
Application of Subspace-Based
Detection Algorithm to Infrasound
Signals in Volcanic Areas
Mariangela Sciotto* and Placido Montalto

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy

Infrasonic signals investigation plays a fundamental role for both volcano monitoring
purpose and the study of the explosion dynamics. Proper and reliable detection of
weak signals is a critical issue in active volcano monitoring. In particular, in volcanic
acoustics, it has direct consequences in pinpointing the real number of generated events
(amplitude transients), especially when they exhibit low amplitude, are close in time to each
other, and/or multiple sources exist. To accomplish this task, several algorithms have been
proposed in literature; in particular, to overcome limitations of classical approaches such
as short-time average/long-time average and cross-correlation detector, in this paper a
subspace-based detection technique has been implemented. Results obtained by
applying subspace detector on real infrasound data highlight that this method allows
sensitive detection of lower energy events. This method is based on a projection of a sliding
window of signal buffer onto a signal subspace that spans a collection of reference signals,
representing similar waveforms from a particular infrasound source. A critical point is
related to subspace design. Here, an empirical procedure has been applied to build the
signal subspace from a set of reference waveforms (templates). In addition, in order to
determine detectors parameters, such as subspace dimension and detection threshold,
even in presence of overlapped noise such as infrasonic tremor, a statistical analysis of
noise has been carried out. Finally, the subspace detector reliability and performance, have
been assessed by performing a comparison among subspace approach, cross-
correlation detector and short-time average/long-time average detector. The obtained
confusion matrix and extrapolated performance indices have demonstrated the
potentiality, the advantages and drawbacks of the subspace method in tracking
volcanic activity producing infrasound events. This method revealed to be a good
compromise in detecting low-energy and very close in time events recorded during
Strombolian activity.

Keywords: infrasound signal, subspace detector, trigger algorithm, Infrasound volcano monitoring, strombolian
activity, Infrasound events, Etna volcano, Infrasonic tremor

INTRODUCTION

Amplitude transient detection plays a fundamental role in volcano monitoring, allowing counting
amplitude transients, identifying amplitude and occurrence rate variations. Besides, it is an essential
step to localize seismic sources and their possible migration, which could be related to changes in
volcano state and dynamics.
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Classical methods for signal detection in seismology and volcano-
seismology are grouped into two main categories: energy and
correlation detectors. The former, called incoherent energy
detectors, include algorithms searching for signals which are not
or poorly known, such as STA/LTA (short-time average/long-time
average) algorithm (Allen, 1978; Trnkoczy, 2012). These techniques,
routinely used in volcano seismology, need no data pre-processing,
beside the filtering applied to identify the desired signals, such as
volcano-tectonic (VT) earthquakes or long period (LP) events. This
approach suffers from high rate of false alarms or even of missed
detections, due mainly to the background noise strongly affecting the
reliability of this technique. This is especially true on active volcanoes
with continuous volcanic tremor, which could dramatically reduce
the signal (intended as the amplitude transients) to noise ratio. The
latter group, correlation detectors, consists of algorithms based on the
cross-correlation between a known waveform and the continuously
recorded signal. These algorithms are very sensitive, give low false
alarm rate but have the disadvantage of being able to detect only
signals which are very similar to the template waveform, which in
turn needs to be well known (Withers et al., 1999; Gibbons et al.,
2007). In volcano acoustics, similar techniques (e.g., Cannata et al.,
2013a; Cannata et al.,2013b; Thompson, 2015; Hotovec-Ellis and
Jeffrines, 2016;Matoza et al., 2019a; Senobari et al., 2019), ormethods
making use of advanced signal processing techniques (Bueno et al.,
2019), are implemented to identify and extract amplitude transients
from the real-time streaming of signals, that characterize explosive or
degassing activity. In particular, energy detectors, such as STA/LTA,
are efficient algorithms when multiple infrasound sources are active
(as at multi-vent volcanoes) and exhibit space-time variations, while
correlation detectors are a powerful tool when we want to identify
amplitude transients produced by a single and/or stable infrasound
source in order to study its physical properties (Montalto et al., 2010;
Sciotto et al., 2013; Cannata et al., 2013a; Hotovec-Ellis and Jeffrines,
2016; Yokoo et al., 2019).

Subspace-based detectors overcome the aforementioned
limitation, in that they operate a comparison between the
continuous signal and a set of reference waveforms hereafter
called templates (Harris, 2006). One of the strong points of this
method is the assumption on noise statistical features: it is
supposed to be uncorrelated zero-mean gaussian noise. Signals
acquired on active volcanoes generally are affected by band
overlapped noise (e.g., volcanic tremor and volcanic
infrasound tremor; e.g., Cannata et al., 2013b; Cannavò et al.,
2019). In the light of it, without loss of generality, well known
sources of noise, like infrasound tremor, can be preventively
filtered. While in correlation detectors the waveform is a single
template or a stacked waveform (Gibbons and Ringdal, 2006), in
the subspace approach the designed set of templates is built by
means of the Singular Value Decomposition (SVD) of a matrix
whose columns are a variable number of templates. Subspace
methods have been carried out mainly in seismology, where they
have been applied for earthquakes tracking, especially in case of
aftershock sequences (Harris and Dodge, 2011; McMahon et al.,
2017), as well as to identify low-frequency earthquakes in non-
volcanic tremor (Maceira et al., 2010).

