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For coastal regions on the margin of a subduction zone, near-field megathrust
earthquakes are the source of the most extreme tsunami hazards, and are
important to handle properly as one aspect of any Probabilistic Tsunami Hazard
Assessment. Typically, great variability in inundation depth at any point is possible
due to the extreme variation in extent and pattern of slip over the fault surface. In this
context, we present an approach to estimating inundation depth probabilities (in the
form of hazard curves at a set of coastal locations) that consists of two components. The
first component uses a Karhunen-Loève expansion to express the probability density
function (PDF) for all possible events, with PDF parameters that are geophysically
reasonable for the Cascadia Subduction Zone. It is then easy and computationally
cheap to generate a large N number of samples from this PDF; doing so and performing
a full tsunami inundation simulation for each provides a brute force approach to
estimating probabilities of inundation. However, to obtain reasonable results,
particularly for extreme flooding due to rare events, N would have to be so large as
to make the tsunami simulations prohibitively expensive. The second component
tackles this difficulty by using importance sampling techniques to adequately sample
the tails of the distribution and properly re-weight the probability assigned to the
resulting realizations, and by grouping the realizations into a small number of
clusters that we believe will give similar inundation patterns in the region of interest.
In this approach, only one fine-grid tsunami simulation need be computed from a
representative member of each cluster. We discuss clustering based on proxy
quantities that are cheap to compute over a large number of realizations, but that
can identify a smaller number of clusters of realizations that will have similar inundation
depths. The fine-grid simulations for each cluster representative can also be used to
develop an improved strategy, in which these are combined with cheaper coarse-grid
simulations of other members of the cluster. We illustrate the methodology by
considering two coastal locations: Crescent City, CA and Westport, WA.
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INTRODUCTION

The primary goal of this work is to present a general methodology
for developing the hazard curve for a quantity of interest (e.g.,
maximumwater depth) at a coastal location that may be inundated
by tsunamis. An inundation hazard curve shows the annual
probability that the flooding depth will exceed each value in a
range of specified exceedance values. The same techniques could be
applied to other quantities of interest (e.g., maximum flow speed or
momentum flux) but here we concentrate on water depth h for
illustration, and use hmax to represent themaximum value of h over
the entire simulation (at some particular point of interest). Let ĥ
denote some particular exceedance value. The hazard curve is then
obtained by determining P[hmax > ĥ], the annual probability that
hmax exceeds ĥ at this particular location, as a function of ĥ. The
ultimate goal is to develop such a hazard curve at each point on a
fine grid covering a community of interest, fromwhich it is possible
to then create hazard maps that show the spatial distribution of
maximum water depth expected for a given annual probability, or
the spatial distribution of annual probability for a given exceedance
value, or potentially other products useful to emergency managers
or community planners.We give some examples of how this can be
done in Section 6.

A full probabilistic tsunami hazard assessment (PTHA) would
have to include all potential sources of tsunamis, far-field as well
as near-field, and also possibly tsunamis induced by landslides or
other processes; a complete review of this can be found in Grezio
and Babeyko (2017). Here we concentrate on one aspect of
PTHA, assessing the probabilities in a coastal region due to a
megathrust event on a nearby subduction zone. This is a difficult
aspect of PTHA because variations in the spatial distribution of
the slip can have a significant effect on the resulting tsunami
(Goda et al., 2016; Melgar et al., 2019). In addition, some events
may cause substantial subsidence or uplift of the coast around the
location of interest, which can also greatly effect the inundation
extent and depth of the resulting tsunami.

To perform PTHA it is necessary to first have some model for
the probability density function (PDF) of all possible events. It is
impossible to know the correct distribution due to the high degree
of epistemic uncertainty in subduction zones with infrequent past
megathrust events. However, recent studies have suggested ways
to generate a geophysically reasonable distribution that can be
easily sampled to generate large numbers of hypothetical events
(LeVeque et al., 2016); accordingly, the approach we use is based
on a Karhunen-Loève (K-L) expansion to generate slip patterns
with correlation lengths that are thought to be “reasonable” from
studies of past events, e.g., (Mai and Beroza, 2002; Goda et al.,
2016; Melgar and Hayes, 2019; Crempien et al., 2020), as
discussed further in Section 2. We stress, however, that we do
not claim we have the “correct” distribution, or even the best
possible based on available science, and so our focus is on a
methodology that could also easily be applied to other choices of
the PDF. We also suggest that any PTHA study intended as
guidance for decision makers should include a sensitivity study
that considers how robust the results are to changes in the
assumed earthquake distribution, along with other approaches

for assessing the effects of the epistemic uncertainty inherent in
this problem, see, for example, Davies and Griffin (2020). In
addition there is a need for further testing of random tsunami
models comparing their statistical properties with historical
tsunamis as is done in Davies (2019) for 18 recent events in
the Pacific and Indian Oceans. Of course too few data points are
available from the Cascadia Subduction Zone (CSZ) itself to allow
a local validation of any PDF.

In this paper we focus on how best to handle the aleatoric
uncertainty, i.e., assuming that we have a probability distribution
to use for the PTHA, how do we efficiently create hazard curves
based on this distribution? The brute force approach would be to
choose a very large number N of samples from the distribution,
perform a numerical tsunami simulation with each, and then (for
each location of interest and each exceedance value) determine
the number N̂ of samples for which hmax exceeds ĥ. Then the ratio
N̂/N is an estimate of a conditional probability that hmax exceeds
ĥ given that some event from the set of all possible events occurs.
If Ptotal is the annual probability that any event from the classes
considered occurs, then PtotalN̂/N could be used as the annual
probability of hmax exceeding ĥ.

The primary difficulty we address is thatNmay need to be very
large in order to get meaningful statistics, particular for the
relatively unlikely but most dangerous higher values of ĥ.
Since a single tsunami simulation with a reasonable spatial
resolution can take several minutes if not hours of computer
time, this is problematic; and even more so if one also wants to do
sensitivity studies and/or must consider many different
communities over hundreds of miles of coastline.

A fundamental problem already arises when we ask for a
reasonable value of Ptotal since it depends very much on what
set of possible earthquakes to consider. Since earthquakes with
magnitude less than Mw 7.5 rarely cause damaging tsunamis we
could define Ptotal as the annual probability of any event with
magnitude greater than this. In Section 2 we discuss our choice of
PDF for the distribution of earthquakes. Although not necessarily
correct for large subduction zone events, the Gutenberg-Richter
law is a reasonable starting point for choosing a distribution.
According to this, a magnitude Mw 7.5 event is 10 times more
likely than an 8.5 event and roughly 32 times more likely than Mw
9.0. Hence, for example, if we sample N � 3, 200 events we would
expect perhaps 100 to beMw 9.0 or larger, a rather sparse sampling
of these important and potentially quite diverse events. Moreover,
most of the samples would be small events for which there is little
or no inundation, a clear waste of computing resources.

TABLE 1 | Table of the four magnitude classes used in this work, with the annual
probability Pj for an event from each class, along with the corresponding
return period 1/Pj , based on the Gutenberg-Richter formula p � 106.279−Mw for a
magnitude Mw event.

Class j Mw Annual probability Pj Return period (years)

1 7.5 0.06012 16.6
2 8.0 0.01901 52.6
3 8.5 0.00601 166.3
4 9.0 0.00190 526.0
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We can address this by a simple application of importance
sampling. We first split the space of all possible events of interest
into a small number of classes. For illustration in this paper we
use four classes based on magnitude: Mw 7.5, 8.0, 8.5, and 9.0, but
this could easily be expanded. We then assign an annual
probability to each class, call this Pj for class j (j � 1, , 2, 3, 4
for our case, for which we assign the probabilities shown in
Table 1). We then take Nj samples from class j, compute the
fraction N̂j that exceed ĥ, and use PjN̂j/Nj as an estimate of the
annual probability of exceeding ĥ by an event from class j. These
can then be combined to obtain the annual probability of
exceeding ĥ by any event (see Section 6). The advantage of
splitting into classes is that we can choose a large number of
events in a class corresponding to high impact but low probability
(Mw 9.0 in our case) and then the corresponding fraction N̂j/Nj is
weighted by a smaller annual probability Pj when combining with
the probabilities obtained from other classes. For illustration, we
have chosen to take Nj � 500 for each of the four classes so that
we only consider 2,000 events in total but 500 of them are in the
Mw 9.0 class (In Section 6 we discuss the rationale and
implications of choosing this number of realizations.).

