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The analogue experiments that produce seismo-acoustic events are relevant for understanding
the degassing processes of a volcanic system. The aimof thiswork is to design an unsupervised
neural network for clustering experimental seismo-acoustic events in order to investigate the
possible cause-effect relationships between the obtained signals and the processes. We
focused on two tasks: 1) identify an appropriate strategy for parameterizing experimental
seismo-acoustic events recorded during analogue experiments devoted to the study of
degassing behavior at basaltic volcanoes; 2) define the set up of the selected neural
network, the Self-Organizing Map (SOM), suitable for clustering the features extracted from
the experimental events. The seismo-acoustic events were generated using an ad hoc
experimental setup under different physical conditions of the analogue magma (variable
viscosity), injected gas flux (variable flux velocity) and conduit surface (variable surface
roughness). We tested the SOMs ability to group the experimental seismo-acoustic events
generated under controlled conditions and conduit geometry of the analogue volcanic system.
We used 616 seismo-acoustic events characterized by different analoguemagma viscosity (10,
100, 1000 Pa s), gas flux (5, 10, 30, 60, 90, 120, 150, 180× 10−3 l/s) and conduit roughness (i.e.
different fractal dimension corresponding to 2, 2.18, 2.99). We parameterized the seismo-
acoustic events in the frequency domain by applying the Linear Predictive Coding to both
accelerometric and acoustic signals generated by the dynamics of various degassing regimes,
and in the time domain, applying a waveform function. Then we applied the SOM algorithm to
cluster the feature vectors extracted from the seismo-acoustic data through theparameterization
phase, and identified four main clusters. The results were consistent with the experimental
findings on the role of viscosity, flux velocity and conduit roughness on the degassing regime.
The neural network is capable to separate events generated under different experimental
conditions. This suggests that the SOM is appropriate for clustering natural events such as the
seismo-acoustic transients accompanying Strombolian explosions and that the adopted
parameterization strategy may be suitable to extract the significant features of the seismo-
acoustic (and/or infrasound) signals linked to the physical conditions of the volcanic system.
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INTRODUCTION

In recent years, neural networks have been increasingly used
thanks to the rapid progress of computer performances and the
continuous growth of digital data worldwide, which are difficult
to analyze with traditional search and classification methods. In
the field of geophysics and volcanology, both supervised and
unsupervised neural networks have been used in many
applications, including tasks for the classification and
recognition of seismic signals in volcanic (Carniel, 1996; Del
Pezzo et al., 2003; Scarpetta et al., 2005; Ersoy et al., 2007; Langer
et al., 2009; Messina and Langer, 2011; Esposito et al., 2013a;
Carniel et al., 2013; Unglert et al., 2016; Burzynski et al., 2018; Ren
et al., 2020; Watson, 2020) and tectonic (Köhler et al., 2009;
Giudicepietro et al., 2017) environments, analysis of petrographic
patterns (Esposito et al., 2020a; Esposito et al., 2020b), predictive
analysis of seismicity (Esposito et al., 2014) and radon emissions
(Ambrosino et al., 2020). In particular, among unsupervised
neural networks, the Self-Organizing Map (SOM) is suitable
for the discrimination of seismic signals generated by different
sources in a composite seismic wavefield. For instance, several
neural network based methods have been applied to study the
seismicity of Stromboli (Esposito et al., 2006a, Esposito et al.,
2008; Esposito et al., 2013b, Esposito et al., 2018), that is an
example of seismo-acoustic wavefield dominated by signals
produced by different sources linked to the degassing through
a basaltic magma. More in general, the seismic and acoustic
wavefield of an open conduit volcano might be originated from a
wide spectrum of processes; unsupervised neural networks are
fundamental for discriminating different sources of signals.
Noteworthy, the investigation of seismo-acoustic transients,
related to unsteady explosive activity, is known to provide
fundamental information on the degassing dynamics also at
other volcanoes such as Erebus (Rowe et al., 2000; Johnson
et al., 2008) and Yasur (Spina et al., 2015; Capponi et al.,
2016; Simons et al., 2020).

In parallel, analogue models of volcanic degassing have been
developed to better understand the dynamics of open conduit
volcanoes and define the elastic signature of magma-gas
interaction with the volcanic conduit (e.g. James et al., 2004;
James et al., 2006; Arciniega-Ceballous et al., 2014; Spina et al.,
2018; Spina et al., 2019). Indeed, the laboratory approach offers
the advantage of controlling physical properties and the
thermodynamic state of the investigated systems. This is
convenient for investigating physical processes whose
controlling parameters are inaccessible to direct observation,
as in a volcanic environment. The potentiality of constraining
subsurface degassing dynamics by laboratory experiments on
accurately scaled two-phase analogue systems has induced a
flourishing number of literature studies focusing on the source
of acoustic events (e.g. Vidal et al., 2006; Vidal et al., 2009; Divoux
et al., 2008; Kobayashi et al., 2010; Lyons et al., 2013) or on the
seismic signature of the ascent of volcanic gas slugs (e.g. James
et al., 2004; James et al., 2006) and of the fragmentation processes
(Arciniega-Ceballos et al., 2014; Arciniega-Ceballos et al., 2015).
Moving from the evidence that conduit discontinuities are
specific sites where pressure and momentum changes in the