Volcano acoustic plays a fundamental role for both
monitoring purpose and the study of the explosion dynamics

and revealed to be a reliable tool to characterize eruptive activity
and shed a light into the shallow plumbing structure system at
Etna (Cannata et al., 2013a; Sciotto et al., 2013, Spina et al., 2015;
Cannavò et al., 2019; Sciotto et al., 2019). Proper detection of
signal of interest is a crucial, and at the same time critical, issue in
volcano seismology, in that it allows extracting and collecting
amplitude transient waveforms (events), which are therefore
analyzed to provide information about spectral content and
source location. In particular, in volcano monitoring, events
detection has direct consequences in pinpointing the real
number of generated events and identifying amplitude and
occurrence rate variations. This information can be of support
to follow the explosive activity and to improve the assessment of
volcanic activity. This is particularly true on Etna, where multiple
open-conduit vents exist, whose activity often consists of
persistent Strombolian explosions, producing low amplitude
and very close in time infrasound events. In order to
accomplish the detection task, several algorithms have been
proposed in literature; in particular, to overcome limitations of
classical approaches such as short-time average/long-time
average and cross-correlation detector, in this paper a
subspace-based detection technique has been implemented.

In this paper, we attempt to clear the way to the application of
subspace detection method in volcano-acoustics, previously
investigated in Sciotto et al., (2011) in a preliminary study,
comparing its performance with correlation and STA/LTA
detectors. In particular, we test this technique on signals
recorded by the infrasound permanent network deployed at
Mt. Etna, which represents an ideal dataset to lead tests on
this matter. Indeed, infrasound activity at Mt. Etna is almost
continuous, and is also characterized by both discrete amplitude
transients and continuous tremor, produced by several summit
craters and eruptive fractures often opening on the flanks of the
summit cones. Moreover, the infrasound signals are generated by
different source mechanisms related to explosive activity, such as
Strombolian activity and lava fountaining, as well as to degassing
phenomena (Cannata et al., 2013a; Sciotto et al., 2013; Spina et al.,
2015; Sciotto et al., 2019). Therefore, in a multi-vent and open-
conduit volcano such as Mt. Etna, where volcanic activity is
almost persistent and prone to eruptive fracture opening,
infrasound signal can consist of a superposition of signals
from different time-variant and stationary infrasound sources.
If on the one hand each infrasound source is repetitive, on the
other hand it can undergo modifications in time. In these cases,
correlation detector may fail in detection of the variation in
infrasound waveforms caused by these factors. Subspace detector
is supposed to accomplish these two tasks: high sensibility and
high flexibility.

DATA AND METHOD

For the purpose of subspace-based detection implementation,
theory of detection problem is first introduced. Successively
subspace approach is explained and an empirical procedure
used to build and design signal subspace described. Other two
sub-sections are dedicated to discuss the statistical analysis of
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noise related to parameter estimation, both for subspace,
correlation and STA/LTA detectors.

Subspace Detection Problem
Detectors usually implement a binary hypothesis test on the
presence or absence of the signal of interest in a data
observation window (Van Trees, 1968). In particular, the test
is aimed to choose between the null hypothesis H0, where noise
only is present, and the alternative hypothesis H1, where both the
signal of interest and noise are present.

x[n] � η under hypothesisH0, (1)

x[n] � s + η under hypothesis H1. (2)

where x[n] is the n-long window of continuous data, s is the signal of
interest and η is the background noise assumed zero-mean Gaussian
and temporally and spatially uncorrelated. In general, considering a
multi-channel data acquisition, if Nt is the number of samples of
observation window and Nc is the total number of data channel
streams, the total number of samplesN of a multiplexed data stream
vector x[n] is:

N � Nt . (3)

In our framework, infrasound sensor acquires only one
channel, so in Eq. 3 N � Nt .

Signal s in Eq. 2 is assumed deterministic and dependent on a
vector of an unknown parameters a and expressed by unknown
linear combination of a basis waveform:

s � Ua, (4)

where U is a N × d matrix of d unknown signals that represent
the subspace bases. The subspace dimension d takes value from 1
to length of vector x[n]: d ∈ [1N]. Without loss of generality, U
can be made orthonormal:

UTU � I, (5)

where I is d × d matrix.
Under these assumptions, the probability densities function

(pdf) for the recorded data under the null hypothesis H0 (no
events present) is:

p(x[n]|H0) � [ 1
2πσ2

]N/2

exp( − 1
2σ2

xt[n]x[n]), (6)

while, under the null hypothesis ofH1 (events present), pdf can be
expressed as:

p(x[n]|H1) � [ 1
2πσ2

]N/2

exp( − 1
2σ2

(x[n] − Ua)t(x[n] − Ua)).
(7)

FIGURE 1 | Digital elevation model of Etna (Tarquini et al., 2007) with the location of the infrasonic station used in this work (green triangle EMFO), summit crater
acronyms (VOR, Voragine; BN, Bocca Nuova; NEC, North-East Crater; SEC, South-East Crater; NSEC, New South-East Crater), infrasonic tremor source locations (red
circles) and infrasonic event source locations (blue circles).
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As formulated by Harris (2006), the detection rule is a
likelihood ratio test comparing the probability that the
observed data are due to signal and noise to the probability
that they are due to noise alone:

Λ(x[n]) � p(x[n]|H1)
p(x[n]|H0)< c, (8)

using Eqs. 6, 7, the likelihood ratio test expressed in Eq. 8 can be
rewritten as a Generalized Likelihood Ratio Test (GLRT; Van
Trees, 1968):