Next we tackle the problem that even 2,000 tsunami
simulations may be excessively demanding, particularly when
we expect that many of these events will give very similar
inundation patterns and depths as other events, and so in
principle it should be possible to estimate the hazard curve with
fewer simulations of judiciously chosen representative tsunamis.
We develop an approach for clustering that can be applied to the
2,000 events before doing any fine-scale tsunami modeling, in
order to identify clusters of events that we expect to give very
similar tsunami impact in the location of interest. We then do a
fine-scale tsunami model of only one realization from each cluster
(which we call the “cluster representative”) and assign it a weight
that is based on the collection of events in that cluster. Based on this
we can estimate the contribution that this cluster should make to
each hazard curve. This clustering is explained inmuchmore detail
in Section 5. Other studies have used clustering to achieve scenario
reduction. For example, see Lorito et al. (2015) for hazard
assessment, Gusman et al. (2014) for early warning and Volpe
et al. (2019) for a study more closely related to this paper.

The clustering approach we illustrate in this paper is based on
doing a coarse-grid tsunami simulation for each of the 2,000
realizations, with a grid resolution that allows much faster
simulation, but is too coarse to properly represent the tsunami
inundation over the communities of interest. However, we show that
these coarse grid simulations give information in the form of proxy
variables that can be used to very effectively cluster the events.

Moreover, the coarse-grid simulations can be greatly enhanced
to provide “pseudo-fine” results that are at the resolution of the
desired fine grid and that agree very well with the actual fine-grid
simulations of the same realization, but are much cheaper to
compute. This enhancement is performed in part using
information about the difference between the coarse and fine
grid simulations performed for the few realizations where both
are available (the cluster representatives). This procedure is
described in more detail in Section 4.

For illustration we consider two sample communities:
Crescent City, CA, which is near the southern extent of the
CSZ and Westport, WA, roughly 570 km north of Crescent City.
These communities are both at high risk to CSZ tsunamis and
have been the subject of past studies. They also have quite
different topographic features as discussed further in Section
3. The same set of 2,000 CSZ realizations was used for each site,
although the clustering algorithm is applied separately to each,
since the set of realizations that give similar inundation patterns
at one site may not form a suitable cluster at the second site. For
illustration we show that selecting only 18 clusters (and hence
performing only 18 fine-grid simulations for each site) gives
hazard curves and maps that compare very well with those
obtained if all 2,000 realizations are simulated on the fine grid,
particularly after adding in additional information obtained from
coarse-grid simulations of each realization. These results are
presented in Section 7.

Some of the techniques presented in this paper were first
developed as part of a project funded by Federal Emergency
Management Agency Region IX, and presented in the project
Final Report by Adams et al. (2017). Subsequently we have
improved some of these techniques. We are also now using a
probability distribution that is potentially more realistic than the
original choice, and we consider two different target communities
with quite different topography in order to better test the general
applicability of these ideas. The original report and associated
webpages (Adams et al., 2017) contain more discussion of some
of these ideas, along with illustrations of some related approaches
that are not reported in this paper. Research on PTHA using
stochastic collections of sources goes back many years, see, for
example, the early review Geist and Parsons (2006) and the more
recent ones of Geist and Lynett (2014) and Grezio and Babeyko
(2017) for many more references.

Recently, several researchers have adopted the use of a K-L
expansion to generate large suites of realizations for PTHA
studies of particular regions and/or to study sensitivities and
uncertainty. For example, Gonzalez et al. (2020) generated 400
realizations for a hybrid deterministic/PTHA to Iquique, Chile,
and Crempien et al. (2020) generated 10,000 realizations on a
idealized fault and performed GeoClaw tsunami simulations of
each on idealized topography to study the effect of spatial slip
correlation on tsunami intensity. The techniques developed in
this paper could help to accelerate such studies.

Research on reducing the work required to handle large sets
of realizations has also been done by others. For example,
Sepúlveda et al. (2017) used the K-L expansion together with a
stochastic reduced order model to obtain better results than
with a brute force Monte Carlo simulation, and Sepúlveda et al.
(2019) used these techniques to do a PTHA analysis including
a sensitivity study for Hong Kong and Taiwan locations due to
earthquakes on the Manila Subduction Zone. These techniques
reduced the number of simulations needed from 10,000 to 200
for each of 11 sets of earthquakes, followed by fine-grid
simulations of the resulting 2,200 realizations. The
reduction was based on seafloor deformation statistics at
the earthquake sources. That paper also has a strong
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emphasis on using sensitivity analysis to quantify errors
in PTHA.

Even closer to the methodology presented in this paper is the
source filtering approach developed recently by Volpe et al.
(2019). They started with a suite of more than 1.7 million
scenarios that affect their study region, and used a clustering
algorithm based on cheaply obtained proxies to reduce this to a
smaller set of 1,154. They then performed fine-grid simulations
for one representative from each cluster. One significant
difference in our approach is that we use coarse-grid
simulations (using the full nonlinear tsunami model, including
onshore inundation over the study region) and the associated
pseudo-fine results, which allowed us to obtain PTHA results
with fewer fine-grid simulations. On the other hand, we
performed 2,000 coarse-grid simulations to obtain these,
whereas Volpe et al. (2019) performed the clustering based on
proxy data that was more cheaply obtained. A hybrid approach
might be to apply our methodology to the 1,154 cluster
representatives identified in Volpe et al. (2019), performing
only coarse-grid inundation simulations of these, and then
further clustering into a much smaller set for the fine-grid
simulations.

The approach we use to create pseudo-fine results is also
similar to the idea of multilevel or multifidelity Monte Carlo
methods (Giles, 2015; Peherstorfer et al., 2018), in which results
from two or more different resolution simulations are combined
to reduce the computational load. This is often done in the
context of creating a surrogate model or emulator that can be
very cheaply evaluated for new parameter choices in order to do a
more extensive Monte Carlo simulation. This approach has been
used in connection with tsunami modeling by de Baar and
Roberts (2017), and by Salmanidou et al. (2017) for
underwater landslide and tsunami modeling. For a review of
these types of statistical approaches, see Viana et al. (2017). Our
approach is somewhat different in the way we use cluster
representatives and the differences in the local topography at
different resolutions in defining the corrections.

EARTHQUAKE PROBABILITY DENSITY
AND REALIZATIONS

Probability distributions proposed for CSZ earthquake
magnitudes have included both characteristic and
Gutenberg–Richter (G-R) types. More generally, Parsons et al.
(2012) noted that this is a long-standing controversy for many
other fault zones. Consequently, they developed both types of
distribution models for the Nankai Trough, based on data from
many past events. The characteristic earthquake model was based
on fixed rupture geometries and historical/palaeoseismic
recurrence times, and the G-R model was based on fault-slip
rates and an estimated distribution slope (b-value). They found
that the G-R distribution, constrained with a spatially variable
long-term slip rate, replicated much of the spatial distribution of
observed segmented rupture rates along the Nankai, Tonankai,
and Tokai subduction zones, although with some rate differences
between the two methods in the Tokai zone. Thus, where

supporting information exists (e.g., palaeoseismic and
historical recurrence data), and fault segmentation
observations are absent, they suggested that very simple
earthquake rupture simulations based on empirical data and
fundamental earthquake laws could be useful forecast tools in
settings with sparse data from past events. Models using a G-R
distribution but without the explicit guidance of a varying long-
term slip rate have also been employed, both globally and
specifically along the Cascadia margin (Rong et al., 2014). We
thus view a G-R distribution of magnitudes as adequate for
this study.

We generated 2,000 slip realizations over four magnitude
classes: Mw 7.5, 8.0, 8.5, and 9.0 (with 500 of each). To
determine the annual probabilities of earthquakes in each of
the magnitude classes, we follow a G-R law using a b-value of 1,
indicating “normal” seismic behavior. We also assume a yearly
rate of occurrence of a Mw 9.0 along the CSZ as once every
526 years based on paleotsunami records from Goldfinger et al.
(2012). This implies an a-value of 6.279 in the G-R relation and
gives us annual probabilities Pj in Table 1 for each of our
magnitude classes. Incidentally, Table 1 could also be
extrapolated to show that the CSZ should have a M6.3
earthquake every year. However, this is not the case on the
anomalously-quiet CSZ. Nonetheless, for the purposes of
presenting a PTHA methodology, using a Gutenberg-Ricter
law is a starting point. In this study, we use 0.5 magnitude
unit spacing between our classes. Other studies, such as Li
et al. (2016) use much smaller spacing between classes. For a
full PTHA analysis, a fine spacing that allows for the complete
overlap of earthquake properties between different magnitudes
would be preferred.

