, G: band 6, B: band 2). In this
image, red color corresponds to metamorphic sole, green to
serpentinized peridotite rocks, and pinkish blue to gabbro. The
lithology of ophiolite is well recognized and separated using the
decorrelation-stretched image.

The mineralization maps of copper obtained fromMNF, PCA,
BR, and DS were verified on the ground through field work and
were compared with the published geological map of the study
area (Figure 19). A good correspondence was observed among
the transform techniques, field data, and geologic maps. New

copper mineralization zones in the study area were clearly
observed using these remote sensing methods.

CONCLUSIONS

Present study revealed the usefulness of the multispectral
Landsat 8 (OLI) data (0.4–2.5 µm) with respect to the
detection and mapping of copper mineralization zones.
Targeting mineral resources over large arid and semi-arid
environments can be achieved using multispectral Landsat 8
data. In the present study, various image transforms
techniques, including PCA (bands PC1, PC2, PC3), MNF
(band MNF2), BR (7/6), and decorrelation stretch (bands 7,
6, 2) were used to reveal useful spectral information. The arid
environment facilitated the use of remote sensing techniques
for mineral exploration in the study area. The results of the

FIGURE 14 | False color composite images of principal components PC1, PC2, PC3 displayed in R-G-B for the study area. The dark purple colors pixels
represent gabbro, peridotite is displayed in green colors, and metamorphic sole is shown in yellowish green. The locations of copper is shown in
black circles.
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FIGURE 16 | Ratio image of band 7/6 of the study area. The metamorphic sole is displayed in white pixels. The locations of copper is shown in red circles.

FIGURE 15 | Image of MNF2 for the study area. Metamorphic sole is shown in white pixels, while gabbro and serpentinized peridotite rocks exhibit dark colors. The
locations of copper is shown in red circles.
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FIGURE 17 | False color composite images of decorrelation stretching of band combination 7:6:2 displayed in RGB for the study area. The pinkish blue pixels
represent metamorphic sole, while copper mineralization zones are displayed in the green color. The locations of copper are shown in black circles.

FIGURE 18 | Spectral plot of convolved laboratory measured spectrum of selected minerals.
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various methods used in the study area provided interesting
perspectives on the possibility of detecting new exploitable
copper deposits in arid and semi-arid environments. Future
work concerns with the drone hyperspectral remote sensing
exploration for delineation of mineralization zones and
economic exploration of minerals.
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