Λ(x[n]) �
max
{a.σ} p(x[n]|H1)
max
{σ} p(x[n]|H0) < α. (9)

Using natural logarithm, Eq. 9 can be rewritten as:

l(x[n]) � l(Λ(x[n])) � −N
2
(xt[n]x[n] − xtp[n]xp[n]

xt[n]x[n] )
� −N

2
(1 − c[n]), (10)

where l(x[n]) � l(Λ(x[n])) when the pdfs are in the exponential
family, xp[n] is the least-squares estimate of the signal x[n] in the
detection window:

xp[n] � UUTx[n], (11)

and c[n], known as the subspace detection statistics, represents
the ratio of the energy projected into the signal subspace U to the
energy in the original data, and is given by:

c[n] � xTp [n]xp[n]
xT[n]x[n] ∈ [0 1]. (12)

The generalized likelihood ratio test (Eq. 9) detects an event of
interest if the generalized log likelihood ratio (Eq. 10) exceeds a
certain threshold α:

l(x[n]) � −N
2
(1 − c[n])> α. (13)

Considering the subspace detection statistics c[n], an event is
detected if:

c[n]> c, (14)

where c is the threshold for the subspace and needs to be defined.
In order to apply subspace detector based on Eq. 14, the first step
is the construction of the signal subspace U, starting from the
template matrix.

This matrix has peculiar characteristics, which are described in
the Template Matrix, and consists of templates, representing
previously observed events of interest, and is a fundamental
tool for building the subspace. The number and type of
templates needed to build the matrix depends on detector
design. Signal subspace is the core of the algorithm, since it is
the vector subspace used to represent the reference templates to
be found into the signal. In order to extract orthonormal bases,
Singular Value Decomposition (SVD) is applied to the template
matrix, and then the dimension of the subspace is chosen. The

dimension determines the amount of energy that the subspace is
able to capture. Once the SVD is applied, d singular values are
used to build the subspace (Eqs. 4, 11). A few approaches have
been implemented in literature to set this parameter, aiming to
gain a compromise between detecting weak and less represented
events (characterized by waveforms quite different from the
reference templates) and having low false alarm or loss of
significant events. In this paper, following Harris (2006), we
selected the dimension parameter by means of an empirical
approach making use of two different graphs as explained in
Subspace Design.

Regarding the definition of the threshold c, Harris (2006)
studied the distribution of c[n] statistics and derived the
threshold using the Neyman-Pearson criterion (Van Trees,
1968). Under this criterion, the subspace dimension d is
firstly determined by maximizing the probability of
detection PD for a fixed false alarm rate PF using the
following equations:

1 − Fd,N−d( c

1 − c

N − d
d

) � PF , (15)

1 − Fd,N−d( c

1 − c

N − d
d

, fc.N .SNR, (1 − fc).N.SNR) � PD.

(16)

where PF is evaluated from the cumulative central F distribution
with d and N-d degrees of freedom under the null hypothesis H0

and PD is expressed in terms of the cumulative doubly non-
central F distribution (Mudholkar et al., 1976) with the same
degrees of freedom, fc.N.SNR is the non-centrality parameter for
the numerator, [(1 − fc).N.SNR] is the non-centrality parameter
for the denominator, f�c is the average fraction of energy for all
design set events,N is the embedding space dimension, and (N-d)
is the dimension of the orthogonal complement of the signal
subspace; finally SNR is the signal-to-noize ratio in the detection
window.

Dataset
In order to design a dataset for the analysis, we chose a 1-h-long
time interval (13:30–14:30 of May 30, 2019) of infrasound
continuous signal recorded at EMFO station. This station
belongs to the Infrasound Permanent Network run by Istituto
Nazionale di Geofisica e Vulcanologia (INGV), is equipped with a
GRAS 40AN microphone with a flat response at a sensitivity of
50 mV/Pa in the frequency range of 0.3–20,000 Hz and sampling
rate of 50 Hz, and is located about 8 km far from Etna summit
craters and about seven from the eruptive fracture (Figure 1).
This station, together to ESLN (which is deployed at about the
same distance from the summit area), was the only station able to
record the explosive activity, is one of the less noisy stations
among the permanent network, and, if compared with summit
stations (located at higher altitude) is less affected by wind noise
that can hide weak amplitude transients.

Signal buffer is characterized by infrasound events generated
by an intense Strombolian activity that occurred at an eruptive
fracture opened southeast of New Southeast Crater on the firsts
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hours of May 30, 2019 (here after NSEC, INGV-OE Internal
Report, 2019). Here lava flows, ash emission, Strombolian and
spattering activity took place. Explosive activity produced
infrasound amplitude transients characterized by most of
energy in the band 2.5–10 Hz, which are identifiable in the
spectrogram from about 07:00 UTC, and with amplitude
varying in a wide range (Figure 2). From about 14:00 UTC
infrasonic activity at this fracture became more energetic,
explosion generated infrasound events were more energetic
and very close in time (Figure 2). Higher amplitude infrasonic
events were detected and located by the real-time automatic
system in force at INGV-OE (INGV-OE Internal Report,
2019) in correspondence of the eruptive fracture, as shown by
blue circles in Figure 1.

