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Quantifying the high elevation winter snowpack in mountain environments is crucial for
lowland water supply, though it is notoriously difficult to accurately estimate due to alack of
observations and/or uncertainty in the distribution of meteorological variables in space and
time. We compare high spatial resolution (3 m), satellite-derived snow depth maps for two
drought years (2017 and 2019) in a high mountain catchment of the central Chilean Andes,
applying a recently updated methodology for spaceborne photogrammetry. Regional
weather station observations revealed an 80% reduction in precipitation for 2019 (the
second driest winter since 1950) relative to 2017, though only a 10% reduction in total
snow-covered area is seen in the satellite imagery. We threshold surface height changes
based upon uncertainty of stable (snow-free) terrain differences for topographic
characteristics of the catchment (slope, aspect, roughness etc). For a conservative
analysis of change, outside of the topographically-derived confidence intervals, we
calculate a mean 0.48 + 0.28 m reduction of snow depth and a 39 + 15% reduction in
snow volume for 2019, relative to 2017 (for 23% of the total catchment area). Our findings
therefore quantify, for the first time in the Andes, the relationship of high-resolution
mountain snow depth observations with low elevation precipitation records and
characterise its inter-annual variability over high elevation, complex terrain. The
practical use of such detailed snow depth information at high elevations is of great
value to lowland communities and our findings highlight the clear need to relate the
high spatial (Pléiades) and temporal (in-situ) scales within the available datasets in order to
improve estimates of region-wide snow volumes.

Keywords: snow depth, andes, remote sensing, snow cover, drought

INTRODUCTION

Seasonal snow is a crucial fresh water resource in mountain regions and plays a highly important role
in the socio-economic well-being of lowland communities for drinking water, agriculture,
hydropower and mining (Mankin et al,, 2015; Meza et al.,, 2015; Arheimer et al.,, 2017; Sturm
et al,, 2017; Biemans et al., 2019). Despite this, quantifying the spatio-temporal variability of the
winter snowpack remains difficult and/or costly (e.g., Biihler et al., 2016; Painter et al., 2016; Moller
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et al,, 2017), often relying on intensive ground and/or airborne
surveys (Harpold et al., 2014; Deems et al., 2015; Nolan et al.,
2015; Currier et al., 2019). Our understanding of large scale snow
processes has been greatly aided by decades of global satellite
observations of snow cover extent (e.g., Hall et al,, 2010) and
more recently of snow volume by leveraging highly detailed
airborne LiDAR surveys (Painter et al., 2016; Hedrick et al.,
2018; Margulis and Fang, 2019). Studies have found that
improving representation of snow water equivalent (SWE)
from such detailed snow depth observations can increase the
predictive capability of seasonal streamflow forecast models (Li
et al.,, 2019; Margulis and Fang, 2019) and help to quantify the
inter-annual variability and persistence of the snow depth in
space (Hedrick et al., 2018). Nevertheless, the spatial extent and
cost of such intensive campaigns, despite their invaluable
contribution to process understanding, limits the wider
applicability to catchments in many parts of the world where
snow water resources are highly important, yet more poorly
understood (e.g., Cortés et al., 2016; Fayad et al., 2017; Smith
and Bookhagen, 2018; Baba et al., 2018).

The advent of high resolution, optical satellite constellations
has lead to many valuable contributions in the discipline of Earth
sciences (Zhou et al, 2015; Bagnardi et al. 2016), including
quantification of glacier mass balance (Berthier et al., 2014;
Melkonian et al., 2016; Belart et al.,, 2017; Brun et al., 2018;
Btaszczyk et al., 2019; Ren et al., 2020) and spatial snow volumes
(Marti et al., 2016; McGrath et al., 2019; Deschamps-Berger et al.,
2020; Shaw et al., 2020a). The application of sub-metre resolution
stereo imagery for elevation model generation, namely that of
Pléiades and WorldView products, has demonstrated decimetre
accuracy when comparing to high resolution, albeit typically
small scale, reference data (Marti et al., 2016; Shaw et al,
2020a). Recent work by Deschamps-Berger et al. (2020) found
a sub-metre random error and low bias of Pléiades-derived snow
depths when comparing to the Airborne Snow Observatory
(“ASO”) over an extensive (137 km?) area of the Tuolumne
Basin, United States. The direction of this research suggests
that the use of such high spatial and temporal resolution (tri-)
stereo satellite imagery will continue to be a valuable tool for
understanding the mountain snowpack, regardless of the
limitations that it presents, notably that of cloud cover
occlusion and a reduced accuracy for steep terrain
(Deschamps-Berger et al., 2020; Shaw et al., 2020a).

This study focuses upon the application of Pléiades-derived
snow depths for two distinct years in a high mountain catchment
of the central Chilean Andes. The winter snowpack in the central
Andes is a vital resource for lowland communities as it offers a
storage of water to be released during the spring/summer when
typically <15% of the annual precipitation occurs (Garreaud et al.,
2009). The very high (up to 5,000-6,000 m) elevation differences
between the mountain peaks and populous lowland regions
further emphasise the strong dipole of the source and sink of
snow which is exacerbated by prolonged severe drought
conditions for the region (Garreaud et al, 2017; Garreaud
et al, 2019). Quantifying the snow volume of these high
mountain catchments is therefore of great importance
(Masiokas et al, 2006; Gascoin et al., 2013; Ragettli et al.,
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2014; Cortés et al., 2016; Masiokas et al., 2020; Shaw et al,
2020a; Shaw et al, 2020b), yet the lack of high elevation
observations is a limiting factor in understanding the spatio-
temporal behaviour of the snowpack (Alvarez-Garreton et al.,
2018; Scaff et al., 2018; Masiokas et al., 2020). This is particularly
evident when there are insufficient observations at very high
elevations (>~3,000 m a.s.l.) (Scaff et al., 2018; Shaw et al., 2020a)
or for observing precipitation events that originate from the
eastern side of the Andes (Shaw et al., 2020D).