fluid are effectively coupled to the Earth (Chouet and Matoza,
2013 and references therein), Spina et al. (2019) assessed the effect
of cross-sectional changes in the conduit geometry (in terms of
irregularity of the conduit surface) and of physical properties on
radiated seismic and acoustic signals. Noteworthy, cross-sectional
changes of conduit shape are expected to result from the coupling
between conduit shape and volcanic flow (Macedonio et al.,
1994).

Innovative approaches to data analysis such as machine
learning are important for studying the signals produced by
analogue experiments. Actually, these data analysis techniques
help to discover the relationships between experimental data and
physical processes. The main objective of this work is to identify
data preprocessing and clustering techniques capable to highlight
a similarity among signals obtained from experiments featuring
analogous starting conditions. In this way, the data similarity
must reflect the activity of similar source processes, establishing a
link between the signals that we can record and the physical
processes that generate them, which in the case of natural systems
are unknown. In this work, we apply a SOM based method for
clustering a dataset of experimental events obtained through a
novel experimental protocol described in Spina et al. (2019)
suitable to investigate the seismo-acoustic signals generated at
different experimental conditions (gas flux and liquid viscosity),
taking into account analogue conduits with different extent of
roughness of the internal wall. The dataset used in this work was
produced by analogue experiments aimed at investigating the
interplay among surface irregularity of the conduit, physical
properties of the analogue magma in a range of viscosities and
gas flux representative of basaltic systems (Spina et al., 2018,
Spina et al., 2019).

Initially, we used two well established signal preprocessing
approaches (Del Pezzo et al., 2003; Scarpetta et al., 2005) to
extract the appropriate features to represent in a compressed
form the significant characteristics of the signals such as the
spectral content and the temporal evolution of the waveform.
Then, we designed a SOM to group the experimental events.
The results indicate that we are able to discriminate between
analogue events generated under different experimental
conditions, and thus this methodology may be applicable to
volcanic datasets.

MATERIALS AND METHODS

The Experimental Setup
The experimental setup for generating seismo-acoustic events
(Figure 1) is fully described in Spina et al. (2018), Spina et al.
(2019) and consists of two main parts: 1) the analogue volcano
that reproduces volcanic degassing phenomena, and 2) the sensor
system, used to measure the seismo-acoustic signals, i.e. the
elastic energy radiated by the degassing processes.

Part (1) is made up of a compressor system, connected to a set
of flow-meters and injecting the air-gas into an epoxy conduit
with a mean diameter of 3 cm and length of 80 cm. In order to
investigate the role of conduit irregularity, a novel technique was
developed to build epoxy conduits with different fractal
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dimension (FD) of the internal surface. Three conduits were used
to carry out the experiments: a smooth cylinder (SM, FD � 2), and
two cylinders with increasing extent of roughness of the internal
wall (F1 and F2, FD � 2.18 and 2.99 respectively). The conduits
were filled with silicone (Wacker©) oils as an analogue for
magma, with viscosities in the range 101–103 Pa s and density
of 970 kg/m3.

The sensor system mainly consists of a ceramic shear
accelerometer ICP J352C33 model (PCB Piezotronics) with a
sensitivity of 0.1 V/g in the band 0.5–10,000 Hz, and a
microphone ICP 378B02 model (PCB Piezotronics) with a

sensitivity of 50 mV/Pa in the band 7–10,000 Hz (±1 dB). The
digital acquisition system is a DAS50 (SEFRAM) with four
channels and sampling rate up to 1 MHz. In our case signals
are sampled at 50 kHz. Since the accelerometer and microphone
have slightly different frequency responses (e.g. the lower
frequency limit is different) both seismic and acoustic signals
were band-pass filtered in the range 10–10,000 Hz, interval of
common flat response of accelerometer and microphone. A
video-camera (25 fps) allowed observation of the degassing
regimes through the optically clear analogue magma and link
them with the recorded seismo-acoustic signal.

FIGURE 1 | (A–C) Top pictures of the analogue conduits SM (FD � 2), F1 (FD � 2.18) and F2 (FD � 2.99), respectively. (D) Simplified sketch of the experimental
device (not to scale; modified from Spina et al., 2019). The tubes shown in (D) are 80 cm high. Modified from Spina et al. (2019).
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The Dataset
The dataset used in this work includes 616 experimental
seismo-acoustic events generated under different
experimental conditions. Each event is represented by a
seismic recording and by an acoustic recording; therefore
our dataset consists of 616 pairs of seismic and acoustic
signal records (1232 files in total).