In addition to infrasound events from the eruptive fracture, an
overload continuous low frequency infrasonic tremor (∼0.6Hz,
Figure 2), whose source was located at Bocca Nuova crater (BN;
red circles in Figure 1), was recorded. These characteristics make the
dataset particularly useful to be used as test for an automatic detection
algorithm. In particular, the chosen signal is suitable for verifying the
subspace capability to detect the maximum number of infrasound
events, especially of low amplitude ones, and to compare its
performance with other detection algorithms. Furthermore, it

allows us to verify this triggering technique in presence of noise,
which is represented by the overlying low frequency infrasonic tremor.

Subspace Algorithm Implementation
The subspace algorithm for event detection needs several key steps to
be accomplished in order to be efficiently implemented, which are
examined in following subsections and are summarized as follows:

• events of interest selection and pre-processing of template
matrix (Template Matrix);

• statistical analysis of noise aiming to choose the threshold
value (Subspace Design);

• subspace design (SVD and setting up of required parameters
for subspace building) (Threshold Setting).

Three buffers of infrasound signal were selected for subspace
method application (Figure 2): 1) a 1 h-long time interval of signal
consisting of background noise, and with no infrasound events,
recorded during the same day of the dataset of analysis, to carry
out statistical parameter estimation (00:00–01:00 of May 30, 2019; all
times are in GMT); 2) a 3 h-long time interval of signal characterized
by infrasound events of interest, for waveform templates selection (12:
00–15:00 of May 30, 2019); and 3) 1 h-long time interval to test the

FIGURE 2 | Infrasound signal recorded at EMFO station on May 30, 2019 including the three buffers took into account in this work for statistical parameter
estimation (00:00 -01:00), templates selection (12:00 -15:00) and subspace detector application (13:30 -14:30) (top) and normalized spectrogram, where spectra are
averaged in 2-min-long windows (bottom).
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subspace detector and searching for events of interest (13:30–14:30 of
May 30, 2019).

We performed a first test by detrending and filtering each
signal window between 1 and 10 Hz, to get rid of noise such as
wind and low frequency tremor generated by a second infrasound
source (Figures 1, 2), and set to zero mean and unit variance. A
second test was performed by filtering signal between 0.5 and
10 Hz, in order to include the low frequency infrasonic tremor,
and verify its influence on the detection.

Template Matrix
Building the template matrix is the preparatory step for subspace
design. The template matrix is thought to consist of events of
interest we are searching into the continuous signal. These can be
manually selected, or, for a more robust procedure, waveforms
can be automatically detected by a trigger algorithm (Maceira
et al., 2010; Song et al., 2014). We made use of this last approach,
and first triggered the events by means of STA/LTA energy
detector. Secondly, we applied waveform cross-correlation,
choosing an appropriate threshold, and selected the first event
of each family, related to the infrasound source of interest
(Figure 3A) in which the events were grouped. Once
extracted, waveforms were aligned (Figure 3B); the algorithm
has been designed to allow the operator to choose the alignment
method. Waveforms can be aligned based on maximum or
minimum amplitude value, or by means of manual picking.
Successively, they were placed as columns in the template matrix.

Subspace Design
Signal subspace (U in Eq. 4) is the vector subspace used to
represent the reference templates we want to find into continuous
signal. The SVD provides the singular values allowing to build the

subspace of the signal, that is a low-dimension representation of
signal. Meaning of the dimension of subspace relies in the amount
of energy that it is able to capture, and hence in the degree of
waveform variation the algorithm is capable to detect. A few
approaches have been implemented in literature (e.g., Harris,
2006; Song et al., 2014) to set this parameter, aiming to gain a
compromise between detecting weak and less represented events
(that is events having waveform quite different from reference
template) and having low false alarm rate and possible loss of
significant events. In this paper, following Harris (2006), we
selected the dimension parameter by means of an empirical
approach, making use of two different graphs. First, the
fractional energy captured for each event is calculated:

f ic � aiTd a
i
d , (17)

where f ic is the fraction of energy captured by the ith template and
aid is the ith unknown parameter of the coefficient matrix (Eq. 4,
see Song et al., 2014 for further details). Figure 4A shows fc of
each template in function of the dimension of representation. The
second plot is built by calculating the difference between the
average captured energy in function of the dimension
(Figure 4C):

Δfc � fc(d + 1) − fc(d), (18)

where fc is the average fraction of energy captured by each of the d
templates. Values of f ic and Δfc determined for our dataset of
analysis are plotted in Figure 4. In particular, in Figure 4A the
dimension d, instead of maximizing PD value (Eq. 16), is
graphically determined as the lower value so that all curves (or
the average curve) lay above the assumed percentage of energy we
want to capture (e.g., 80 or 90%). As an alternative, in Figure 4C

FIGURE 3 | Event waveforms composing the template matrix before (A) and after (B) pre-processing.
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an adequate dimension is the value beyond which the amount of
energy increase is negligible. Once the dimension is selected, the
subspace is built.

The sufficient statistic for the subspace can be now calculated
by implementing Eqs. 11, 12, by means of windows of signal
subspace sliding against the continuous signal, and compared
against the threshold (Eqs. 13, 14) to declare if an event is present.

In subspace detector algorithm, signal in a detection
window is projected into a subspace spanned by the d
columns of the subspace representation. The statistic is
therefore the ratio of the squared norm of the projected
vector to the squared norm of the original data vector (Eq.
12). It ranges between 0 and 1 and is a measure of the linear
dependence between the signal and the orthonormal bases
constituting the signal subspace. Every time the sufficient
statistic exceeds the given threshold (c) a detection is
declared.