We utilised 2 years of Pléiades imagery to explore the inter-
annual variability of snow depth in a high elevation Andean
catchment under prolonged regional drought conditions. Optical
high-resolution satellite images were first evaluated in the Andes
by Shaw et al. (2020a), though this work aims to extend that initial
investigation with recently updated workflows and a previously
unexplored inter-annual comparison of Pléiades-derived snow
depths and their topographically-varying uncertainties. Specifically,
we aimed to i) quantify the mountain snowpack using high spatial
resolution (3 m) snow depth maps generated from Pléiades imagery
in separate years, ii) explore the spatial uncertainties in Pléiades-
derived snow depth and its dependence on the topography of the
catchment, and iii) evaluate the relationship between spatial snow
depth differences and persistence of snow to topographic parameters
of the catchment and the meteorological conditions of the preceding
winter months. Considering that this is the first time that such an
inter-annual comparison of Pléiades snow depth maps has been
performed, we place some emphasis on the steps taken to evaluate
multi-year digital elevation model (DEM) uncertainties in order to
provide generalised guidelines for future work.

STUDY SITE

The Rio Yeso catchment is located in the semi-arid Andes of
central Chile (33.44°S, 69.93°W) and is at the headwall of one of
the many important tributaries to the Maipo River, which serves
as the main freshwater resource for the country’s capital,
Santiago (Figures 1A,B). The glacierised catchment has an
area of 102km?® with an elevation range of ~2,900-5,400 m
a.s.]l. (Figure 1C). There are three main glaciers in the basin:
Bello (4.6 km?), Yeso (2.9 km?) and Pirdmide (4.7 km?, debris-
covered) which have been estimated to contribute between
3-32% of the basin’s spring-summer streamflow through
icemelt (Burger et al., 2019), though the hydrological regime
is typically dominated by contributions from snowmelt (Ayala
et al., 2016; Burger et al., 2019; Shaw et al, 2020b). The
catchment is characterised by steep terrain (average slope of
27°) that supports small sclerophyllous vegetation. Snow is
typically present between early May and until late December
at the highest elevations, with an estimated peak SWE in early to
mid-September (Cornwell et al., 2016). Drought conditions since
2010 have resulted in a reduction in the number of snow cover
days and increase in the snow line altitude (Mernild et al., 2016;
Garreaud et al., 2017; Saavedra et al., 2018), with 2019 being the
second driest year on record (as measured at Quinta Normal
station, Santiago: 1950-present) up to the date of the
2019 Pléiades acquisition (Digital Elevation Model Generation).
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FIGURE 1 | A map of (A) Chile, (B) the metropolitan region and (C) the Rio Yeso catchment. The automatic weather station Quinta Normal, Yeso Embalse and
Termas del Plomo are marked in panels b and c. The hillshade in b is provided by ASTER GDEM and the hillshade/digital elevation model scale in ¢ is that of
SnowOFF_2018. Glacier outlines were manually digitised from the Pléiades SnowOFF_2018 orthoimage.

referenced in the methodology text.

FIGURE 2 | A flowchart of the steps taken to process Pléiades digital elevation models to assess snow depth difference (SDD) in this study. Steps (A—E) are
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Data and Methods

for a single year. This paper, however, aims at observing and

The following methodology for derivation of snow depth from  understanding the key detectable snow depth differences between
Pléiades optical satellite imagery builds upon the initial work of ~ two end-of-winter scenes for the first time and characterising the
Shaw et al. (2020a) who evaluated its use in the same catchment ~ expected uncertainties in an updated workflow that was not
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TABLE 1 | The basic information regarding each DEM date referred to in the text.

Name Acquisition date Type

SnowON_2017
SnowOFF_2018
SnowOFF_2019
SnowON_2019

Snow-covered
Snow-free
Snow-free®
Snow-covered

September 4, 2017
January 6, 2018
April 24, 2019
September 2, 2019

DEM, digital elevation model.

Andean Snow Depth from Satellite-Photogrammetry

Base-to-height ratio % Missing in DEM

Front-nadir Front-back
0.11 0.21 17
0.24 0.33 —
0.1 0.20 <1
0.20 0.42 <1

aSnowOFF_2019 followed an early snowfall of the 2019 autumn and is thus used solely for correction of elevations over glacier areas (see text for details).

addressed in previous studies. The flowchart in Figure 2 provides
an overview of the processing steps with respect to the Pléiades
datasets. The following subsections detail the specific processing
steps with reference to this workflow.

Pléiades

Digital Elevation Model Generation

DEMs were generated from triplets of high resolution (0.5 m)
imagery using Pléiades 1A and 1B satellites (Marti et al., 2016;
Deschamps-Berger et al., 2020; Shaw et al., 2020a) (Figure 2A).
Image triplets were taken during four separate acquisition dates
(Table 1) that were either snow-free (hereafter SnowOFF_y,
where y refers to the year of interest) or the equivalent snow-
covered terrain in late austral winter (hereafter SnowON_y). The
SnowON acquisitions were obtained for the 4th and 2nd
September in the years 2017 and 2019, respectively. The
reference SnowOFF acquisition was obtained January 6, 2018
and was used to generate dDEM maps of snow depth by Shaw
et al. (2020a). This scene had minimal snow cover at the highest
elevations of catchment (<0.1% of pixels >5,100m asl. -
Supplementary Figure S1) that were ignored in this analysis.
A second SnowOFF image set was acquired on April 24, 2019.
Unfortunately, this acquisition shortly followed the first small
snowfall of the 2019 winter, and thus, the 2018 image triplets
(SnowOFF_2018) were used to generate the reference snow-free
DEM surface for both years. The SnowOFF_2019 DEM was,
however, used to update surface elevation changes over
glacierised areas of the catchment (see Correction for Glacier
Change).