Three parameters were systematically changed to investigate
the variability of the seismo-acoustic signals with different
degassing states: the roughness of the epoxy conduits (SM, F1
and F2), the viscosity of the analogue magma (10, 100 and
1000 Pa s) and the air flow rate (5, 10, 30, 60, 90, 120, 150,
180 × 10–3 l/s). Figure 2 shows two examples of seismo-acoustic
signals. The first (Figure 2A) was generated using the smooth
experimental conduit (SM), analogue magma with viscosity of
10 Pa s and a flow rate of 120 × 10–3 l/s. The second one
(Figure 2B) was also generated with viscosity of 10 Pa s and a
flow rate of 120 × 10–3 l/s, but using a F2-type experimental
conduit.

The seismo-acoustic transients collected in the dataset
were recorded during different degassing regimes, from
bubbly flow (i.e. bubbles passively transported in the
analogue magma) to slug regime (i.e. individual conduit-
filling bubbles) to churn-annular flow (i.e. the gas phase is
able to support the upward movement of the liquid along the
conduit wall).

Feature Extraction Methods
The feature extraction (data preprocessing) is an important phase
that precedes the application of the SOM neural network for the
clustering. It provides an alternative data representation by
removing redundant information and identifying the
significant ones that uniquely describe them. In this way a
compact and robust coding is obtained. There are several
methods to do this, which depend on the particular
application and its complexity degree. The crucial aspect is to
choose the features that are relevant for the examined task. In our
case, in order to select the most appropriate features, we took into
account the information usually considered by analysts for the
signal discrimination, i.e. the signal spectral content and
waveform, in the frequency and time domain respectively.
Then, to feature extraction techniques we relied on the good
results obtained in Del Pezzo et al. (2003), Scarpetta et al. (2005),
Esposito et al., (2006a), by using the Linear Predictive Coding
(LPC) technique (Makhoul, 1975; Marple, 1980) for the
frequency information and a waveform parametrization, for
the amplitude-versus-time information, respectively. The
advantage of using LPC over raw spectra is that LPC provides
a more compressed representation of frequency content
information. This aspect was discussed in Del Pezzo et al. (2003).

LPC is a widely used method in the speech recognition field to
extract compact spectral features from audio signals, which are
acoustic signals just like those considered in this work. However,

FIGURE 2 | Comparison between the raw signal and the spectrogram of a seismo-acoustic event generated with a smooth SM-type conduit, viscosity � 10 Pa s,
flow velocity � 120 × 10–3 l/s (A), and an event generated with a F2-type conduit, viscosity � 10 Pa s, flow velocity � 120 × 10–3 l/s (B).
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it has also been successfully applied in the geophysical and
volcanological fields (Esposito et al., 2013a; Giudicepietro
et al., 2017; Esposito et al., 2018). In particular, the features
extracted with the LPC were given in input both to unsupervised
neural networks, such as the Self-Organizing Map (SOM)
(Esposito et al., 2006a, Esposito et al., 2006b; Masiello et al.,
2006), and supervised neural networks, such as the Multi-Layer
Perceptron (MLP) (Del Pezzo et al., 2003; Scarpetta et al., 2005;
Giudicepietro et al., 2017; Esposito et al., 2018). Therefore, we
decided to use this technique following the good results provided
in the previously mentioned works.

LPC predicts a signal sample through a linear combination of
its previous samples:

x̂(n) � ∑
p

i�1
aix(n − i)

where x̂(n) is the predicted signal value for the sample n, x(n − i)
are the previously observed values, p≤ n is the model order and ai
are the prediction coefficients. The prediction coefficients are
given by an optimization procedure that tries to reduce the error
between the real signal and its LPC estimate. The number of
prediction coefficients p is problem dependent and it must be
determined via a trade-off between the information content and
the representation compactness. We used the librosa python
library (McFee et al., 2015) to obtain the LPC coefficients.

The waveform parametrization (WP) is performed by a
function defined as the normalized difference between the
maximum and minimum signal amplitude computed in an
arbitrary duration window. In Scarpetta et al. (2005) it was
shown that the addition of this feature as further information
on the data led to an improvement in the performance of the
neural network up to 5% (reaching 100% in some experiments
aimed at the classification of seismic signals at Mt. Vesuvius)
compared to the performance obtained using only the LPC
features.

Waveform parametrization is expressed as:

fm � (max(Ai,m) −min(Ai,m))pN

∑
N

m�0
(max(Ai,m) −min(Ai,m))

where Ai,m are the amplitudes in the signal window and N is the
total number of windows.

In general, the choice of the features used to represent the data
can influence the results of the final clustering; for this reason this
choice is critical for the good neural network performance. We
chose the above described preprocessing methods because we are
confident of their appropriateness for feature extraction on the
basis of good results obtained in the previous cited works (Del
Pezzo et al., 2003; Scarpetta et al., 2005; Esposito et al., 2006a;
Esposito et al., 2018).