Threshold Setting
The choice of the threshold c is always a compromise between
an aggressive value, with the highest number of detections, even
of less energetic events and leading to a high number of false
detections, and a conservative value, when we want a minimum
number of false detections at the cost of less true detections.
Usually, threshold choice is based on the operator background
experience and signal characteristics, that makes its value pretty
subjective. In this paper, we tried to derive an empirical
threshold value based on the data statistics and on the nature
of the problem, e.g., waveform of events to be identified into
incoming signals. In order to objectively compare the
performance of subspace detector, we determined threshold
of the three different applied triggering algorithms (subspace
detector, correlation detector and STA/LTA) by means of the
same approach.

FIGURE 4 | Fraction of captured energy by each template of the designed matrix in function of the subspace dimension for signal filtered in the band 1–10 Hz (A)
and in the band 0.5–10 Hz (B). Black curve represents captured energy by each template, red curve the average captured energy, while, blue and light blue lines
represent the 90 and 80 percentage of captured energy, respectively. Increment of average fractional captured energy (Δfc), in function of subspace dimension for signal
filtered in the band 1–10 Hz (C) and in the band 0.5–10 Hz (D).
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Following Harris (2006) and Song et al. (2014), we
implemented the Neyman-Pearson decision criterion (Van
Trees, 1968). In the criterion, the threshold c is derived from
the false alarm rate with Eq. 15. In order to obtain the detection
threshold, a few parameters need to be determined: 1) the false
alarm probability (Eq. 15), 2) subspace dimension and 3) N.
Regarding this latter, we should discuss about noise. Indeed, noise
in the detection windows is assumed to be statistically
uncorrelated. As Wiechecki-Vergara et al. (2001) point out,
the effective dimension of the embedding space can be
significantly lower than N if the data are filtered prior to
detection. Noise could be correlated and could reduce the
effective dimension of the embedding space even if data are
not filtered. As Song et al. (2014) suggested, we applied the
correction for the influence of the correlated noise, and
estimated the effective embedding space dimension of
detection windows N̂ used in subspace/correlation, and in
STA/LTA detectors. According to Wiechecki-Vergara et al.
(2001), the effective dimension of the embedding space N̂ is
related to the variance of the sample correlation coefficient ĉij
between noise data ηj and event signal si.

ĉij � siTηj											
(siT si)(ηjTηj)√ . (19)

In particular, once calculated the cross-correlation values
using the specific window length N, the variance is obtained
and the effective embedding space of the respective detection
window (subspace, correlation, STA/LTA) are calculated by
means of:

N̂ � 1 + σ−2 ≤ N , (20)

in the light of it, Eq. 15 can be rewritten as:

1 − F
d,N̂−d( c

1 − c

N̂ − d
d

) � PF . (21)

Hence, simple correlation detector can be written as:

ĉ � sTmx										(sTmsm)(xTx)√ , (22)

where sm is the master event data, x is data to be detected. A
comparison between Eq. 12 and Eq. 22 shows that the correlation
coefficient ĉ is equivalent to the square root of the subspace
detection statistics c[n]with a signal subspace dimension of d � 1.
Here cross-correlation threshold is cc and both detectors have a
false alarm rate:

1 − F
1,N̂−1( cc

1 − cc

N̂ − 1
1

) � PF . (23)

After obtaining N̂ for subspace, next step is related to
estimation of false alarm probability PF by means of Eq. 23.

In order to accomplish this task, threshold cc is obtained by
cross-correlating each template with noise data by means of
Eq. 19 (see Song et al., 2014 for further details). Cross-

correlation value distribution is then plotted and the detection
threshold is set aiming to obtain the minimum number of false
detection (Figure 5). In this paper, we empirically estimated the
correlator threshold as the value corresponding to a chosen
percentile of the distribution.

Once the cross-correlation threshold cc and the effective
embedding space of detection window (N̂) are known, false
alarm probability can be estimated by inverting Eq. 23.

At this stage of the processing, we own all parameters needed
to derive c from Eq. 21, that is: 1) the false alarm probability PF
(Eq. 23), 2) the effective dimension of the embedding space N̂ ,
and 3) the subspace dimension (whose method of derivation is
exposed in following sub-section).

With the aim of evaluating the advantages/effectiveness of the
subspace-based detector, we make a comparison with the
performance of STA/LTA and the simple correlator trigger
algorithms. As regards the former, the detection statistic is
calculated:

r[n] � xTSTA[n]xSTA[n]/NSTA

xTLTA[n]xLTA[n] /NLTA
, (24)

where x are data to be scanned, and the detection problem is
formalized as:

r[n]> cr . (25)

The STA/LTA threshold was determined by means of cr the same
approach implemented for subspace, once computed N̂STA,
N̂LTA (obtained by Eqs. 19, 20) and PF (obtained by Eq. 23),
solving the following equation:

PF � 1 − F
N̂STA,N̂LTA

(cr). (26)

Regarding the STA/LTA detector, based on event spectral
content, we empirically set STA and LTA window length equal to
3 and 25 times the dominant period (Withers et al., 1998)
respectively, corresponding with the lower frequency
characterizing infrasound events.

Correlation detector was instead implemented as a subspace
detector in which d � 1, by means of Eq. 22. Detection window
length chosen for subspace and correlator scan was set to 4 times
the dominant period to include the entire waveform
(Figure 3B).