We limit our earthquake realizations to imitate a series of
thrust events located on the megathrust interface along the CSZ.
To introduce variability to each realization, we allow for
geophysically reasonable variations in slip distribution,
location, and rupture dimension. An example of a rupture
from each magnitude class is shown in Figure 1. We employ
a regional fault geometry that approximates the CSZ from
McCrory et al. (2012). This is then discretized into triangular
subfaults using the three-dimensional finite element mesh
generator GMSH (Geuzaine and Remacle, 2009). A triangular
mesh allows a variable strike and dip that can better approximate
the McCrory et al. (2012) geometry than a rectangular
discretization. Our area of interest extends along the entire
CSZ margin and down to a depth of 30 km beyond which slip
is not expected to continue (Frankel et al., 2015).

In order to introduce variability in ruptures of the same
magnitude, as is observed from past earthquakes, the length
and width of each realization is obtained from a probabilistic
source dimension scaling law (Blaser et al., 2010). For each
individual rupture we sample from a lognormal PDF such that

log10L ∼ N ( − 2.37 + 0.57Mw, σL),
log10W ∼ N ( − 1.86 + 0.46Mw, σW). (1)

where σL and σW depend on the faulting environment and for
reverse faulting (subduction zones) are 0.18 and 0.17, respectively
(Blaser et al., 2010). The rupture extent is then centered about a
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randomly chosen subfault within our CSZ mesh geometry. If the
chosen subfault is located in such a place that the rupture extent
exceeds the bounds of the rupture geometry, then it is moved up/
down dip and/or along strike until it falls completely within
the CSZ.

Once the bounds of the rupture area are established, we
generate a stochastic slip distribution using an application of
the Karhunen-Loève (K-L) expansion following LeVeque et al.
(2016) and Melgar et al. (2016). Here, we assign slip over
participating subfaults using a von Karman correlation
function, C(r), which replicates the statistics of slip
distributions as observed from finite-fault solutions of past
moderate sized earthquakes (Mai and Beroza, 2002). Here, the
correlation between the sth and dth subfaults (in along strike and
along dip directions) is

Csd(rsd) � GH(rsd)
G0(rsd) , (2)

where

GH(rsd) � rHsdKH(rsd), (3)

H is the Hurst exponent (set in this study as 0.75), KH is the
modified Bessel function of the second kind, and (rsd) is a length
measurement for sth and dth subfaults that depends on the
distance between subfaults in the along strike (rs) and along
dip (rd) directions as well as the correlation length along strike
(as) and dip (ad), written as

rsd �
������
r2s
as
+ r2d
ad

√
. (4)

The correlation length and width for each realization governs
the size of asperities and uses a magnitude dependent scaling law
from Melgar and Hayes (2019) where

as � 17.7 + 0.35Leff ,
ad � 6.7 + 0.41Weff .

(5)

The variables Leff and Weff are based on the effective length and
width scales (in kilometers) from Eq. 1 and are determined from
Mai and Beroza (2000). Using the defined correlation function
the distribution of slip across the fault surface is treated as a
spatially random field. The vector s containing the amount of slip
at each subfault is then given by the Karhunen-Loève expansion
as,

s � μ +∑nf
k�1

zk
��
λk

√
vk, (6)

where μ is the mean slip over the entire fault, λk and v are the
eigenvalues and eigenvectors of the chosen correlation function,
and zk are random numbers normally distributed with a mean of
0 and standard deviation of 1. After defining the correlation
function we assume a marginal log-normal distribution as
described by LeVeque et al. (2016) where we use a standard
deviation of 0.45 of the mean slip in any givenmodel. This value is

FIGURE 1 | (A–D) Example earthquake realizations for eachmagnitude class. (E) Variability in correlation length andwidth per eachmagnitude. (F) Variability in total
fault length and width per magnitude class. (G) Variability in mean and maximum slip, in meters, for realizations in each magnitude class.
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obtained from an analysis of a database of slip models dating back
to 1990 (Melgar and Hayes, 2019). It is important to note that
there are as many eigenvectors or eigenmodes (nf ) as there are
subfaults in the model geometry. Equation 6 is a statement of
how each eigenmode distributes slip away from the background
mean model modulated by a random number zk and thus
achieving a stochastic realization of slip. For tsunami modeling
because seafloor deformation is a relatively long period
phenomena LeVeque et al. (2016) showed how high order
modes contribute relatively little to tsunamigenesis so it is
possible to truncate the sum to just a few tens or even
hundreds of terms. Here we limit the number of contributing
modes to no more than 200. Finally for the background mean
model we assume enough homogeneously distributed slip to
match the target magnitude given the chosen fault dimensions.
It is also possible to make other choices for µ such as a known slip
distribution or a geodetic locking model (Goldberg and Melgar,
2020).

We cap the upper level of slip possible for any realization in
this study to 60 m, as was recommended in Melgar et al. (2016)
and based on plate convergence rates from McCaffrey et al.

(2007). We achieve this by rejecting and re-running any
realization where any subfault in our mesh has an assigned
slip that is greater than our maximum slip threshold. This cap
is in place in order to limit the possibility of unrealistically large
amounts of slip in any earthquake realization. It should be noted
that this cap creates an upper limit in tsunami intensity that may
be reflected in any final PTHA analysis. We do not enforce the
target magnitudes in a strict sense. The resulting magnitude after
the stochastic process can be slightly higher or lower than the
requested values. We do not re-scale the slip in anyway to force
the rupture to have the target magnitude exactly. This, and the
maximum slip requirement, can introduce departures from the
desired PDF (Sepúlveda et al., 2017) but this is generally an effect
that is much smaller than the epistemic uncertainty.

We calculate the total seafloor deformation of each earthquake
realization using angular dislocations for triangular subfaults in
an elastic half space (Comninou and Dundurs, 1975). This
method can be seen as a variant of the Okada equations,
which focus on rectangular subfaults (Okada, 1985). We
obtain the deformation over the entire CSZ study region with
at a 30” spatial resolution. This is a fine enough spacing to ensure

FIGURE 2 | Slip on our fault geometry and associated seafloor deformation for two sample realizations, numbered 1,665 and 1,999, shown in Figures 5, 8. WP
marks the location of Westport, WA. CC marks the location of Crescent City, CA.
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that we recover slip features that may be present at our smallest
magnitude class, including rupturing asperities at the smallest
reported slip correlation length (see examples in Figure 2).

Seafloor deformation is directly translated to a disturbance at
sea level by assuming an incompressible water column. While
some large magnitude earthquakes can have rupture durations
extending multiple minutes, this kinematic effect on the tsunami
in the near-field is minimal (Satake, 1987; Williamson et al.,
2019). Here, we simplify the rupture process by treating all
seafloor deformation as instantaneous and occurring at the
initial time step of our tsunami model. It is this initial
disturbance that initializes the tsunami model, as discussed
further in Section 3.

Figure 2 shows both slip on the fault and the resulting seafloor
deformation for two of the magnitude 9.0 realizations. We use Ri

to denote the ith realization and the figure shows the realizations
R1,655 and R1,999 out of theN � 2, 000 realizations, chosen because
R1655 has slip concentrated on the southern margin of the fault
while R1,999 has it concentrated to the north, and hence they have

very different effects in Westport and Crescent City, as discussed
in the next section. This illustrates that even within a single
magnitude class there are significant variations between the
tsunamis generated.

COMMUNITIES OF INTEREST AND
TSUNAMI MODELING

We consider two sample communities as shown in Figure 3.
Crescent City, CA was used in previous work on this topic
(Adams et al., 2017), and was the subject of a previous PTHA
analysis by González et al. (2014) and Adams et al. (2015).
Tsunamis tend to focus in Crescent City due to the offshore
bathymetry and harbor (Horrillo et al., 2008), and the central
business district is bounded by the harbor, the low-lying Elk River
valley to the east, and higher hills to the north.