Self-Organizing Map (SOM)
SOM (Kohonen et al., 1996) is a special class of unsupervised
artificial neural network (ANN) extensively used as a clustering
and visualization tool in exploratory data analysis. In general,
when a large data set is available and no information about which

similarity measure is more appropriate to group them, then it
may be useful to apply an unsupervised technique. Classic
methods of cluster analysis often make assumptions regarding
linearity, normal distribution or intrinsic clustering relationships
in the data. For these reasons, they can fail for data with a complex
structure.

Contrary to classical methods, the main advantages of using
the SOM technique are that it does not require any a-priori
assumption on the data structure and it is able to manage large
data sets with high-dimension inputs to detect patterns and
isolated structures in the data. Moreover, it provides an easy
visualization and interpretation of the results.

SOM performs a nonlinear mapping of the input space into a
two-dimensional grid, called map, by preserving the topological
and metric relationships of the data. This makes the SOM an
effective method to visualize the similarity and the distances
between the input vectors.

The SOM architecture has typically two layers, the input and
the output one, with the nodes of the input layer directly
connected to those of the output layer (Figure 3). Nodes in
the output layer are arranged in a topological structure, usually a
bi-dimensional grid, since it is generally agreed that a two-
dimensional map provides a better representation of the clusters.

Usually, the network topology is divided into two factors: the
local lattice structure and the global map shape. The first one can
be rectangular or hexagonal. In the rectangular one each internal
node has four neighbors, while in the hexagonal one six. Hence,
the hexagonal structure is usually preferred since it displays
greater variance in neighborhood size. The global map shape
instead can be sheet, cylinder or toroid. In our experiment, we
used a SOM map with a local hexagonal structure (Figure 4A)

FIGURE 3 | Example of the architecture of a Self-Organizing Map. The
network has two layers: the input and the output layer, with the nodes of the
input layer directly connected to those of the output layer.
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and a global toroid shape (Figure 4B) visualized as a sheet to get a
better interpretation of the obtained clusters.

The SOM algorithm is unsupervised: this means that the
network tries to discover the hidden relationships in the data
by applying a competitive learning rule where the output nodes
compete among themselves for representing the vectors of the
input space. In this competition only the node whose weight
vector is most similar to the input vector will be the winner or the
Best Matching Unit (BMU). To find the BMU, in each training
step, the distances between an input vector, chosen randomly,
and all the weight vectors of the SOM are computed by using the
Euclidean distance method, as suggested by Kohonen et al.
(1996). After finding the BMU, the prototype of the winning
node is updated toward the input vector and also the prototypes
of the neighborhood nodes are adjusted (cooperative aspect) in a
way that depends on the neighborhood function. We adopted a
Gaussian neighborhood function. The learning rate, which
controls the intensity of the attraction of the input vector, and
the neighborhood radius, which controls the number of vectors
attracted other than the winning node, depend on the Gaussian
function. The learning rate and the neighborhood radius are
time-dependent functions and their values decrease during the
training phase. At the end of the iterative process, there is the
convergence phase in which the prototypes of the different nodes
reach their final values and the final map is obtained.

In this work, the SOM parameter were chosen according to the
SOM toolbox for Matlab (http://www.cis.hut.fi/somtoolbox/, last
accessed 25 October, 2020) and Kohonen et al. (1996).

RESULTS

Data Preprocessing
Before extracting the features from the accelerometric and
acoustic data produced during the experimental events, we cut
the recordings using a standard Short Time Average/Long Time
Average trigger algorithm (STA/LTA; e.g. Allen, 1978; Withers
et al., 1998; Trnkoczy, 2012) to have a uniform criterion to
generate the signal windows for preprocessing and analysis.
Actually, the purpose of our study is not to develop an
automatic system, but to discover the fingerprints of the

degassing processes in seismo-acoustic signals; therefore the
automatic procedure is used only to facilitate the picking of
the event onsets.

We performed the automatic trigger of the events (Figure 5)
using a classic STA/LTA algorithm (length of short time window
� 0.01 s, length of long time window � 0.1 s, trigger on threshold
� 2.5), included in the Python toolbox Obspy (Krischer et al.,
2015). The STA/LTA was applied on the acoustic signals, and,
each time an acoustic event was identified, 0.03 s windows of both
acoustic and accelerometric signals (starting 0.002 s before each
trigger time) were extracted. Although the microphone and
accelerometer are located at different positions in the setup,
their short distance (∼60 cm) allows for a delay time on the
order of 10−3 s, which is by far smaller than events recurrence
time (Figure 11 in Spina et al., 2019) and of the selected signal
windows. Accordingly, we are confident that triggered seismic
and acoustic signals share the same source. Thus, we obtained a
dataset of 616 events, each composed by seismic and acoustic
recordings of 1500 samples (both signals being sampled at 50,000
samples per second). Finally, we parameterized the events in the
frequency domain, through LPC, and in the time domain,
through the waveform function described above (WP).