We applied the semi-global matching stereo algorithm with a
binary census transform cost function following Deschamps-
Berger et al. (2020) to generate point clouds from Front-Nadir
(FN) and Front-Back (FB) image pairs in the stereo process of the
Ames Stereo Pipeline [ASP - Shean et al. (2016)]. This function
generates two disparity maps from the FN-FB pairs, which are
combined in a single point cloud with a joint triangulation
process. We opted for a FN-FB set as it offered a larger
disparity in point clouds when calculated within the ASP
routine, and therefore found as the best trade-off in reducing
intersection errors and data gaps due to terrain occlusion. The
semi-global matching, binary transform routine in ASP was
found by Deschamps-Berger et al. (2020) to reduce the
random error and root mean squared error of both snow-
covered and stable, snow-free terrain compared to local search
algorithms previously implemented for snow depth mapping

using Pléiades (Marti et al.,, 2016; Shaw et al., 2020a). Due to
saturation in the SnowON_2017 images (see discussion
Limitations of Pléiades for Multi-Annual Snow Depth
Derivation), correlation failure of the stereo process in ASP
resulted in a loss of ~17% of the total pixels in the catchment
(Shaw et al, 2020a). No saturation was evident in the
SnowON_2019 images.

We subsequently applied the point2dem function in ASP in
order to map the stereo-generated point cloud onto a rough 50 m
grid and provide an adequate absolute georeference for the DEM.
This coarse DEM was therefore used as a projection base for the
ASP routine mapproject. This routine produces roughly rectified
images which were again processed with stereo (Shean et al.,
2016). The gridding of the point cloud was this time made at the
final resolution of 3 m. We selected this resolution as a balance of
accuracy and data gaps in the final DEM product (Marti et al.,
2016). This resolution was also considered appropriate by
Deschamps-Berger et al. (2020) when comparing Pléiades-
derived snow depths to ASO in the Sierra Nevada, United States.

Land Surface Classification

We utilised the ASP mapproject function to ortho-rectify the
nadir multispectral image for each acquisition date based upon
the respective DEM (Table 1; Figure 2B) and provided a manual
training classification of the following surface classes; i) snow, ii)
bare ground, iii) snow in shadow and iv) bare ground in shadow.
Vegetation and water bodies are almost non-existent and not
included in the classification scheme. Each class was digitised
manually in ArcMap 10.3 to provide a training set for a random
forest classifier in the Orfeo toolbox (Grizonnet et al., 2017). A co-
author of the study provided an independent digitisation of snow-
covered/snow-free pixels that were used to evaluate the random
forest classifier. Pixels from each class were sampled randomly
across the entire space of the catchment. We derive an overall
Accuracy Index as the sum of all the true positive scores of a
confusion matrix divided by the total number of validation points
(523 and 487 in 2017 and 2019, respectively). Using this metric,
we found a score of 0.95 and 0.93 for the images of September
2017 and 2019, respectively, indicating a strong performance of
the classifier.

Co-Registration of Digital Elevation Models

Using the SnowOFF_2018 DEM as the reference, we relatively co-
registered all other DEMs (Table 1; Figure 2C) following the
approach of Nuth and Kdéb (2011). To horizontally translate and
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TABLE 2 | Key acronyms to describe elevation models or elevation model differencing to calculate snow depth of inter-annual snow depth differences in this study.

Acronym

SnowON/OFF_y

Description

Step (Figure 2)

The individual digital elevation models generated from the ASP routine (Digital Elevation Model Generation), where “ON” 2A

(“OFF”) refers to snow-covered (‘snow-free) scenes for year “y”

dDEM A raw DEM difference within a single year (e.g., SnowON_2017 (minus) SnowOFF_2018) after co-registration and bias 2C
removal
d’DEM A DEM double difference to compare inter-annual surface elevations before filtering for artifacts (e.g., dDEM of 2019 - dDEM 2D

of 2017 = SnowON_2019 - SnowON_2017). d?DEM is used to explore the stable terrain confidence intervals for change
detection in SDD (Confidence Interval of Snow Depth Differences)

SD_2017/SD_2019

Snow depth maps for individual years. Equal to dDEM with artifact removal, zero snow for stable terrain and gap-filing to 2E

generate “analysis-ready” product (Snow Depth Comparison)
SDD SD_2019 - SD_2017. Equal to d’DEM after artefact and gap-filing steps 2E

DEM, digital elevation model.

vertically bias correct each DEM, we extract only stable terrain
(defined as snow-free, non-glacierized land) for slope angles <45°
(Berthier et al., 2007) using the classified images of each
acquisition date (as described in Land Surface Classification).
We applied the same translation to each equivalent orthoimage,
to retain the same spatial coverage of the surface classification for
further analyses. We used the classified bare ground (illuminated)
of <45° to remove the median vertical difference of the SnowON
DEMs relative to the SnowOFF_2018 reference. The values of the
co-registration transforms are given in Supplementary Table S1.
Following co-registration of each DEM, we differenced the
SnowON_2017 and SnowON_2019 DEMs with the reference
SnowOFF_2018 DEM to produce an initial raw difference map
(hereafter referred to as a “dDEM”) at a 3m horizontal
resolution. Hereafter the naming convention follows that
described in Table 2, such that dDEMs refer to raw DEM
differences and “SD/SDD” refer to DEM differences with
filtered and/or gap-filled data that describe a “snow depth.”

Correction for Glacier Change

Due to the relative dates of the SnowON_2017 and
SnowOFF_2018 acquisitions, DEM differencing to obtain snow
depth also included a signal of glacier mass balance and dynamics
(glacier horizontal and vertical motion and subsequent snow and
ice melt in the ablation zone). We apply the same corrections as in
Shaw et al. (2020a) to account for these effects in the 2017 dDEM.
The mean propagated uncertainty for these glaciers was
calculated by Shaw et al. (2020a) as 0.3 m. For SnowON_2019,
we differenced with the SnowOFF_2019 DEM (April 2019) over
glacier areas and assumed a similar uncertainty would account for
light snow fall preceding the SnowOFF_2019 image acquisition.
For stricter statistical change detection analyses (Snow Depth
Comparison), we ignored glacier areas.