Westport, WA lies on a peninsula at the entrance to Grays
Harbor. The topography is below roughly 10 m everywhere on

FIGURE 3 | Communities of interest in this study. (A) Regional and inset view of Westport, WA and two representative cross sections shown in Section 7. (B)
Regional and inset view of Crescent City, CA with two representative cross sections. Both regional views have a bathymetric (dashed) and topographic (solid) contour
interval of 10 m. Inset figures use a contour interval of 5 m. The coastline is differentiated with a bolded brown line.
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the peninsula, and a number of north-south running ridges
protect some areas from the direct waves arriving from the
west that may still be flooded from the east after the tsunami
enters Grays Harbor. Westport is the site of the Ocosta
Elementary School, recently rebuilt to include the first tsunami
vertical evacuation structure constructed in the United States, for
which tsunami modeling was presented by González et al. (2013).
We selected these two communities to showcase the versatility
clustering PTHA methodology. However, this methodology can
be extended to any coastal community.

Tsunami simulations are performed using GeoClaw Version
5.7.0, distributed as part of the open source Clawpack software
(Clawpack Development Team, 2020). This solves the two-
dimensional depth-averaged non-linear shallow water
equations using adaptive mesh refinement on rectangular grid
patches (in longitude-latitude coordinates). GeoClaw allows each
cell to be wet or dry and to change dynamically, so that the wet/
dry boundary of the coastline evolves as the tsunami inundates
the coastal site of interest.

For this study we simulated the tsunami from each of the
2,000 realizations in two separate simulations. The first set
were the “fine-grid runs” where refinement down to 1
arcsecond (roughly 30 m in latitude, less in longitude) was
enforced over both study sites. This provided the “ground
truth model” hazard curves and maps to use for comparison
purposes, i.e., we assume that our goal is to produce good
approximations to these curves and maps with much less work
than was required to run 2,000 fine-grid simulations. The
second set of simulations were the “coarse-grid runs” in
which the refinement only went down to 9,” and hence a
factor of 81 fewer grid points on the finest level than in the fine-
grid runs. Moreover on these coarser grids it is also possible to
take larger time steps [while still respecting the Courant-
Friedrichs-Lewy condition required by the explicit finite
volume method used in GeoClaw], potentially giving
another factor of 9. However, since some of the
computation takes place on coarser grids over the entire
computational domain, the coarse grid simulations are on
average 5 times faster than the fine grid simulations; see
below. We also note that for a real PTHA we might want to
use even finer grids, e.g., 1/3” is often used now used for hazard
studies, and 1/9” topography is becoming available in many
locations. In this case the relative speedup for coarse-grid
simulations could be much more dramatic.

We use adaptive mesh refinement to optimize the
computational cost of each tsunami simulation. All
simulations used three levels of refinement in the open-
ocean, with grid resolution 1″, 6″, and 3″, and with
regridding every few time steps to follow the propagating
waves (based on a tolerance on the sea surface elevation).
On the continental shelf, refinement is allowed to the next
Adaptive Mesh Refinement level at 90”. An additional
refinement level of 9” is enforced around both study sites.
For the coarse-grid simulations only these five levels of
Adaptive Mesh Refinement are used. For the fine-grid runs,
two additional Adaptive Mesh Refinement levels are
introduced at 3” and 1” resolutions, and the study areas are

forced to be resolved at the finest 1” level. The ETOPO1
topography Digital Elevation Model at 1 arcminute
resolution (Amante and Eakins, 2009) was used over the
full computational domain. A subset of the Astoria, Oregon
1/3” Digital Elevation Model (NOAA NCEI, 2017) was used
around Westport, and around Crescent City a version of the
Crescent City, California 1/3” Digital Elevation Model (NOAA
NCEI, 2012) was used that was modified to remove the pier in
the harbor, since water flows under the pier, for an earlier
PTHA study of this region by González et al. (2014).

In each simulation we monitor the maximum water depth h
over a grid of points covering the study area (at the finest resolution
of the simulation) over the duration of the simulation. For this
study we ran each tsunami simulation to 4 h of simulated time after
the instantaneous seafloor displacement. Examining the results we
found that in a few cases there were still significant edge waves
trapped along the coast that could have lead to slightly larger values
of the maximum at some points, so a realistic PTHA should run
some realizations out to later times. For the purposes of this study
our reference solution uses the maximum h over the same time
period as our approximations and so comparisons are still valid.

At each point where h is monitored, these maximum values
(denoted by hfmax for the fine-grid runs) are used to compute a
reference hazard curve. The coarse-grid simulations produce
their own set of hcmax values on a coarser set of points (which
can be extended to the fine grid by piecewise constant
interpolation within each coarse grid cell). These coarse-grid
values are used both in the clustering algorithm and in
computing a pseudo-fine result from each coarse result, as
explained in the sections below.

The reference hazard curve is affected by the spatial
distribution and properties of the rupture realizations
which act as our ground truth. Therefore, it is important
to have enough realizations at each magnitude class to
capture all tsunamigenic behavior that is possible given the
seismic constraints we presented in Section 2. The total
number of realizations per magnitude bin is based on the
variability in the likelihood of exceeding a set of tsunami
amplitudes in the harbors of both Crescent City, and
Westport, as illustrated in Figure 4. Here, we calculate the
likelihood that h exceeds a set of tsunami thresholds, ranging
from 1 cm to 10 m at one particular point in each study
region. As more realizations in a magnitude class are
added, the variability in the probability of exceeding each
tsunami threshold reduces. We can estimate that we have
enough realizations to act as our ground truth when each
probability curve has flattened out. Here, this occurs at about
400 realizations per magnitude.

The tsunami simulations were performed using the OpenMP
feature of GeoClaw using 30 threads on a Linux server. The total
Central ProcessingUnit time varied for each realization, depending
on whether the initial deformation came from a small localized slip
patch (requiring small regions of refinement in the ocean and possibly
resulting in a negligible tsunami) or a larger rupture. Total Central
Processing Unit time (summed over all threads and over all 2,000
simulations) was 49.2 h for the coarse-grid runs and 255.6 h for
the fine-grid runs.
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Sample Realizations
Before proceeding, we first show hmax in each study region for the
two sampleMw � 9.0 realizations shown in Figure 2. Figures 5, 6
show hmax for R1,665 at Westport and Crescent City, respectively,
and similarly Figures 7, 8 show hmax for R1,999. In each case, panel
A shows the fine-grid result hfmax while B shows the coarse-grid
result hcmax. Note that the 9” grid cell resolution is clearly visible in
B and that this coarse grid cannot resolve all features of the flow,
but that the general order of magnitude is correct. Panel C shows
the difference between coarse and fine results, which are
substantial in some regions.

The remaining panels of each figure show the result of
enhancing the coarse-grid results using techniques developed
in the next section, where these will be discussed in more detail.

COARSE-MOD AND PSEUDO-FINE
ENHANCEMENTS

Our PTHA approach starts by sampling N realizations, which we
denote by Ri (for i � 1, 2, . . . ,N). These may consist of Nj

realizations from class j as described in Section 1, with
N � ∑jNj. Performing coarse-grid simulations of each gives us
hcmax at each location on a coarse grid covering the study region.
We wish to avoid doing fine-grid simulations of all realizations,
and instead we will use a clustering approach, described in detail
in below, to group these into K clusters and to choose one
representative realization from each cluster. This “cluster
representative” will be denoted by Rk for the particular
realization from cluster k � 1, 2, . . . ,K .

FIGURE 4 | The probability of exceeding a specified tsunami threshold as a function of the number of cases included for eachmagnitude class at particular points in
(A) Crescent City and (B) Westport. Thresholds tested range from 1 cm to 10 m, with a separate curve for each, color-coded as indicated by the color bar.
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One approach to approximating the hazard curves for N
realizations using K clusters is to perform only one fine-grid
simulation for each cluster (for a “cluster representative”
realization selected from the cluster), and assign a weight to
each that is the sum of the weights of all realizations in the cluster.
We show results of this approach in Section 7. However, using
only K events will give a hazard curve with only K jump
discontinuities and cannot well approximate the true hazard
curve if K is much smaller than N, particularly at the lower
probabilities. In our example application, N � 2, 000 and we will
choose K � 18.