By using the librosa python library (McFee et al., 2015), we
applied the LPC algorithm to extract the spectral content features.
We made several experiments using a different number of
windows and finally we found that the most appropriate
solution to encode the LPC features of our data was to use a
single 1024-sample length window for each signal, in order to
correctly represent even the lower frequency events. So, we
calculated the LPC on one signal window (first 1024 sample),
extracting 46 LPC coefficients for each window. We chose the
number of LPC coefficients as a trade-off between an adequate

FIGURE 4 | Examples of a local hexagonal lattice structure (A), and a
global toroid map shape (B). In this article the toroid shape, visualized as
sheet, is used (see Results section).

FIGURE 5 | Examples of automatic picking of two acoustic events by
STA/LTA algorithm. Both events were generated with a F1 fractal roughness
conduit but with different viscosity and flux rate conditions. For the event in
plot (A) viscosity � 10 Pa s and flux rate � 60 × 10−3 l/s; for event in plot
(B) viscosity � 100 Pa s and flux rate � 180 × 10−3 l/s.
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encoding of the spectral content and the compactness of the
information. Thus, we encode the spectral content features of the
experimental events with 46 features for each one of the seismic
and acoustic signals.

For the waveform parameterization, we used only the acoustic
signal features and we chose a 50 sample-long window, so
obtaining 30 parameters from each 1500 sample-long
recording. In order to avoid undesirable effects due to the
automatic trigger of the signals that in different events can
result in different pre-event signal segment, we sorted the
waveform parameterization features in descending order.
Finally, we took only the first 20 of these features, neglecting
the queue which is less representative of the sorted signal.
Therefore the waveform parameterization results in a 20-
dimensional feature vector for each type of signal, acoustic
and seismic. In this way the acoustic and seismic signals were
encoded using for each of them 46 LPC features and 20 WP
features. Finally, we combine the LPC features and the waveform
parameterization (WP) of the acoustic signal obtaining the input
vector of 46 + 46 + 20 � 112 features for each experimental event.

To scale the amplitude of the features extracted from acoustic
and seismic signals, which are different in size and units of
measurement (Figure 6A), we applied a feature scaling-
normalization and obtained input vectors such as the one
shown in Figure 6B.

SOM Clustering
In this study, we chose a SOM with a local hexagonal structure
(Figure 4A) and a toroid shape (Figure 4B). The map size

depends on the specific application. A “right number of
nodes” does not exists, it depends on the detail one wants to
have with the generated clusters. In our case we chose a map size
of 14 × 8 nodes based on the number of events in the dataset. The
map has 112 (14 × 8) nodes and the dataset contains 616 events,
so we considered the ratio 616/112 � 5.5 that is a good
compromise for data clustering.

Figure 7A shows the SOM map obtained on the examined
dataset. The yellow hexagons indicate the non-empty nodes.
Their size is proportional to the number, or data density, of
input vectors, which fall in each of them. The numbers on the
outside of the map (Figure 7A) indicate the order or numbering
of the nodes on the map, that is, from top to bottom and from
right to left. For some significant nodes the number is also
reported inside the yellow hexagon.

The gray hexagons among the yellow ones are not real nodes
and are used to represent the Euclidean distances between the
nodes according to a gray scale. Also the empty nodes, i.e. those
that do not contain any input vector, are filled according to the
Euclidean distance gray scale. White or light gray indicates that
neighborhood nodes are similar to each other and therefore may
belong to the same cluster. Dark gray or black mark a clear
separation between the nodes. In this way a visual qualitative
measure of the cluster structure discovered by the SOM is
possible, which allows identifying areas where the nodes are
more similar to each other.

Following this qualitative approach and based on the analysis
of the content of each node, on the SOM in Figure 7A we identify
four main areas of nodes more similar to each other or four main
clusters that we represent on the map with different colors. The
clusters are mainly characterized by the degree of roughness of
the conduit and by the viscosity of the analogue magma. The cyan
dotted line in Figure 7A marks the Cluster 1 (130 events) that
groups events that were generated mainly with smooth conduit
(SM) and an analogue magma viscosity of 10 Pa s. Cluster 2 (63
events) is delimited by a blue dotted line and mainly includes
events generated in experiments with a F1 conduit and an
analogue magma viscosity of 10 Pa s. It also includes some
nodes that are at the bottom of the map. This is because we
used a toroidal map, so the upper and lower part and the right and
left one are to be considered united. In Figure 7A we displayed
the map as a two-dimensional sheet to allow an easy
interpretation of the results. Cluster 3 (176 events),
surrounded by a red dotted line, mainly groups events
generated in experiments with a F2 conduit and an analogue
magma viscosity of 10 Pa s. Finally, Cluster 4 (66 events),
delimitated by a magenta dotted line, mainly contains events
generated in experiments with analogue magma viscosity of
100 Pa s. This cluster also includes most of the events
generated with a viscosity of 1000 Pa s, which are relatively
few in the dataset because the increase in analogue magma
viscosity dramatically decreases the number of events (Spina
et al., 2019). In fact, the time elapsed between consecutive
explosions positively correlates with viscosity both in
volcanoes environment (Dominiguez et al., 2016) and in our
laboratory experiments (Spina et al., 2019). The roughness of the
conduit relating to the events of Cluster 4 is mixed; indeed the