Topographic Indices of the Digital Elevation
Model

To aid analyses of snow depth differences, we derived
topographic indices for the catchment (Supplementary Figure
$2). These indices are similar to those as described in Shaw et al.
(2020a), though updated based upon the SnowOFF_2018 DEM

(Table 1) that we derived from the new ASP stereo routine
described in Digital Elevation Model Generation. These
topographic indices are i) elevation extracted directly from the
DEM (hereafter “ELE”), ii) slope angle (°, “SLP”), iii) the
topographic position index that determines the relative
elevation of a pixel to its surroundings ((Revuelto et al., 2014)
- “TPT”), iv) the catchment aspect (°, “APT”), v) the wind
exposure parameter developed by Winstral et al. (2002) (“SX”)
and, vi) the calculated sky view factor (“SVF”). The SX parameter
was calculated using the modal direction of hourly 10 m winds of
the closest ERA5 cell for the period 1st April to 3rd September in
each year (44.2° in 2017 and 47.4° in 2019). The period was
selected as the beginning of the hydrological year (1st April) until
the mean Pléiades acquisition date for the 2 years (2nd and 4th
September). The ERAS5 reanalysis wind vectors cannot represent
localised wind conditions in the catchment, though it is a
generalised representation of the regional wind direction. A
TPI search distance of 60 m was applied following Shaw et al.
(2020a).

Confidence Interval of Snow Depth

Differences

We evaluated the quality of the inter-annual dDEM difference
(’DEM - Table 2) by assessing the empirical cumulative
distributions of the stable (snow-free) terrain residuals
(Figure 2D). In doing so, we were able to attribute a range of
uncertainty that is derived for 3 m pixels that should in reality be
zero (ie., no snow). We extended this uncertainty range to
explore how topographic indices of the basin (Topographic
Indices of the Digital Elevation Model) might affect the quality
of the d*DEM, and thus the assessment of snow depth differences
between years (see Snow Depth Comparison). We extracted stable
terrain pixels in 10 equal bins of each topographic index and
obtained the 25-75% confidence interval of differences in each
bin to provide a “strict” assessment of snow depth changes (Snow
Depth Comparison), excluding differences that were within the
stable terrain confidence intervals. With this, we assumed that the
stable pixel residuals are representative of the differences over
snow-covered areas. Given that the stable terrain pixels were well
distributed in space and across the full range of topographic
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indices we believe that this is a fair assumption, though a full test
of the relative uncertainties for stable and snow pixels would
require a high resolution reference dataset or the entire catchment
(e.g., Deschamps-Berger et al., 2020) that was not available to this
study, nor would typically be available in studies of this kind.

Snow Depth Comparison
To assess dDEMs of individual years as “snow depth maps”
[i.e., an analysis ready “end-product” - Shaw et al. (2020a), Shaw
et al. (2020b)], we i) ignore any remaining snow-classified pixels
that are negative in the dDEM of either year, ii) set stable terrain
differences to zero, and iii) limit extreme outliers of each dDEM
for high slope angles following the relation of slope holding
capacity given by Bernhardt and Schultz (2010) (<3% of total
pixels).

For evaluation of pixel-to-pixel snow depth differences (SDD),
we considered:

SDD = $D_2019 — SD_2017 (1)

where “SD” is the single year snow depth map (Table 2) such that
negative values indicate smaller snow depths in 2019 (Figure 2E).

For a stricter comparison, we limited SDD by excluding pixels
that are over glacierised areas, pixels that are within a buffer area
of 6 m (2 pixels) around saturated areas of the SnowON_2017
image (Digital Elevation Model Generation) or pixels that were
within the calculated confidence limits of the d*DEM over stable
terrain for all topographic indices (Confidence Interval of Snow
Depth Differences; Supplementary Table S2).

Alternatively, to provide an estimate of a full, catchment-wide
SDD, we filled any remaining data gaps of a single year (such as
those resulting from image saturation) using a random forest
model trained on all available snow depth data and topographic
indices, following Shaw et al. (2020a). We considered that mean
differences at this full catchment scale is thus the weighted sum of
the differences across all elements of analysis:

SDD(ABCD) = A - SDD (A) + B- SDD (B) + C - SDD (C)

+D-SDD (D) @

where the proportional area of elements of A (the mean change is
zero - no snow in both orthoimages), B (mean change is not
significant - within the confidence ranges of topographic indices),
C (elements of greater uncertainty - glacierised or gap-filled
pixels) and D (the ‘strict SDD where mean change is outside
the confidence range) add to 1.

Finally, we also investigated the areas of snow absence in each
year where the equivalent pixel is snow-covered for the other year
(i.e., snow-covered in 2017 and absent in 2019), and we related
these differences to the topographic indices above.

Uncertainties at the Catchment Scale

It is not straightforward to analytically estimate the error of the
mean snow depth over a catchment as it results from the
combination of different errors correlated at different spatial
scales (Anderson, 2019). Another, typical approach would be
to infer the error from the stable terrain residual. However the
median error over stable terrain is zero by correction of the

Andean Snow Depth from Satellite-Photogrammetry

vertical bias (Co-Registration of Digital Elevation Models). We
estimated the error on the mean snow depth of the catchment
from previous studies which compared Pléiades snow depth with
independent measurements. Shaw et al. (2020a) found a 0.22 m
bias against terrestrial LIDAR data over a small region of the same
catchment while Deschamps-Berger et al. (2020) found a bias
~0.1 m over a similarly complex terrain of comparable size in the
Sierra Nevada, United States. Therefore we considered that o5p =
0.2 is a realistic estimate of the mean error (with the exception of
glacierised areas where ogp is considered as 0.3 m - Correction for
Glacier Change). We further assumed that the mean error on
SD_2017 and SD_2019 are independent (due to different co-
registration vectors, image radiometry and base to height ratios of
the winter images - Table 1; Supplementary Table S1) so that the
uncertainty of strict SDD can be written as:

Ossp = \|0%p + 02p = /202 (3)

For the catchment-wide SDD, we follow the structure of Eq. 2
and weight the uncertainties by area:

— 2 2 2 2
Ossp = \/A “O5ppay T B 0%pp + € Osppey + D 05pppy (4

opp(p) 18 equal to of;p ) as B and D areas differ only by the
significance of the SDD signal. o3, 4, Was set to zero as we
consider that the information about the lack of snow in element A
is perfectly known. For C, the sigma value follows Shaw et al.
(2020a) who calculated the uncertainty of snow depth corrections
over glacier areas due to ice melt and glacier dynamics. The
catchment-wide uncertainty can thus be simplified by:

Ossp = \/(B + D) . O%DD(B) +C- U%DD(C) (5)

Nivo-Meteorological Data

To relate the quantity and distribution of snow in each year to
meteorological conditions during the preceding winter months,
we utilised local automatic weather station (AWS) data for the
region. We obtained data from the high elevation (2,995 m a.sl.)
AWS, Termas del Plomo (Figure 1C) for the period 1st April to
31st October in both years. The station is maintained by the
Chilean Water Directorate and contains information on air
temperature (°C), relative humidity (%), wind speed (m sh
and direction () and precipitation (mm/h). During 2019,
precipitation data are missing for a period of 3 months (May-
July). Therefore, we supported this data series with precipitation
records from the long-term AWS, Yeso Embalse (2,475 m a.s.l.)
for the same period (Figure 1B). We consider the beginning of
the hydrological year (April) until the end of October in order to
provide context to the nivo-meteorological conditions preceding
and following the image acquisitions.