RESULTS

Subspace-based algorithm, as well as correlation detector and
STA/LTA, were applied to the dataset of 30/May/2019 (13:
30–14:30), which consists of the infrasound signal recorded by
EMFO station, and is characterized by infrasound events
located at the eruptive fracture and infrasonic tremor
located at BN (Figures 1, 2). Concerning the subspace
method, we used, as event templates, waveforms extracted
from signal recorded at the same station (Figure 3A), by
means of the approach described in Template Matrix,
setting a cross-correlation threshold equal to 0.6. Once
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template matrix has been designed, waveforms were cut in
62 points-long windows, filtered, normalized and aligned by
their positive peaks (Figure 3B). A first test was carried out by
filtering signal in the frequency band 1–10 Hz. This frequency
band was chosen with the aim of filtering out the correlated
low frequency tremor.

We performed two computations, by using 99.9 and 99.99,
as percentile for statistic threshold estimation (Eqs. 22, 23,
Figure 6), and built the subspace by using a dimension of
representation equal to 4 (Figures 4A,C). The estimated

thresholds and other setting parameters are reported in
Table 1.

One subspace detection statistic c[n] value is calculated in
each detection window, with a sliding step of three points, we
obtain Ntot/3 c[n], where Ntot is the signal buffer length. In
Figure 6, the recorded signal and the sufficient statistics of
subspace detector (c[n]) above the estimated threshold
are shown.

With the aim of avoiding more values of detection statistics for
each triggered event, we extrapolated one detection in a 1 s long

FIGURE 5 | Histograms of cross-correlation value distributions between event templates and noise data where infrasonic tremor is filtered out (A), and with
presence of infrasound tremor (B).

FIGURE 6 | Signal recorded at EMFO station and filtered in the band 1–10 Hz (top) and subspace detection statistic values (c(n)) above the estimated threshold (ɣ).
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window. For the purposes of the comparison among subspace,
correlator and STA/LTA performance, the detections computed
by the aforementioned algorithms are overlapped to the
continuous signal in Figure 7A. Histograms, obtained by
counting detections in 2 min long windows for all algorithms,
are shown in Figure 7B.

Plots of the occurrence rates show that subspace succeeds in
detecting a higher number of amplitude transients, especially if
compared with the STA/LTA triggered events (Figure 7B).

Results reveal the capability of the subspace-based algorithm
to detect infrasound events of lower amplitude, while STA/LTA
algorithm is able only to detect high amplitude transients. Figures
8A,B, which reports a zoom of continuous signal and the detected
event positions, shows that subspace-based algorithm detected
even more transients than correlator.

Successively, with the aim of highlighting the influence and
the importance of parameter setting in this kind of approach,
we run the detectors by setting the percentile equal to 99.99

TABLE 1 | Setting parameters estimated or fixed in the detection.

Parameter Estimated (E) or fixed (F) value

Filtering band 1–10 Hz 1–10 Hz 0.5–10 Hz
Percentile 99.9 (F) 99.99 (F) 99.9 (F)
Probability of false alarm (PF) 7.4 e−04 (E) 6.02 e−05 (E) 8.9 e−04 (E)
Subspace dimension (d) 4 (E) 4 (E) 5 (E)
Threshold for subspace (Y) 0.45 (E) 0.53 (E) 0.63 (E)
Threshold for STA/LTA (Yr) 2.33 (E) 2.74 (E) 2.18 (E)
Threshold for correlator (Yc) 0.28 (E) 0.37 (E) 0.38 (E)
Detection window length for subspace/correlation 62 pt (F) 62 pt (F) 62 pt (F)
Detection window length for STA 43 pt (F) 43 pt (F) 43 pt (F)
Detection window length for LTA 375 pt (F) 375 pt (F) 375 pt (F)
Number of detections with subspace 881 (E) 483 (E) 201 (E)
Number of detections with STA/LTA 101 (E) 47 (E) 93 (E)
Number of detections with correlator 581 (E) 278 (E) 164 (E)

FIGURE 7 | Signal recorded at EMFO station and filtered in the band 1–10 Hzwith the overlapped positions of detections obtained in 1-s longwindow by subspace
(blue asterisks), correlation (green asterisks) and STA/LTA (red asterisks) detection algorithms for 99.9 percentile and using four SVD (A). Event occurrence rate resulting
from STA/LTA, correlation and subspace (bottom) detection algorithms counted in 2-min-long window (B).
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instead of 99.9, used to obtain the respective detection
threshold. The estimated parameters are reported in
Table 1. By using a 99.99 percentile, detection threshold of
the three detectors raises and, as a consequence, we observe a
decrease of detection number as also demonstrated by the
occurrence rates (Figure 9 and Table 1). Furthermore,
subspace and correlator exhibit a similar trend of the event
occurrence rate.

In the first case (percentile 99.9), the three detectors trigger
more events with respect to the second one (percentile 99.99)
(Figures 8, 9). In particular, the subspace succeeds in the
detection of very low amplitude transients. Nevertheless, a
lower threshold can imply the identification of a higher
number of false detections. By an inspection of signal buffer
reported in Figures 8, almost all the detections are real and not
false positives.

Reliable estimation of the detection capability when correlated
noise, due to low frequency infrasonic tremor, is overlapped, was
tested using the three described methods. In the light of it, signal
was previously filtered in the band 0.5–10 Hz. In such a way,
signal to be scanned is characterized by both infrasound events,
exhibiting a frequency content in the band 2.5–10 Hz, and the
infrasonic tremor, whose spectral peak is at ∼0.6 Hz (Figure 2).