FIGURE 6 | (A) Acoustic and seismic signals of an experimental event;
(B) input vector with the features extracted from the acoustic and seismic
signals.
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cluster contains events generated with SM, F1 and F2 conduit
roughness. This result suggests that in low viscosity experiments,
e.g. 10 Pa s, the conduit roughness signature in the seismo-
acoustic signals is clear, whereas in the experiments conducted
with higher viscosity (e.g. 100 or 1000 Pa s) the conduit roughness
imprint is less distinguishable in the signal features and the effect
of viscosity prevails. However, in some nodes there are events
produced with high viscosity (100 or 1000 Pa s) that were
characterized by a prevailing type of conduit roughness. This
is the case of the nodes 62, 79, 101 and 102 shown in Figure 7B.
For the analysis of the other nodes, see the Supplementary
Material, which contains the results of all the nodes of the
SOM map.

Analyzing the distribution of the flux rate (5, 10, 30, 60, 120,
150, 180 × 10−3 l/s) for all the nodes of the four main clusters we
find that it is less characterizing than the distribution of the
analogue magma viscosity and the conduit roughness. However,
we can note that in Cluster 4 the low flux rate classes (5, 10, 30 ×
10−3 l/s) are missing. Furthermore, the few experimental events
characterized by viscosity of 100 Pa s in Cluster 2 (most of the

events that fall into this cluster were generated in experiments
with analogue magma viscosity of 10 Pa s) systematically exhibit
flux rate equal or below 60 × 10−3 l/s.

Figure 8 shows a summary of the distribution of experimental
events of the four main clusters in the analogue magma viscosity
(Figure 8A,D,G,J), conduit roughness (Figure 8B,E,H,K) and
flux rate (Figure 8C,F,I,L) classes. An overall picture of the
distribution of the 435 events contained in the four main
clusters with respect to the different classes of conduit
roughness, viscosity and gas flow rate is shown in Figure 9.
We can see that seismo-acoustic signals produced in experiments
conducted with low analogue magma viscosity (10 Pa s) are
separated into Clusters 1 (cyan), 2 (blue) and 3 (red), which
are characterized by different degrees of conduit roughness (SM,
F2 and F3, respectively), whereas the events generated in high
viscosity condition (100 Pa s and a few examples with 1000 Pa s),
belonging to Cluster 4 (green), are distributed in all three conduit
roughness classes (SM, F2 and F3). Furthermore, most of the
events that fall into Cluster 4 were generated with flow rate > �
60 × 10−3 l/s.

FIGURE 7 | (A) The SOMMap with 14 × 8 � 112 nodes. Not-empty nodes are shown as yellow hexagons and their size represents the data density. The numbers
on the outside of the map indicate the numbering of the nodes that is also reported in some significant nodes. The gray hexagons interposed between the yellow ones
indicate the Euclidean distance between the nodes according to a gray scale. Cluster 1 (cyan), Cluster 2 (blue), Cluster 3 (red) and Cluster 4 (green) are highlighted by
dotted outlines. On the right (B) the compositions of nodes n.62, n.79, n.101 and n.102 are shown. The labels SM, F1 and F2 indicate SM (smooth), F1 (FD � 2.18)
and F2 (FD � 2.99) conduit roughness, respectively. The number preceded by V indicates the viscosity in Pa s and the number preceded by R indicates the gas flow rate
in 10−3 l/s.

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 5817428

Giudicepietro et al. Experimental Seismo-Acoustic Events SOM Clustering

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


DISCUSSION

In the present work, we applied SOM to perform the analysis of
experimental events and investigate the links between seismo-
acoustic signals and their source processes, which in the case of
analogue experiments are known and controlled. In this way,
we benefit of joint information deriving from an efficient
seismo-acoustic signal clustering method and the
experiments conducted under controlled physical conditions.
This approach can help us to increase our understanding of the
degassing processes from basaltic open conduit systems and of

their elastic markers. For this reason, we developed a
parameterization strategy of seismo-acoustic experimental
signals inspired by the one we have successfully used to
cluster natural events (Ham et al., 1999; Del Pezzo et al.,
2003; Esposito et al., 2007; Esposito et al., 2013a;
Giudicepietro et al., 2017; Esposito et al., 2018; Nuha et al.,
2019), but with appropriate modifications to better extract the
features of the experimental data. Furthermore, we chose to
jointly use the acoustic and seismic information that together
cover the radiation emitted by the entire process of rising in the
conduit and bursting to the free surface of the gas bubbles.