To explore the time series of snow cover in the preceding
winter of each year, we extracted the daily catchment fractional
snow cover area based upon a 0.2 threshold of the normalised
difference snow index (NDSI) from the MODIS (MODerate
resolution Imaging Spectroradiometer) MOD10A1 V6. dataset.
This dataset was not validated within our study, though provides
a generalised view of the snow cover evolution preceding the
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FIGURE 3 | The historical records of (A) total precipitation (mm) for

Quinta Normal (black) and Yeso Embalse (grey) and (B) mean winter air
temperature (°C) at Quinta Normal (Figure 1) lapsed to the mean elevation of
the catchment (4,150 m a.s.l.) using the environmental lapse rate

(-6.5°C km-1). Panel ¢ shows the mean NDSI derived from MODIS MOD10A1
V6 for the Rio Yeso catchment. All annual sums/means represent the period of
1st Apri-3rd September. The years 2017 and 2019 are marked.

Pléiades acquisitions. Finally, to provide a historical context of
climatic conditions for the 2 years under investigation, we also
obtained air temperature and precipitation records from the
long-term  (1950-present) meteorological station, Quinta
Normal (505 m a.sl), maintained in Santiago by the Chilean
Meteorological Directorate. This site provides the longest modern
record of precipitation in the country and emphasises the
dramatic changes of winter precipitation under current
drought conditions.

RESULTS

Nivo-Meteorological Conditions of the

2017/2019 Winters

The winters of 2017 and 2019 were both dominated by warm and
relatively dry conditions in the context of the historical records
(Figure 3) that are characteristic of the current prolonged
drought state of the region since 2010 (Garreaud et al., 2019).
Nevertheless, comparing the 2 years under analysis, 2019 had
experienced the second driest winter on record since 1950, up
until the date of Pléiades acquisition (Figure 3A). 2019 had a
mean AWS (Yeso Embalse) air temperature of 5.9°C between 1st
April and 3rd September (average SnowON acquisition date of
the 2 years), compared to 2.2°C in 2017. MODIS snow cover
duration for this time period was 147 days in 2017, compared to
130 days in 2019. Snow initially fell a week later into the year for
2019, though quickly melted away, delaying the persistent winter
snow cover until late May (Figure 4). Total precipitation
recorded at Yeso Embalse AWS (Figure 1B) for the 1st April
and 3rd September period was 156 mm for 2017 and only 30 mm

2017
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FIGURE 4 | The winter meteorological conditions preceding the

acquisition dates of Pléiades in 2017 and 2019 (vertical green bars). The upper
panels for each year show the daily catchment-average fractional snow cover
area (fSCA) using a 0.2 threshold of the normalised differential snow

index (NDSI) from MODIS MOD10A1 V6 (blue diamonds) and the 5-days
average wind speed (m s-1) and direction (arrows) derived from ERA5. The
bottom panel for each year shows the cumulative precipitation (mm) record at
Yeso Embalse automatic weather station (AWS) (blue line) and hourly
temperature ("C) from Termas del Plomo AWS (red line).

for 2019 (~80% less than 2017), with fewer large precipitation
events (Figure 4). The 2019 winter was both drier and warmer,
though typically experienced similar patterns in the speed and
direction of the wind, interpreted from both Termas del Plomo
AWS and the ERA5 reanalysis (Figure 4). 2019 experienced a
greater quantity of winds from the northwest, though mean wind
speeds were similar and no strong differences in the wind patterns
were discernible between years. For the period of available data,
there were no significant inter-annual differences in the measured
incoming shortwave radiation for the lower catchment.

Evaluation of Pléiades Digital Elevation

Model Differences

Figure 5 shows the stable terrain residuals for individual years
and the empirical cumulative distribution of stable terrain
residuals between years (d*DEM). Inter-annual (2019-2017)
stable terrain differences for the entire catchment reveal an
uncertainty range of -0.36 to +0.24m for the 25-75%
confidence interval (Figure 5C), suggesting that within such
range there is a 50% chance that SDD are the result of error.
For bins of each topographic index (Topographic Indices of the
Digital Elevation Model), uncertainty ranges are highly variable
(see Supplementary Table S2), with ranges of —1.5 to +0.25 m for
slopes >45° and the most convex TPI bin. For shallow slopes
(<25°) with high sky view fraction, the range of uncertainty is
typically within +0.2 m.

Pléiades-Derived Snow Depths
Figure 6 shows the spatial snow depths derived from Pléiades
DEM differencing in each year at a horizontal resolution of
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areas (see text for explanation), snow depths were derived from digital elevation model (DEM) differencing of both September “SnowON” DEMs with the reference
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3 m. Snow accumulation on glaciers appears higher in almost
all locations for 2017, though especially for the borders and
headwall of Pirdmide Glacier (through avalanching) and
lower on the tongue of Bello Glacier (Figure 1C).

Hummocky terrain in the Bello Glacier forefield revealed a
much greater scarcity of snow in 2019 (Figure 6B). Patterns of
snow-covered area are similar, though considering the surface
classification of each SnowON image (Land Surface
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with no snow and in B,C where changes are ignored due to the above criteria.