Much better results are obtained if we also make use of the
remaining N − K � 1, 982 coarse-grid simulations that were
performed to do the clustering. The coarse grid results alone
do not give sufficient resolution of hmax for use directly, but they
can be enhanced to approximate the inundation that each would
produce on a fine grid with much less work than required to do

the fine-grid simulation. This is done as a two-stage process. In
the first (“coarse-mod”) step the coarse grid results are combined
with the fine-grid topography to give estimates of the maximum
depth on the fine topography. This is independent of the
clustering and can be done immediately following each coarse
grid simulation. The second (“pseudo-fine”) step uses the
clustering, and the idea that the difference between the coarse-
mod and fine-grid simulations at the cluster representative (both
of which are available) gives a good indication of how other
coarse-mod results in the same cluster should be adjusted to
better approximate the result of a fine-grid simulation. We
describe each of these in turn.

Modified Coarse Grid Corrections
Each of the N � 2, 000 coarse-grid runs provides an estimate of
hcmax at a set of coarse grid points covering the study region. These
were computed using a coarse grid (with resolution nine” in our

FIGURE 5 | Sample results for realization 1,665 at Westport, where the tsunami was small. (A, D, G) hfmax (B) h
c
max (E) h

c
max after coarse-mod corrections. (H) hcmax

after pseudo-fine corrections. (C, F, I) Errors relative to hfmax. Purple is above 8 m and Green is land not inundated. See the text for more explanation.
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case), which is inadequate to represent the community of
interest. For example, the top row of Figures 5-8 shows
hmax in each study region for two particular realizations,
and the difference in resolution is apparent between the
fine-grid simulation (hfmax in Panel A of each figure) and
the corresponding coarse-grid simulation (hcmax in Panel B).
Panel C of each figure shows the difference between the fine
and coarse results, after the coarse-grid results are interpolated
to the fine grid as a piecewise constant function over each
coarse grid cell.

The coarse-mod corrections are based on the observation
that the maximum water surface ηmax � B + hmax (where B is
the pre-seismic topography) is often much more smoothly
varying over a community than is the maximum water depth
hmax (Note that even a constant ηmax throughout the study
region would still have large variations in hmax � ηmax − B due
to the variations in topography B.). Hence at any point, if we
assume ηmax is roughly correct, we can get a better estimate of
hmax by subtracting off the fine-grid topography at this point
from the ηcmax value predicted by the coarse-grid simulation. As
usual, we focus on values at a single grid point on the fine grid.
Let Bf represent topography from the fine-grid simulation at
this point and Bc the topography value from the coarse-grid
simulation in the coarse cell containing this point. Then

ηcmax � Bc + hcmax. The correction we make defines a modified
value hcmmax at this point as

hcmmax � ηcmax − Bf � Bc + hcmax − Bf � hcmax − ΔB (7)

where

ΔB � Bf − Bc. (8)

In other words, we simply adjust hcmax at each fine grid point by
ΔB, the difference between the fine and coarse topography at this
point. This represents the most common situation where water
reaches both the coarse and fine bathymetry levels and is given in
the first two lines in Eq. 9.

However, there are a few special cases where we can not
use (7). Clearly, if ΔB> hcmax > 0, we can not allow hcmmax to
become negative (the water reaches the coarse bathymetry
level but not the fine level), so hcmmax is set to 0 in the third line
in Eq. 9.

The last three lines in Eq. 9 refer to the special case when water
does not reach the coarse bathymetry level (hcmax � 0). In this
case, water may or may not reach the fine bathymetry level. To
determine if it does, we define an η threshold value, called ηT and
now use ηc to denote the ηmax value at a point of interest on the
coarse grid. Over the four neighboring grid cells around the
coarse cell containing the location of interest, we find ηT , the

FIGURE 6 | Sample results for realization 1,665 at Crescent City, where the tsunami was large. Panels as described in Figure 5. Purple is above 8 m. and Green is
land not inundated.
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maximum ηc value where hcmax > 0; that is, the threshold where we
have seen flooding locally. Lines four and five in Eq. 9 give hcmmax
when water can reach the fine bathymetry but not the coarse
bathymetry level. In line four, the threshold is at least the fine
bathymetry, but doesn’t exceed the coarse bathymetry, so only
ηT − Bf meters of water can be placed above the fine bathymetry.
In line five, the threshold ηT computed from including the four
neighboring coarse cells is at least the coarse bathymetry level, but
we do not allow hcmmax to exceed the value of B

c − Bf since no water
appeared above Bc in the cell of interest. Lastly, the sixth line in
Eq. 9 gives the situation where water does not reach either the fine
or coarse bathymetry levels since ηT did not exceed B

f . In all cases,
hcmmax will remain as hcmax at locations where the fine and coarse
bathymetries were equal (ΔB � 0).

Based on the above discussion the modified coarse grid value is
given by:

hcmmax �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
hcmax − ΔB if0≤ΔB< hcmax

hcmax − ΔB ifΔB< 0< hcmax

0 if0< hcmax ≤ΔB
ηT − Bf ifhcmax � 0 andBf ≤ ηT ≤B

c

Bc − Bf ifhcmax � 0 andBf ≤Bc ≤ ηT
0 ifhcmax � 0 and ηT ≤B

f ≤Bc

(9)

The second row of Figures 5-8 shows examples of the effect of
this. PanelD is again the fine grid hmax but now Panel E shows the
hmax estimated on the fine grid after applying these coarse-mod
corrections. Panel F shows the resulting errors.

An earlier version of this coarse-mod strategy was used in
(Adams et al., 2017), and more examples are given in the
Appendix of that report showing how well the modified coarse
data can compare to the original coarse data and the fine data. We
have since improved this strategy by looking only locally for the

FIGURE 7 | Sample results for realization 1,999 at Westport, where the tsunami was large. Panels as described in Figure 5. Purple is above 8 m and Green is land
not inundated.
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threshold value ηT as opposed to across the entire community in
the Federal Emergency Management Agency report, and have
allowed this value to even be negative, which makes the strategy
more applicable to locations near the shoreline that see little
inundation during an uplift event. These improvements also
result in a more effective pseudo-fine strategy as discussed below.

Pseudo Fine Grid Corrections
We now present an approach to further improve each of the
coarse-mod results defined by (9) by also using the fine-grid runs
performed for each cluster representative. We begin by clustering
the N modified coarse grid runs (or the original N coarse grid
runs) into a small number of non-overlapping clusters. For this
paper, the clustering was done using the original N � 2, 000
coarse grid runs, to produce K � 18 clusters, as described in
Section 5. These clusters contain different numbers of runs. Each
cluster has one run designated as its cluster representative, which
we will denote by Rk for the particular realization from cluster
k � 1, 2, . . . ,K .

After the clustering has been done, more information is
available that can be used to further improve the coarse-mod
approximations. Since we assume that the cluster representative
Rk is somewhat typical of the pattern of flooding seen for all
realizations in the cluster, and since we have both fine-grid and
coarse-mod results available for this representative realization, we
can use the difference between these as an estimate of what the
difference between fine-grid and coarse-mod results would be for

all realizations in the cluster. This is used to modify each coarse-
mod result to get a better approximation to the expected fine-grid
result. This is what we call the pseudo-fine result for each
realization. We again use hcmmax(Ri) to denote the hmax value
obtained for a particular realization Ri from the coarse-grid
simulation after applying the coarse-mod corrections, and
similarly hfmax(Ri) comes from the fine-grid simulation, as
always focusing on a single spatial location. Then the pseudo-
fine approximation at this location for each realization Ri in
Cluster k is given by

hpfmax(Ri) � hcmmax(Ri) + (hfmax(Rk) − hcmmax(Rk)). (10)

Note in particular that the pseduo-fine result for the cluster
representative itself (i.e, for Ri � Rk) agrees exactly with the fine-
grid result for that realization. For non-representative cluster
members, the pseudo-fine results improve as the clustering
improves, since differences between their coarse-mod and fine
results become closer to the difference between the cluster
representative’s coarse-mod and fine results (the last two
terms in Eq. 10). Increasing the number of clusters would
increase the number of cluster representatives while reducing
the number of non-representatives per cluster, and could improve
the pseudo-fine results at the expense of additional fine grid
simulations. We have not investigated these tradeoffs, as the
pseudo-fine results reported in the next sections were quite good
already for our two chosen communities of interest using a small
number of clusters.