FIGURE 8 | Histograms of the distribution of Cluster 1 (cyan), Cluster 2 (blue), Cluster 3 (red) and Cluster 4 (green) events in the analogue magma viscosity,
analogue conduit roughness and flux rate classes. Plots (A), (D), (G), and (J) show the distribution of events belonging to the four clusters in the classes of viscosity,
expressed in Pa s (B), (E), (H), and (K) represent the conduit roughness classes (SM: smooth; F1: FD � 2.18; F2: FD � 2.99). The flux rate (expressed in 10–3 l/s)
histograms are shown in (C), (F), (I), and (L) plots.
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For the extraction of features, we used the LPC, which provides a
compressed representation of the signal in the frequency domain of
the seismic and acoustic recordings of each event. We have also
adopted a parameterization in the time domain using a waveform
function and rearranging the features in descending order, in order
to avoid the problems related to the picking of the onset of the
seismo-acoustic transients. This waveform parameterization
technique, used for the first time to extract features for a seismic
event classification problem applied toMt. Vesuvius data, improved
by 5% the performance obtained with this method (Scarpetta et al.,
2005).

Experimental results of the degassing pattern have shown that
at constant viscosity the increase in gas flux rate generates
progressively longer and less-spaced slug bubbles which, at a
given threshold of flux rate, merge leading to the transition from
slug flow to churn-annular flow (e.g. Fabre and Linè, 1992;
Paglianti et al., 1996). All the same, at medium-low gas flux
rate an increase in liquid viscosity favors the coalescence of
bubbles and the transition from slug flow to churn-annular
flow (e.g. Pioli et al., 2012; Spina et al., 2019).

Based on the analysis of our SOM map, we identified four
main clusters (Figure 7A) characterized by events generated
under different experimental conditions, highlighting
differences in the degassing patterns. In particular, most of the
events of Cluster 1 are generated in experiments with low
viscosity magma and smooth conduit and are associated with
elongated slugs (Figure 10A). Notably, the few cases exhibiting a
viscosity of 100 Pa s are characterized by relatively low gas flow
rate (<60 × 10−3 l/s). Most of the events included in Clusters 2 and
3 were also generated in low viscosity conditions (10 Pa s), but

they are clearly separated according to the roughness of the conduit
which for Cluster 2 is of type F1 (FD � 2.18), whereas for Cluster 3
it is of type F2 (FD � 2.99). On the opposite, events of Cluster 4 are
characterized by higher analogue magma viscosity (100 Pa s and
few cases with 1000 Pa s) and gas flux generally above the threshold
of 60 × 10−3 l/s. The degassing pattern in such cases is mostly
represented by a chain of over-pressurized slugs that tend to
coalesce with an irregular profile, suggesting the onset of churn-
annular flow (Figure 10B). Increasing the viscosity of the liquid
phase, the threshold of gas flux ratemarking the transition between
degassing regimes decreases (e.g. Pioli et al., 2012). Hence, the
clusters associating 10 Pa s events (Cluster 1, 2, 3) and the one
(Cluster 4) that groups high viscosity (100–1000 Pa s) and
moderate to high gas flux events might actually reflect different
degassing regimes, i.e. slug or churn-annular flow. Moreover, the
features of the seismic and acoustic signals can be influenced by the
flow regime that is generated in the experiment, which can be
determined by different combination of viscosity of the analogue
magma and gas flow rate. This can explain the characteristics of the
events generated with different analogue magma viscosity and
grouped in the same cluster.

Notably, gas flow rate and viscosity are the main controlling
factors in determining the transition between different degassing
patterns (e.g. Pioli et al., 2012). Clustering of seismo-acoustic events,
here performed, demonstrated that different degassing regimes are
clearly linked to different features of the radiated elastic energy, with
fundamental implications for monitoring purposes.

The clustering results suggest also that the viscosity of the liquid,
where gas flows through, plays an important role in determining the
features of the seismic and acoustic signals generated by such a gas