FIGURE 9 | A map of the snow depth difference [snow depth difference (SDD - m)] for all pixels (A) and the restricted changes that exclude i) glacier areas, i) areas of
saturation and i) differences within the uncertainty of the topographic indices (B). SDD (2019-2017) is shown in a range of -2 to +2 m whereby negative values indicate
that 2019 had less snow depth. Panel C shows the zoomed panel in a subregion to highlight the detail of pixel-to-pixel differences. Gray areas in panel A are associated

Classification), the calculated snow cover area is considered to
be ~60% in 2017, compared to 50% in 2019. We find mean
snow depths 0f 1.27 £ 0.2 mand 0.92 + 0.2 m in 2017 and 2019
respectively.

Mean snow depths are related similarly to the topographic
indices in each year (Figure 7) whereby sheltered, east facing
slopes of 10-30° possess the deepest snow depths. Those sites
which represent moderately low sky-view fractions (0.5) are also
subject to large inter-annual differences in snow depth, likely as a
result of avalanche deposits at the base of steep slopes. In both
years, the higher elevation (>4,500 m a.s.l.), steep slopes of a north
facing orientation have the shallowest snow depths, as expected
due to the effect of slope-dependent holding capacity, wind
redistribution and radiative melting/sublimation of snow. The
meteorological controls on snow melt/distribution are deemed to
be similar based upon the observations from both AWS and

reanalysis data sources. However, 2017 again shows a larger
variability across all topographic indices.

Quantifying Inter-annual Snow Depth

Differences

The mean and standard deviations of SDD are plotted against
topographic indices in Figure 8 with the related d°DEM stable
terrain confidence intervals (grey shaded areas). The smallest
confidence intervals are related to flatter and open terrain
(Evaluation of Pléiades d Digital Elevation Models; Figure 8B;
Supplementary Table S2) and most SDD values lie outside these
confidence ranges. The largest SDD values are found for south-
facing, concave slopes of slope <30° (Figure 8). Figure 9 shows
the pixel-to-pixel SDD for the catchment, again highlighting the
mostly negative differences due to dry conditions of the 2019
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austral winter. Total mean catchment-wide SDD (Figure 9A) is
-0.34 + 0.29 m, with a volume change of —38 + 20% in 2019,
relative to 2017. Figures 9B,C shows the “strict” SDD, based upon
removal of glacier and saturation areas and pixel differences within
the confidence limits related to topography (Figure 8). With 23% of
the total catchment area remaining for this analysis, we find a mean
snow depth difference of —0.48 + 0.28 m, and a 39 + 15% reduction
in 2019 total snow volume compared to 2017. The mean of negative
differences is —0.84 m and +0.33 m for positive differences (i.e., for
deeper snow depths in 2019). A large proportion of these negative
differences appear to be associated with gullies and the base of steep,
north-easterly slopes, though positive differences are more sporadic
with no clear visible pattern (Figure 9C).

Negative SDDs are associated more often with shallower
slopes (Figure 10B) that are more sheltered (Figure 10E) and
are concentrated in a bimodal pattern of east and west facing
slopes (Figure 10D). Smaller SDD between years, those that are
within the confidence limits of the Pléiades observations, are
typically found at lower elevations with steeper, convex slopes
than the larger negative differences (not shown), though
otherwise follow similar patterns related to topography.
Positive SDDs are more common for steep slopes of an east
facing orientation, though do not relate well to any of the
topographic indices.

We find that in 2019, snow absence is typically more common
at lower elevations (Figure 11A), related to the warmer
conditions of the 2019 winter (Figures 3, 4). Absence of snow
in 2019 is common for west facing pixels of the catchment
(Figure 11D) and those that are with a higher sky view factor
(Figure 11F), suggesting a possible link to the radiative energy
balance of the catchment and the relative timing of winter
snowfalls and cloud-free days during the preceding winter.
Absence of snow in 2017 shows a lesser, albeit similar relation
to each topographic index, though is most noteworthy for slopes
>30° (Figure 11B). The mean of 2017 and 2019 snow depths were
0.68 and 0.70 m, respectively for the areas of snow absence in the
alternative year. These areas represent 9.9% and 1.7% of the total
catchment area, respectively.

DISCUSSION

Snow Depth vs. Meteorology of the Central
Andes

The recent, prolonged occurrence of drought for the central Chilean
Andes is of serious concern for the future water security of the region
(Meza et al, 2015; Garreaud et al, 2019). Ayala et al. (2020)
estimated that glacier contributions to streamflow of the Maipo
River (1955-2099) may have already peaked if climate was to
stabilize at the level of the past two decades. Such model findings
of the last decades also support the large scale observed patterns in
glacier mass balance related to the so-called “mega-drought” (Braun
et al., 2019; Dussaillant et al.,, 2019; Farias-Barahona et al., 2019;
Farias-Barahona et al, 2020a; Farias-Barahona et al, 2020b;
Masiokas et al., 2020). Nevertheless, the relative contributions of
glaciers are governed by the hydrological snow year in the upper
catchments of the central Andes, which are typically snow-
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dominated. For example, estimates of annual streamflow
contribution from snowmelt for the Rio Yeso catchment are up
to 97% for wet years (Burger et al,, 2019) and estimated as 54 + 10%
on average for the entire Maipo catchment of 4,843 km® between
1955-2016 (Ayala et al, 2020).

The key challenge of all such modelling studies in
mountainous regions to date, is the uncertainty in the
distribution of solid precipitation in space and time (Ragettli
etal., 2014; Ayala et al., 2016; Burger et al., 2019; Ayala et al., 2020;
Shaw et al., 2020b), largely governed by the lack of high elevation
data and/or the reliability of high elevation snow-precipitation
records (e.g., Scaff et al., 2018). Shaw et al. (2020a) addressed this
challenge by using Pléiades DEM differencing to obtain an
estimate of snow depth for the Rio Yeso catchment. Their
study showed that deviations from this observed snow volume
could be up to ~30% if modelling snow depths based upon local
meteorological information from the catchment outlet (Termas
del Plomo AWS presented here). While this AWS provides one of
the highest elevation observations available for the region,
calibrating a precipitation gradient from this and other, high
elevation weather stations of the region was alone not sufficient to
characterise the accumulation and likely re-distribution of snow
observed over the >2,400 m elevation range of the catchment.