FIGURE 8 | Sample results for realization 1,999 at Crescent City, where the tsunami was small. Panels as described in Figure 5. Purple is above 8 m and Green is
land not inundated.
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We also believe the modified-coarse results provide an
excellent start in building the pseudo-fine results because the
coarse grid GeoClaw simulations already contain information
about the nonlinear flow dynamics on land. This is in contrast to
cheaper coarse results that could have been obtained in deep
water using the linearlized shallow water equations, such as the
thousands used by Li et al. (2016), but this is an approximation we
wished to avoid since our focus is the inundation on land.

The third row of Figures 5-8 show examples of the effect of
this. Panel G is again the fine grid hmax but now Panel H shows the
hmax estimated on the fine grid after applying these pseudo-fine
corrections. Panel I shows the resulting errors relative to the fine-
grid result. Additional illustrations of this idea can be found in the
Appendix to (Adams et al., 2017).

CLUSTERING

In this section we discuss how one can subdivide the individual
events into a small number of clusters that are likely to have
similar inundation patterns. The clustering will be based on proxy
quantities for each event that can be computed solely from the
coarse-grid (low-resolution) simulations, whose runtime is orders
of magnitude smaller than the fine-grid (high-resolution)
tsunami inundation simulations.

In our previous work (Adams et al., 2017), proxy variables
based only on the seafloor deformation of each realization were
also considered. These are much cheaper to compute than the
coarse-grid simulation proxies, but did not do as good a job of
clustering, even though in that work we only considered ruptures
on the southern margin of CSZ and only one near-field study
region, Crescent City. Given the wider range of events now being
considered, where many events are localized far away from a
study region, we believe that it may be harder to develop robust
proxies based only on the seafloor deformations. However, due to
the greater efficiency of that approach, this could be a fruitful area
for future research. We also note that Volpe et al. (2019) used
seafloor deformation near the study region, both to classify
realizations into near-field and far-field, and also in clustering
the near-field realizations.

In this work we use three proxy variables computed from the
coarse-grid simulations for each realization. Each realization thus
corresponds to a point in a three-dimensional space and various
clustering methods can then be used to identify clusters. We
consider variables that attempt to capture aspects of the spatial
variation of the inundation patterns. For each realization, and
each coastal location, we compute the value ηc from the coarse-
grid tsunami simulation that measures the surface level at
maximum inundation, defined by

ηc � Bc + hcmax, (11)

where Bc represents the pre-event topography on the coarse grid.We
consider the spatial variation of ηc over the onshore points that are
flooded: the grid-cells in the simulation centered at (xi, yj) that
satisfy both Bc(xi, yj)≥ 0 and hcmax(xi, yj)> 0. We will denote these
values from the coarse-grid simulation by ηcij. The total number of
flooded onshore points will be denoted by Nf lood.

As the proxy variables, we will use the following statistics of ηc,
where the sums are over all onshore flooded points (i, j):

ηclogsum � log⎛⎝1 +∑
ij

ηcij⎞⎠,

ηcmean �
1

Nf lood
∑
ij

ηcij,

ηcsd �
������������������
1

Nf lood
∑
ij

(ηcij − ηcmean)2√
.

(12)

The first variable ηclogsum is a measure of the total extent and
elevation of the flooding, while the second variable ηcmean is the
mean surface elevation. The third variable ηcsd measures the spatial
variation of surface elevation over the onshore flooded region.
The first two variables summarize the severity of the flooding
while the third variable summarizes the spatial variation of the
flooding pattern.

Utilizing these quantities, the coarse-grid inundation from
each individual realization can be mapped to a point in the three-
dimensional space of proxy variables, which we will call “proxy-
space,” as shown in Figure 9. To perform clustering it is also
necessary to define a metric that measures the distance between
two points in this space, and here we simply use the Euclidean
distance (the square root of the sum of squares of differences in
each of the three proxy variables). We then use K-means
clustering (Lloyd, 1982), as implemented in scipy. sklearn by
Pedregosa et al. (2011) to cluster the 2,000 points in proxy-space
into K clusters, with the property that each point belongs to the
cluster with the closest centroid (as measured in the specified
metric). Note that because ηcmean typically has larger magnitudes
than the other two proxy variables (see Figure 9), the use of the
Euclidean distance effectively weights differences in ηcmean more
heavily than differences in the other proxy variables. We also tried
first normalizing all proxy variables (equivalent to using a
different weighted metric) and somewhat different clusters
were generated but with very similar final results in the hazard
curves. If using proxy variables with vastly different magnitudes,
and/or where some variables are thought to be more important
than others, some care should be used in choosing the metric.

This clustering is done independently for the two study
regions, and the results are shown in the scatter plots in
Figure 9. The plot also highlights which realization is closest
to the centroid of each cluster, which we refer to as the cluster
representative Rk for Cluster k. The number of clusters is
determined by the user, and in this instance 18 clusters were
used to subdivide the 2,000 events of varying magnitude. We also
tried clustering with only 6 or 12 clusters but the results did not
match the all-fine (ground truth model) as well, while using more
than 18 clusters did not seem necessary for this particular data set.
Volpe et al. (2019) use an iterative procedure to select the number
of clusters by enforcing a maximum distance between cluster
members and the centroid and this might be a good approach in
general.

From Figure 9 one observes that there is a general monotonic
behavior with respect to all three variables. Higher magnitude
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events tend to have higher values for all three variables. But also
note that the scatter plot for the two coastal communities show
qualitatively different patterns. While the points in proxy space
for Westport show a more predictable behavior with higher
magnitude events more concentrated along a smooth,
monotone increasing curve, there is much more variation in
the proxy variable ηcsd in Crescent City and consequently more
scatter. This can be explained by the difference in topography. In
Westport there are ridges in the north-south direction which
roughly separates the onshore regions into zones that can flood
independently, leading to more variation in ηcsd for most
realizations. However, for realizations with the most severe
surface elevations, all zones are inundated, leading to smaller
variation in ηcsd. In Crescent City, most of the onshore region is
facing the south-west direction and is rising more monotonically
away from the coast, but there is a sharp gradient in the
topography in the west shoreline, acting as a barrier. The
variation of inundation along this barrier is significant for
extreme realizations, causing more scatter in ηcsd.

HAZARD CURVES AND MAPS

Finally we combine the techniques developed in the previous
sections to produce approximate hazard curves with much
less work than would be required to perform all N fine-grid
simulations. We first summarize our notation and the
definition of the hazard curves and these approximations.
For other discussions of hazard curves, see, for example,
(González et al., 2014; Adams et al., 2015), and also the
review paper (Grezio and Babeyko, 2017). and associated
Jupyter notebooks that illustrate these concepts
interactively.

We assume that we have split all possible events into J classes
indexed by j � 1, 2, . . . , J (in our case J � 4 and the classes are for
Mw 7.5, 8.0, 8.5, and 9.0). We assume each class has an associated
annual probability Pj. We also make the reasonable assumption
that these probabilities are sufficiently small that the probability
of two events happening in a year is negligible. More specifically,
we assume that the annual probability of at least one earthquake
(from the classes considered) is well approximated by the sum of
the Pj. In fact if the different classes represent potentially
independent events, then the probability of at least one of
them occurring is given by

Ptotal � 1 −∏J
j�1

(1 − Pj)
� ∑J

j�1
Pj − ∑

i≠ j
PiPj + higher order terms

≈ ∑J
j�1

Pj.

(13)

As long as the probabilities are small, the final line of (13) is a
good approximation to the true value. For the probabilities listed
in Table 1, Ptotal � 0.08527 when calculated using the product
formula in the first line of (13), and is well approximated by the
slightly larger value obtained using the sum ∑ Pj � 0.08704.

We next chose Nj realizations from each class j, for a total of
N � ∑jNj realizations. We use Ri as shorthand for “Realization i”,
for i � 1, 2, . . . ,N (enumerating all realizations from all of the
classes). For each Ri we assign an associated weight wi defined as
wi � Pj/Nj if Ri is of class j.