FIGURE 9 | Overall picture of the distribution of events belonging to the four main clusters with respect to the viscosity of the analogue magma, roughness of the
analogue conduit and the flow rate. Cluster 1 is indicated in cyan (squares), Cluster 2 in blue (circles), Cluster 3 in red (diamond) and Cluster 4 in green (thin diamond). The
size of the squares is proportional to the number of events that share the same viscosity, roughness and flux values and belong to the same cluster.
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uprising. Lyons et al. (2013) also found that fluid viscosity plays amajor
role in controlling the character of seismic and acoustic source
generation. The same conclusion was reached by Clarke et al.
(2019), who recorded in laboratory acoustic emissions, resulting
from fracturing and fluid depressurization through the fractured
rock. They concluded how the viscosity of volcanic fluids may
affect the spectral content of the volcano seismicity. Actually,
magma viscosity is a factor that significantly affects the eruptive
style of volcanoes (e.g. Cassidy et al., 2018). Also field studies have
shown that the waveform and spectral characteristics of the seismic
signals acquired on volcanoes are influenced by the properties of the
fluids filling the plumbing system (e.g. Kumagai and Chouet, 2000;
Kumagai et al., 2002; Ichihara et al., 2013). This relationship between
magma properties and explosive mechanisms is also highlighted by
studies conducted at Stromboli volcano (Esposito et al., 2008;
Giudicepietro et al., 2019; Giudicepietro et al., 2020; Witsil and
Johnson, 2020), which is considered a natural laboratory for this
type of activity, where the characteristics of the seismic signals
produced by the explosions are influenced by the physical
properties of the magma, e.g. gas content. However, our
experiments show that the SOM map also identifies clusters (e.g.
Cluster 1 Cluster 2 and Cluster 3) characterized by the prevalence of
events generated with a specific analogue conduit roughness (e. g.
smooth, fractal FD � 2.18 and fractal FD � 2.99). Asmentioned above,
the roughness of the conduit seemed to be amost prominent feature for
clustering in low viscosity runs (10 Pa s). Basing on image analysis only
(evaluation of slug velocity and rate), Spina et al. (2019) has also
hypothesized a more dominant effect of conduit roughness at 10 Pa s

compared to higher viscosity runs (10 and 1000 Pa s). In fact, the effect
of conduit roughness is predominant in the inertia driven regime (i.e.
for significant high values of superficial gas to liquid velocity ratio) and
for higher values of two phase gas flux and gas content (Shannak, 2008;
Bhagwat and Ghajar, 2016). This is promising to better understand the
contribution of conduit roughness in natural systems.

The method tested in this article can be applied to seismic and/
or acoustic events recorded in other laboratory experiments in order
to analyze the characteristics of the produced data and their
similarities. The necessary requirement to apply the method to
other laboratory experiments is that the data are similar to those
here examined and the dataset is composed of a sufficient number of
events. Moreover, this method can easily be applied to analyze
naturally recorded seismic and acoustic events, appropriately
scaling the duration of the signal windows and the other
parameters. Of course, experimental data are simple signals
compared to real world observations. For example they lack of
seismo-acoustic coupling, whereas acoustic wave propagation is
known to couple into the seismic wavefield (e.g., Jolly et al., 2017;
Matoza et al., 2019). These characteristics must be taken into account
when addressing the feature extraction strategy of real signals. It is
worth noting that each experiment was performed under steady
conditions, in terms of conduit roughness, analogue magma viscosity
and air flow rate, while on volcanoes such parameters can be space-
and time-dependent. For instance, the material filling the conduit is
assumed to be stratified, with a high-viscosity layer of melt in the
uppermost part, whose features can gradually evolve in time (e.g.
Lautze and Houghton, 2005; Capponi et al., 2016). In spite of these

FIGURE 10 | Examples of images of the experiments that generated events belonging to Cluster 1 (A) and Cluster 4 (B). V indicates the analogue magma viscosity
in Pa s and R indicates the gas flow rate in 10−3 l/s. The tubes in the picture are 80 cm high and are smooth.
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differences between laboratory experiments and real volcanoes, the
findings of this work suggest how seismo-acoustic signals can contain
plenty of information about the conditions of the uppermost part of
the plumbing system and its variations over time.

CONCLUSION

In this work we present an application of the unsupervised SOM
network on a dataset of experimental events obtained under different
physical conditions. For the first time SOM network are used on an
analogue experimental data set in order to better understand the
relationship between degassing behavior and seismo-acoustic signals.
The seismo-acoustic signals have been obtained by varying three
parameters: the roughness of the epoxy conduits (SM, F1 and F2), the
viscosity of the analogue magma (10, 100 and 1000 Pa s) and the gas
flow rate (5, 10, 30, 60, 90, 120, 150, 180 × 10–3 l/s). An automatic
trigger technique has been applied to identify the events. In order to
group the data, we have first performed a processing phase in which
the events have been represented through a 112-feature vectors
encoding both spectral, by using the LPC method, and time (WP)
information from seismo-acoustic event pairs generated by
experimental runs, conducted under different physical conditions,
and included in the dataset (616 pairs). The obtained feature vectors
became the input of the selected neural network, the SOM, to perform
clustering. The SOM is a projection technique able to identify and
visualize at the same time on a bi-dimensional plane the hidden
structure of the data. The results are very promising as the SOM was
capable to separate events generated with low viscosity analogue
magma from those generated with high viscosity magma and to
discriminate among those generated with different roughness of the
conduit. The promising results obtained from the data generated by
the analogue experiments demonstrate that the method could be a
valuable tool in volcano monitoring to provide interpretative tool on
clustering that can be obtained on real data. Moreover, our study
confirms that seismic and acoustic signals recorded on volcanoes can
provide insights into the characteristics of the fluids in the plumbing
system and their temporal evolution. In particular, viscosity, which
most affects the clustering results, is one of the main parameters
controlling the style of degassing and eruptions.
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