In this study, we have expanded this research focus to
investigate the differences in snow depth between 2 years of
the drought period (Figure 3), updating the general workflow
based upon recent findings of Deschamps-Berger et al. (2020) and
characterising the uncertainties in a robust manner. Our findings
suggest that static, elevation-dependent precipitation gradients
(such as in the aforementioned studies) would not be sufficiently
robust to apply to multiple years of AWS data in the hopes of
estimating high elevation snow volumes (Figure 7). For example,
we find approximately an 80% reduction of measured 2019 winter
precipitation at the Yeso Embalse AWS (Figure 1B) when
compared to the 2017 winter, though we find a difference of
-39 + 15% in the snow volumes of snow covered cells outside the
25-75% confidence limit (23% of the total catchment) and —10%
difference in the snow-covered area of the entire catchment.

The consistent patterns of snow-covered area between years,
despite sizeable differences in the observed volume of snow
(Figure 6; Supplementary Figure S2) implicates the strong
control of both topography (such as exposure or slope) and its
interaction with local meteorological conditions (such as incoming
shortwave radiation and wind speed/direction) in determining the
spatial distribution of snow. Whereas snow volumes have an
evident connection to the total precipitation occurring in the
basin or in nearby basins (e.g, Termas del Plomo or Yeso
Embalse AWSs), the topography acts as a stronger predictor for
snow melt, sublimation or mechanical removal (avalanching or
wind redistribution), producing very similar inter-annual patterns
of snow cover for the end-of-winter. The relationship of snow
depth and meteorology can also be inferred from the catchment
topography, which combines orographic precipitation differences
with elevation up to a threshold (~4,000 m a.s.l.) followed by the
dominant role of ablation or redistribution at high elevation steep
and north facing slopes. The mean snow depths at elevations
>4,000 m a.sl. are mostly sustained by concave landforms that
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receive avalanched snow and protect it from both ablation or wind
redistribution (TPI, SX and SVF indices).

Comparing records of precipitation at the Embalse Yeso and
Termas del Plomo AWS in 2017 (not shown), we find that the
former could not represent all of the same precipitation events
seen by Termas del Plomo AWS in the study catchment (Shaw
et al., 2020b). Therefore, we can infer that at least some of the
differences in the Yeso Embalse precipitation records and Pléiades
observations may be explained by orographic precipitation
differences between these stations or by storms originating from
Argentina. Additionally, the high uncertainties of volume change at
the full catchment scale (-38 + 20%) and a greater snow
compaction of thicker snow packs in 2017 may also partly affect
the distinct differences between observed precipitation and snow
depth for the catchment.

Unfortunately, Termas del Plomo AWS records were partly
missing for the 2019 winter and so differences in timing and
magnitude of precipitation events cannot be fully assessed here.
Even so, this emphasises the immense difficulty in attempting to
model changes of large catchment hydrology using statistically-
derived forcing of precipitation and highlights the potential
advantages of satellite stereo DEMs for calibration, validation
or initial conditions in glacio-hydrological models (Vogeli et al.,
2016; Shaw et al., 2020b). While a greater number of high-
elevation AWSs would be highly recommendable to support
such glacio-hydrological modelling and improve process
understanding of snow accumulation and remobilisation of
catchments in the Andes (Shaw et al., 2020b), the inferred
radiative and wind processes based upon high resolution
topography and low-elevation meteorological AWSs are
perhaps sufficient to account for the smaller expected
differences in snow-covered area. A key challenge remains for
linking precipitation events, wind variability and snow depth at the
highest reaches of the mountain catchments, especially because the
available data for snow depth offers only a snap shot in time
(Figure 4). Nevertheless, the emergence of decimetre accuracy
Pléiades and World-View products to estimate snow depth (Marti
et al., 2016; McGrath et al., 2019; Shaw et al., 2020a; Deschamps-
Berger et al, 2020) may offer new potential in how we can
constrain high mountain precipitation, though further steps are
required to relate localised in situ meteorological observations to
catchment-wide snow volumes on an inter-annual basis.

Limitations of Pléiades for Multi-Annual

Snow Depth Derivation

We have presented 2 years of snow depth estimates for almost the
same day of year, using the same methodology provided by
Deschamps-Berger et al. (2020). The fact that we difference
both September DEMs with the same SnowOFF 2018
reference DEM arguably creates a more robust test of the
inter-annual differences in snow depth. Nevertheless, the
inconsistent acquisition geometries between years means that
DEM quality is variable and resulted in data loss. For example, the
issues of saturation in the 2017 image acquisition had limited the
area of the basin that was comparable between years (by
approximately 17% - Shaw et al. (2020a)). This was largely
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due to non-standardised acquisition parameters set by the
tasking, an issue that can be mitigated by specifying the time
domain integration (TDI) lines to image the scene. We therefore
highlight that there are limitations that are specific to our study
(such as saturation or image timing and change detection over
glaciers) that are not necessarily representative of the capabilities
of Pléiades for snow depth mapping in other domains (Marti
etal., 2016). Nevertheless, future tasking of images for this region
could benefit from standardisation of acquisition parameters that
lead to fewer image saturation problems and data loss.

A further issue with the work presented here is that we are
unable to quantify inter-annual variability of shallow snow depths
(i.e., small DEM differences) that are particularly prevalent under
recent drought conditions, especially for the winter of 2019.
Approximately 9% of the total 3m pixels from the Pléiades
acquisition area were within the 25-75% confidence limits
calculated from the topographic indices (grey band of Figure 8).
This is therefore a sizeable proportion of the catchment that cannot
be reliably considered in analyses for inter-annual differences.
Nevertheless, evidence of snow-covered area changes from the
classification of the high resolution e.g., multispectral Pléiades
images allows an analysis of factors that may have affected the
presence/absence of snow in a given year (Figure 11). From this we
establish that exposure, slope and aspect control a large proportion
of the absences of snow in 2019 (Figure 11) that can likely be
explained by radiative fluxes during the winter. Given that
differences in snow-covered areas are therefore typical for
steeper slopes, we can assume that snow depths for the year
where snow is still present are small given the likely slope
holding capacity (Bernhardt and Schulz, 2010). Such smaller
differences in spatial snow depth have been shown to have
minimal impact upon models of monthly streamflow (e.g., Shaw
et al., 2020b) and therefore uncertainty of the reported magnitudes
may not be crucial, especially when spatially resampling to coarser
resolutions (Deschamps-Berger et al., 2020).