Now consider a fixed location in the study region where we
have computed hmax, the maximum tsunami inundation depth,
for each realization. The value computed on the fine grid for

FIGURE 9 | Clustering results for the two study regions. In each case all 2,000 realizations are represented as a point in the three-dimensional proxy-space, and
colored by cluster after with 18 clusters in each case. The crosses indicate the cluster representative, i.e., the realization closest to the centroid of each cluster.
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realization Ri will be denoted by hfmax(Ri). If we perform fine-
grid simulations for all realizations, then we can define the
ground truth model hazard curve (at this location) as follows.
For any exceedance value ĥ≥ 0 we might choose, let
{i : hfmax(Ri)> ĥ} denote the indices of the set of realizations
for which hmax computed on the fine grid exceeds this value.
Then we define

P[hmax > ĥ] � pf (ĥ) ≡ ∑wi summed over {i : hfmax(Ri)> ĥ}.
(14)

Plotting pf (ĥ) vs. ĥ gives the hazard curves, as shown, for
example, in Figure 10. From the hazard curve at each point
on a grid covering the study region, it is possible to extract the
data needed to produce a hazard map; see Section 7.2.

Note that summing the weights wi over all Ri for which ĥ is
exceeded, as done in (14), is equivalent to computing∑​ J

j�1(N̂j/Nj)Pj, where N̂j is the number of realizations
from Class j for which hfmax(Ri)> ĥ (Since each wi � Pj/Nj

for some j and we add in one such contribution for each
realization that exceeded ĥ.). We refer to the wi as weights
rather than probabilities because we do not mean to imply
that every realization in a class has the same probability of

occurring, even though they each have the same weight.
Some of the realizations may be outliers that are very
unlikely to occur, while most of them will come from
closer to the center of the distribution. But because we
assume that we sampled the distribution within each class
properly, the fraction N̂j/Nj is the proper frequency to modify
the probability Pj, and our choice of weights accomplishes
this via the definition (14).

In Section 5we discussed an approach to clustering the Ri into
clusters indexed by k � 1, 2, . . . ,K , for some number of clusters K
that is much smaller than N. For each cluster we identified one
realization Rk from the cluster that we will call the “cluster
representative,” with the hope that a single fine-grid
simulation of the tsunami resulting from Rk will give a good
indication of the flooding expected for all realizations in the
cluster.

One simple strategy for approximating the hazard curve is
then to assign a weight wk to Cluster k, defined by

wk � ∑wi summed over {i : Ri is in cluster k}, (15)

and then approximate P[hmax > ĥ] by a function we will denote
pcf (ĥ) with the superscript standing for “cluster-fine”:

FIGURE 10 | Sample hazard curves at two locations in Westport (top) and two locations in Crescent City (bottom), in each case indicated by the dots in the inset
maps. The curves show the reference all-fine result pf(ĥ) and three approximate hazard curves pcm(ĥ), pcf(ĥ), and ppf(ĥ) as defined in Section 6.
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pcf (ĥ) � ∑​ wk summed over {k : hfmax(Rk)> ĥ}. (16)

In other words, we assume that if the tsunami from the cluster
representative Rk gives an hmax exceeding ĥ then all realizations in
the cluster will, and we add in the cluster weight wk in this case,
which is just the sum of the weights wi for all realizations in the
cluster.

Another approximation, which requires no clustering, would
be to approximate P[hmax > ĥ] by

pc(ĥ) � ∑wi summed over {i : hcmax(Ri)> ĥ} (17)

where hcmax(Ri) is the hmax value obtained with a coarse grid
simulation of realization Ri. This uses information from all N
realizations, but is presumably not a good approximation
because, by definition, the coarse grid is not sufficiently fine to
resolve the study region adequately.

Much better results can be obtained by using all of the
coarse-grid results after enhancing them using the techniques
presented in Section 4. Using only the coarse-mod
corrections to each coarse-grid result would lead to the
approximation

pcm(ĥ) � ∑wi summed over {i : hcmmax(Ri)> ĥ} (18)

while also using the clustering to produce the pseudo-fine
corrections gives

ppf (ĥ) � ∑wi summed over {i : hpfmax(Ri)> ĥ}. (19)

In general using Eq. 19 as an approximation to the all-fine grid
(ground truth model) hazard curve defined by pf (ĥ) has been
found to give very good results with much less work. Only K
fine-grid simulations need to be performed, but the results are
based on all N realizations, with pseudo-fine approximations
that are often nearly as good as the all-fine grid results when
incorporated into PTHA. Hazard curves, hazard plan view and
transect maps, and a table of differences for comparing these
models to the all-fine grid ground truth model are given in
Section 7 below.

PROBABILISTIC TSUNAMI HAZARD
ASSESSMENT RESULTS

We now explore the results of performing PTHA using the
clustering strategies developed in Section 5, either alone or in
conjunction with additional coarse-mod or pseudo-fine results as
developed in Section 4.

Recall that we have sampled N � 2, 000 realizations of a
CSZ event using the techniques described in Section 2, and for
the purposes of this paper we assume that the hazard curves
(and resulting maps) that are generated from a fine-grid
tsunami simulation of each of these events is the correct
reference solution, which we are trying to approximate
more cheaply using the clustering and pseudo-fine grid
techniques. To assess the accuracy of our approximations,
we performed fine-grid simulations of all realizations in order

to compute pf (ĥ), although in practice this is what we wish
to avoid.

Hazard Curves
Recall from Section 6 that a hazard curve is defined at each point
in the study region where hmax values have been calculated over
the entire simulation. Figure 10 shows sample hazard curves at
two locations in Westport, and two in Crescent City. At each
location the figure shows the reference curve pf (ĥ) and three of
the approximations discussed above, the clusters-fine, coarse-
mod, and pseudo-fine strategies. The particular spatial points
were chosen to illustrate typical hazard curves. Additional hazard
curves can be found on the website Williamson et al. (2020).

Note that the all-fine, coarse-mod, and pseudo-fine hazard curves
obtained using 2,000 realizations typically have 2,000 jump
discontinuities, one at the location of hmax for each realization.
The magnitude of the jump in probability at each discontinuity is
equal to the weight wi assigned to that realization. This is because
this hmax value contributeswi to the estimated annual probability for
any smaller exceedance value, but not for any larger exceedance
value. Also note that the smallest nonzero probability that can occur
on any hazard curve is the weight we assign to Mw9 events, w4 �
P4/500 � 3.8 × 10−6 where P4 is from Table 1.

The hazard curve pcf (ĥ) for the cluster-fine strategy is
computed using only the fine-grid results hfmax(Rk) for the 18
cluster representatives. As a result, it has only 18 jump
discontinuities and the jump in annual probability at each
discontinuity is the cluster weight wk. This generally gives a
reasonable approximation to the true hazard curve within the
constraint of a piecewise constant function with so few jumps. It
may not agree well for the most extreme events (smallest
probabilities) since it assigns 0 annual probability to any
exceedance value ĥ greater than the maximum of hfmax(Rk)
over the k � 1, 2, . . . , 18, whereas the true hazard curve goes to
0 only above ĥ � maxih

f
max(Ri) maximized over all 2,000

realizations. If the realization that maximizes this happens to
be a cluster representative then the two hazard curves indicate the
same maximum possible flooding, but in general this will not be
the case. Similarly, for other very small values of p that
correspond to inundation by only a few of the 2,000
realizations, the probability can not be properly represented
when only using the 18 cluster representatives.

Using the coarse-mod enhancement of each coarse-grid result
gives the hazard curve pcm(ĥ). Even though all N simulations are
now used, this correction is not sufficient to give good results in
general, and this hazard curve generally deviates significantly from
the correct hazard curve pf (ĥ). However, using the pseudo-fine
version of all N coarse-grid simulations gives much better results, as
seen in Figure 10 and also generally seen at other locations.

In evaluating the results shown in Figure 10, it is important to
remember that we cannot expect very good agreement at the smallest
annual probabilities, where the results depend entirely on the most
extreme tsunamis out of the 2,000 selected. Of most interest in this
study is the portion of the hazard curve above say p � 10−4, which
corresponds to a return time of T � 10, 000 years. Developing an
accurate hazard curve for lower probabilities would require more
than 2,000 realizations, even considering only the aleatoric
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uncertainty.Moreover, the epistemic lack of knowledge of the proper
probability distribution would also be a limiting factor.