The resulting cross-correlation value distribution is shown in
Figure 5B. A value of 99.9 as percentile was chosen, and the
subspace was built by means of five SVD (Figures 4B,D). By
introducing a correlated continuous tremor on the signal, the

subspace and correlator thresholds result higher, due to the
increase of variance, as expected (Table 1).

In this case, comparison with STA/LTA detector is
inconsistent due to a not well defined statistics (Eqs. 19, 20,
26) used in the threshold cr computation. Despite this, simple
correlation detector and subspace detector, from a practical point
of view, exhibit robustness in the detection of waveforms
transient as reported in Figure 10.

Comparison between Figures 7B, 10B, whose results were
obtained by using similar false alarm probability (Table 1),
reveals that, if the low frequency infrasonic tremor is
overlapped to the signal and not filtered out, the number of
detections by means of both subspace and correlation based
methods is lower. Furthermore, even in this case, subspace
method succeeds in event detection with respect to the
correlator detector.

DISCUSSION AND CONCLUSION

In the present work, we applied a subspace-based trigger
algorithm for the automatic detection of infrasound amplitude
transients in volcanic area. A 1 h-long buffer of continuous
infrasound signal characterized by amplitude transients related
to Strombolian activity, taking place at an eruptive fracture, was
analyzed (Figure 1). In order to test the feasibility and
performance of this technique, we made a comparison among

FIGURE 8 | Zoom in of Figure 7A (example 1, A and example 2 in B) by using 99.9 as percentile and respective comparison with results of Figure 9A using 99.99
as percentile (C,D).
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FIGURE 9 | Signal recorded at EMFO station and filtered in the band 1 -10 Hz with the overlapped positions of detections obtained in 1-s long window by subspace
(blue asterisks), correlation (green asterisks) and STA/LTA (red asterisks) detection algorithms for 99.99 percentile and using four SVD (A). Event occurrence rate
resulting from subspace, correlation and STA/LTA detection algorithm counted in 2-min-long window (B).

FIGURE 10 | Signal recorded at EMFO station and filtered in the band 0.5–10 Hz with the overlapped positions of detections obtained in 1-s long window by
subspace (blue asterisks) and correlation (green asterisks) detection algorithms for 99.9 percentile and using five SVD (A). Event occurrence rate resulting from subspace
and correlation detection algorithm counted in 2-min-long window (B).

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 8 | Article 57992312

Sciotto and Montalto Subspace Detection of Infrasound Events

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


results obtained by implementing STA/LTA, correlation and
subspace detectors. Several computations were carried out by
using different setting parameters (Table 1).

Results highlight that subspace detector succeeds in
detection of explosive activity related infrasound events.
Indeed, Figures 7B and 9B, show that subspace detector
turns out to detect a higher number of amplitude
transients with respect to both correlation and STA/LTA
trigger algorithms. This is particularly true for a lower
false alarm probability (that is choosing 99.99 as percentile
of cross-correlation distribution values in Eq. 22, Figure 5A).
Indeed, the ratio between the total number of detections of
subspace with respect to correlation and STA/LTA is higher
than for a higher false alarm probability (that is choosing
99.9) (Table 1).

It is worth noting that subspace detector is able to detect even
infrasound events of low amplitude (Figure 8), which, especially
in presence of noise, are difficult to be triggered by means of an
energy detector. Several runs were performed by using variable
setting parameter values. These tests demonstrate that the choice
of setting parameter plays a fundamental role in the outcomes of
elaborations. In particular, an in-depth statistical analysis of noise
needs to be carried out, in that distribution value of cross-
correlation between template waveform and noise determines
the threshold of the detector.

Succeeding in the detection of all amplitude transients
allows to monitor the time variation of occurrence rate, and
thus to follow the evolution of explosive activity. Indeed,
energy-based trigger algorithm (as STA/LTA) often fails in

detection of low amplitude transients, events with low signal
to noise ratio and events too close in time to each other.

With the aim of performing a quantitative estimate of the
subspace effectiveness, especially in terms of false alarms and
missed detections, and in general, to validate the results, a visual
inspection of the 1 h-long signal buffer (Figure 6) and its
comparison with the results obtained by means of the three
algorithms were carried out. In particular, concerning the
performance assessment goal, we chose to analyze the results
of the second test presented into the work (Figures 8C,D, 9), that
is the one with percentile equal to 99.99 (which is the most
conservative test), and inspected the true and false positive, and
true and false negative events. We collected a dataset of 669 true
events belonging to the same family (same source). Successively,
by comparing waveforms with the detections (Figure 9A), a
confusion matrix was calculated, for each of the three algorithms
(Figure 11). The performance indices were then extrapolated
from each confusion matrix (Table 2).

The validation results show that the subspace detector is
generally characterized by the best indices among those
derived from the confusion matrix (Figure 11; Table 2). In
particular, it performs the best error rate (number of all
incorrect predictions divided by the total number of dataset),
accuracy (correct predictions divided by the total number of the
dataset), and sensitivity, also called true positive rate, which is the
number of correct positive predictions divided by the total
number of positive, compared to the other two methods. In
particular, STA/LTA gives the poorest results, as expected
(Table 2). Nevertheless, it has to be highlighted that the

FIGURE 11 | Confusion matrices of subspace, correlator and STA/LTA triggering algorithms. True positive (TP), false positive (FP), true negative (TN) and false
negative (FN) values were obtained by an accurate analysis consisting of a visual inspection of the 1 h-long buffer of continuous infrasound signal and its comparison with
the detections.