In relation to the relative errors for stable and snow-covered
terrain (Figure 8), we assumed that stable terrain uncertainties
were representative of the SDD uncertainties, and this can be
partially supported by the fact that the stable terrain pixels are
well distributed across all of the topographic indices (Figure 8).
As previously mentioned, studies of this type typically lack a
large-scale reference dataset, such as that provided by ASO.
Comparing Pléiades and ASO snow depths, Deschamps-Berger
et al. (2020) in fact found a higher error for snow-covered pixels
than over stable terrain. The authors partly attribute this to the
presence of vegetation and to the co-registration process
optimized on stable terrain within their study catchment. We
highlight that at least the former is not applicable to the Rio Yeso
catchment due to the lack of vegetation. Nevertheless, a full
assessment of the stable vs. snow errors are not possible given
the data availability of this study.

We estimated the mean error from studies which measured
error on similar mountainous terrain with independent validation
datasets (Deschamps-Berger et al., 2020; Shaw et al., 2020a). We are
aware that this neglects the specificity of each study site, though
given that the error was estimated over a catchment of similar size
and complex topography by Deschamps-Berger et al. (2020), we
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believe that it provides a typical range of errors that are relevant for
the Rio Yeso catchment.

Finally, we identify that our late winter DEMs aid snow depth
estimation only for a brief snapshot in time (Margulis and Fang,
2019; Shaw et al, 2020b). Therefore, these single yearly
observations may obscure partly the causes of snow depths in
the months preceding and thus it is difficult to build a story of the
full winter-time accumulation record (Figure 4). Hedrick et al.
(2018) utilised multiple snow depth maps of a single winter
season from the aforementioned ASO data in order to update the
SWE conditions within an energy balance routine. Their study
found a large improvement in SWE estimation if the model had
previously been updated with observations of the ASO, thus
demonstrating the advantages of a higher temporal resolution
for such detailed spatial snow depth datasets. While this could be
a recommendation for future work on snow depth derivation and
has previously been performed using Pléiades data for glacier
mass balance studies (Belart et al., 2017), multiple spaceborne
stereo DEMs obtained throughout the season likely could not
detect smaller snow accumulation events within the likely
uncertainties reported (Marti et al., 2016; McGrath et al., 2019;
Deschamps-Berger et al., 2020; Shaw et al., 2020a). Our study has
provided a generalised workflow of comparing Pléiades-derived
snow depths for two distinct years. However, the calculated levels
of uncertainty are both difficult to fully quantify, but also clearly
larger than LiDAR-derived snow depths from dedicated surveys
(Painter et al., 2016). Accordingly, calculating snow depths and
snow depth differences from spaceborne photogrammetry, as
presented here, one should carefully plan acquisitions based upon
sound knowledge of the local conditions (such as the typical
length and intensity of the core winter season and timing of the
SWE maxima).

Future Directions

Further years of data, even at single “well-timed” end-of-winter
dates could have benefits for modelling seasonal streamflow (Li
et al, 2019; Margulis and Fang, 2019; Shaw et al., 2020b),
calibration of suitable parameterisations for  snow
accumulation (e.g., solid precipitation threshold) or elevation
gradients of forcing variables, namely precipitation (Ragettli
et al., 2014; Ayala et al,, 2016; Vogeli et al., 2016; Burger et al.,
2019; Ayala et al, 2020). In combination with the increasing
resolution of (merged) snow cover products at short revisit
periods (e.g., Gascoin et al, 2019), leveraging more, “well-
timed” Pléiades imagery may improve our ability to
characterize the snow cover distribution and evolution in
mountain environments, in particular for data-scarce regions
such as the central Andes. We recognise a potential limitation
that our comparison years (and possibly future observation years)
were during a prolonged and severe drought period (Garreaud
et al., 2019), and therefore any parameterisations based upon
meteorology or topography using these snow depth datasets may
not be applicable to years not under such drought conditions.
Nevertheless, the clear contrast of information from in situ
observations and high resolution spatial snow depths
presented here argue a strong need for further research into
forming a link between the high spatial (Pléiades) and temporal
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(winter AWS records) data series with further years of high
resolution data.

CONCLUSION

We present, for the first time, a comparison of 2years of high
resolution, 3 m Pléiades-derived snow depth maps for a high
mountain catchment of the central Chilean Andes, building on
an initial study for the same catchment. Applying a recently updated
methodology for tri-stereo photogrammetry and robustly assessing
uncertainties, we compare the pixel-to-pixel and grouped snow
depth differences based upon topographic indices (e.g., slope,
aspect, sky view) between the late winter of 2017 and 2019.Both
years represented drought conditions for the region, though 2019
experienced the second driest winter for the observation record
(1950-present), resulting in an 80% reduction of winter (April-
September) precipitation compared to 2017 at a high elevation AWS
(2,475 m a.sl.) available in both years. Nevertheless, we find a 10%
reduction in snow-covered area for the total catchment and a mean
—0.48 + 0.28 m snow depth difference and 39 + 15% reduction in
total snow volume (2019-2017) for the pixels restricted by stable
terrain uncertainty ranges of binned topography indices (23% of the
total catchment). We find that the largest differences in snow depth
and snow-covered area are related to the aspect, exposure and slope,
such that greater depth (and presence) of snow in 2017 was found for
west-facing, sheltered pixels of moderate slope (30-40°). Areas of
greater snow depth in 2019 appear related to north-easterly slopes of
30-40°, though no clear explanations relating to wind re-
mobilisation or other meteorological phenomena are apparent.
Smaller snow volumes of 2019 relate to warmer conditions, lack
of winter precipitation and a likely role of the winter energy balance
on thin and patchy snowpacks. Nevertheless, we identify a clear need
to relate the high spatial (Pléiades) and temporal (AWS) scales
within the available datasets in order to address the distinct
differences between measured precipitation at lower elevations
and observed snow depths at higher elevations. We recommend
leveraging further observations of satellite-derived snow depths
combined with newly developed snow-cover products to
construct a history of the winter snow accumulation regime at
such high mountain sites.
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