Hazard Maps and Transects
The hazard curves pf (ĥ) at every point on the hmax grid can be
combined to produce hazard maps, as follows. For a fixed annual
probability p̂ we determine from each hazard curve the
corresponding value of ĥ such that pf (ĥ) � p̂. After doing this
at every grid point in the study region we can produce plan view
plots of the expected inundation depth ĥ for this p̂. Figures 11, 12
show such plots for two different probabilities, p � 0.002 (return
time T � 500 years) and p � 0.0004 (return time
T � 2, 500 years). In each case we show the results for four of
the strategies listed above. Again the all-fine strategy gives the
reference result, and we compare this to the cluster-fine, coarse-
mod, and pseudo-fine strategies. In general the pseudo-fine
strategy gives the best approximation to the all-fine results.

Note that in these maps we show offshore points as well as
onshore points, since hmax for both the fine-grid and coarse-grid
simulations were obtained by monitoring the maximum water

depth on rectangular grids also covering some offshore points. At
these points hmax is always at least as great as the original pre-
seismic water depth, so at these points we do not plot hmax itself
but rather the quantity we call zeta, defined by ζmax � hmax + B,
where B is the pre-seismic topography at the point. More
generally we define

ζmax � { hmax if B> 0,
hmax + B if B≤ 0. (20)

Then ζmax agrees with hmax onshore, is continuous at the
shoreline, and offshore it indicates the maximum tsunami
elevation relative to sealevel (We always use the pre-seismic
topography in defining this, since each realization can have a
different amount of uplift or subsidence.).

It is hard to quantitatively compare these hazard maps, and
impossible to present results for more than one probability p̂ on
the same map of this type. So in Figures 11, 12 we also show two
selected transects in each study region (each at some fixed
latitude). We then plot a cross section of the hazard map
along this transect for four different values of T � 1/p as

FIGURE 11 | Sample hazard maps and transects for select locations in Westport. The top panels show plan view plots for return times T � 500 years (left) and
2,500 years (right), over the same spatial domain as shown in Figure 3. In each case panel (A) shows the reference all-fine hazard maps produced with the all-fine
hazard curves pf(ĥ), (B) shows themap produced with the coarse-mod hazard curves pcm(ĥ), (C) shows themap produced with the clusters-fine hazard curves pcf(ĥ),
(D) shows the map produced with the pseudo-fine hazard curves ppf(ĥ). The bottom figures show transects of the hazard maps for four different choices of annual
probabilities p, corresponding to different return times T � 1/p as indicated in the legend. In each case the dashed line is the all-fine reference solution, while the solid line
is the approximation generated using 18 clusters and the pseudo-fine improvements of the other coarse-grid runs.
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indicated in the legend. As T increases the expected flood level
naturally increases. In these plots we also compare two
strategies, the reference all-fine result as a dashed line and
the pseudo-fine strategy as the solid line. These plots clearly
show that the pseudo-fine strategy does a remarkably good job
of estimating the all-fine (ground truth model) inundation for
all four return times, at least along these particular transects.
These are fairly typical of the results seen at other locations in

the study regions, and additional plots are available on the
webpage Williamson et al. (2020).

Finally, in Table 2, we give the maximum and mean
differences between ζmax over each study region for two
different return times, for each of the three strategies
illustrated above. Note that in each case, the pseudo-fine
strategy has mean errors less than 15 cm, even though the
mean value of ζmax varied from 1.88 to 5.18 m in the four

FIGURE 12 | Sample hazard maps and transects for Crescent City. As described in the caption to Figure 11.

TABLE 2 | The magnitude of ζmax and differences between ζmax as computed using the coarse-mod, clusters-fine, and all-pseudo strategies, compared to the reference all-
fine strategy at both Westport and Crescent City (CC), for return times T � 2, 500 and 500 years (p � 0.0004 and 0.002).

T 2,500 years 500 years

Max (Δ) Max (ζ) Mean (Δ) Mean (ζ) Max (Δ) Max (ζ) Mean (Δ) Mean (ζ)

Westport
All-fine 0.00 10.1 0.00 3.75 0.00 5.06 0.00 2.01
Coarse-mod 5.86 8.93 0.67 3.74 3.03 4.70 0.22 1.70
Clusters-fine 1.72 9.64 0.28 3.52 0.95 4.81 0.10 2.03
All-pseudo 1.19 10.1 0.13 3.62 0.75 4.87 0.07 1.88
CC
All-fine 0.00 9.62 0.00 5.23 0.00 3.87 0.00 2.19
Coarse-mod 2.54 8.86 0.32 5.21 1.58 3.35 0.45 2.10
Clusters-fine 2.78 10.5 0.47 5.34 1.10 3.68 0.22 2.30
All-pseudo 1.61 9.87 0.14 5.18 0.64 3.88 0.11 2.14

All values are in meters. The columns labeledmax (Δ) andmean (Δ) are themaximum andmean of the difference over all grid points (i, j), e.g., for the coarse-mod row, Δ �
∣∣∣∣∣ζcmmax − ζ fmax

∣∣∣∣∣. For
comparison, the corresponding maximum and mean values of ζmax across the community are also listed for each strategy, in the columns labeled max (ζ) and mean (ζ). Recall that ζ
represents the maximum flooding depth on land, or the flooding depth added to the pre-seismic bathymetry for points offshore.
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cases shown (T � 2, 500 and 500 years, at the two study regions).
This indicates that our approach is capable of giving very small
relative errors compared to the all-fine (ground truth model) in
the maximum flooding depth of the tsunami, even for the longer
return time shown.

CONCLUSIONS

We have presented a general approach to performing PTHA
when given a) a set of classes of possible events with an annual
probability or return time for each class, and b) a probability
density within each class that can be sampled to obtain a
sufficiently large number of sample realizations that hazard
curves can be accurately approximated by performing fine grid
tsunami simulations for each realization. The problem we
considered is that the number of realizations needed may be
too large to perform fine grid simulations of each, particularly if
many coastal locations are of interest, and so the goal is to obtain
good approximations to the hazard curves that would be
generated by all the fine-grid simulations with much less
work, employing only coarse-grid simulations, clustering, and
correction procedures.

We considered a model problem where 2,000 fine-grid
inundation simulations were performed in order to obtain a
reference hazard curve to test our methodology, which we
again summarize. We first performed coarse-grid inundation
simulations for each realization, using a set of four magnitude
classes and a K-L expansion to define the probability density
within each class for illustrative purposes. We then clustered
them into only 18 clusters and performed one fine-grid
simulation for a single representative from each cluster. We
also used these 18 simulations, with very little additional work,
to enhance the remaining coarse-grid results. The resulting
2,000 pseudo-fine results were then used to produce
approximate hazard curves that are much more accurate than
those obtained using the cluster representatives alone.

Although we chose geophysically reasonable parameters, we
do not claim that the results of our fine-grid hazard curves are
correct, only that they are reasonable reference solutions against
which to compare cheaper strategies. We have also ignored other
magnitude events on the CSZ, other fault mechanisms such as
splay faults, along with distant earthquakes and other tsunami
sources, so the results in this paper should not be interpreted as
providing realistic estimates of hazards in either Crescent City or
Westport. Certainly any realistic PTHA meant to inform
decision-making should also include sensitivity studies,
particularly in light of the large epistemic uncertainty in the
parameters that go into the probability densities (whether

generated by K-L expansion or by any other technique). The
techniques of this paper can be useful for such sensitivity studies
since they can accelerate the PTHA for any set of realizations and
thus allow testing more sets of realizations in order to investigate
the resulting variation in hazard curves. Sets of realizations might
be generated with different density parameters, or be of different
sizes. Different random sets of realizations of the same size can
also help to better explore the aleatoric uncertainty.

More work is needed to better understand and optimize the
clustering method used in this paper. In particular there is a need
to better quantify the number of clusters that should be used, and
the best set of proxy variables to use in performing the clustering.

However, we note that we were generally able to achieve nearly
the same hazard curves with our pseudo-fine results as when
using all the fine-grid results, down to an annual probability of
p � 10−4 or less for each of our test communities. We therefore
believe these techniques can be a useful component in a full
probabilistic study of these sites, and many others. We also note
that they can be applied to any other choice of classes and
probability densities, and adapted to work with any tsunami
modeling software.
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