TABLE 2 | Performance indices, with relative equations, calculated from confusion matrices (see Figure 11) for subspace, correlator and STA/LTA triggering algorithms.

Performance indices

Error rate
(ERR %)

Accuracy (ACC %) Precision (PR %) Sensitivity (SN %) Specificity (SP %) False positive
rate (FPR %)

F-score (FS %)

EQUATION FP + FN
TP + TN + FP + FN 1 − ERR TP

TP + FP
TP

TP + FN
TN

TN + FP
FP

TN + FP � 1 − SP 2×SN ×PR
SN +PR

Subspace 16.78 83.22 86.77 64.72 94.16 5.83 74.14
Correlator 22.94 77.06 95.39 40.20 98.85 1.15 56.57
STA/LTA 34.78 65.22 100.00 6.43 100.00 0.00 12.08
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correlator and STA/LTA show the best precision, which
quantifies the number of correct positive predictions divided
by the total number of the positive prediction, specificity
(representing the true negative rate) and false positive rate,
due to the lower false positive values and higher true negative
values (Figure 11; Table 2). Finally, F-Score, providing a single
score balancing both precision and sensitivity, shows the highest
value in case of the subspace detector, due to the high rate of the
actual triggered waveforms (Figure 11; Table 2). In the light of
this, the subspace detector method can be considered a good
compromise in recognizing low-amplitude waveforms,
particularly useful in tracking volcanic activity producing low-
energy and very close in time events.

As regards the better performance of subspace over correlation
detector, in terms of error rate, accuracy, and sensitivity, this can be
ascribed to the events waveform variability. Indeed, subspace
method allows making a comparison between the continuous
signal and a set of waveforms of interest (templates) and the
linear combination among them, instead of a single one or
multiple in few cases (Hotovec-Ellis and Jeffrines, 2016; Senobari
et al., 2019), as the correlation detector does. This makes the
subspace detector particularly attracting and suited to detect
infrasound events undergoing slight modifications in waveforms
due for example to geometrical characteristic variations (e.g., vent/
crater enlargement) (e.g., Cannata et al., 2011; Fee et al., 2017;
Matoza et al., 2019b).

Automatic detection of seismo-volcanic events (seismic and
infrasound) in monitoring framework and/or analyses of huge
dataset is successfully currently carried out by means of energy
detectors, correlation-based algorithms or methods making use of
advanced signal processing techniques (e.g., Cannata et al., 2013a,
Cannata et al., 2013b; Thompson, 2015; Hotovec-Ellis and Jeffrines
2016; Bueno et al., 2019; Matoza et al., 2019b; Senobari et al., 2019).
Among more recent developed trigger algorithms, for example,
VINEDA, designed for infrasound event detection (Bueno et al.,
2019), parses the original signal into a characteristic function, whose
amplitude is proportional to the sharpness of the original explosion
onset. This latter method is very useful to increase signal to noise
ratio, much better than the STA/LTA approach, and is able to detect
even low-amplitude transients. Another recent method, REDPy
(Hotovec-Ellis and Jeffrines, 2016), designed for earthquake
detection, consist in performing a STA/LTA, storing the triggered
events, and then cross-correlating waveforms to find similar events.
REDPy is an effective tool in order to discover events belonging to
the same family and offers the advantages and the disadvantages of
both STA/LTA and cross-correlation. In the framework of our goal,
that is to identify and extracting waveforms similar to each other
(hence, belonging to the same source), subspace detector exhibits the
advantages of being able to detect low-amplitude transients
associated to a specific source, as well as transients showing
slight waveform modifications. The latter feature is related to
the use of SVD and the subspace method, which consists of the
scanning of the signal buffer with all the linear combinations
among basis vectors derived from the template matrix
(previously designed). An additional feature of the subspace
method lies in its reliability in the detection of events that are
close in time to each other.

Furthermore, in the proposed subspace-based detection method,
algorithm parameters are automatically tuned by implementing a
statistical analysis of the background noise.

In general, as reported in Song et al., 2014, the limitation of the
subspace detector is the complexity and relatively large computation
cost in building the signal subspace. Nevertheless, the aim of our
work focused on the statistical analysis of noise in order to optimize
the quality of the trigger, in terms of low-amplitude event number.

In future developments, the subspace detector method has the
potentiality to be adapted to multi-station framework, considering
multiple instances or by multiplexing the data (e.g., Song et al., 2014;
McMahon et al., 2017). In the perspective of a real-time
implementation, a detector should scan a 2-min-long buffer.
Actually, using simple Matlab scripts, it takes 0.4 s on average to
process 2 min of infrasound data, seeming suitable for real-time
processing. Future work will be dedicated to optimization and code
compilation to build a module working in a real-time framework.

Findings of this work reveal the potentiality of subspace-based
method in infrasound event detection. Advantages of this technique
are particularly interesting in infrasound recorded in open-conduit
volcanoes such Mt. Etna, where activity at summit craters often
consists of persistent Strombolian explosions, producing infrasound
events very close in time, that can take place at several vents, thus
giving rise to multiple and time varying infrasound sources.

This first application of a subspace-based detection algorithm to
infrasound signal proves that this is an efficient technique for
identification and triggering of events in volcanic area.
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