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Marine seismic reflection data coupled with on-land structural measurements improve our
knowledge about the active deformation pattern of the northen sector of the Malta
Escarpment, a bathymetric and structural discontinuity in the near-offshore of Eastern
Sicily. As favourably oriented to be reactivated within the Neogene Africa—Europe
convergence, it is believed that the Malta Escarpment has a significant role in the recent
seismotectonic framework of the Western lonian Basin and the Hyblean foreland domain of SE
Sicily, where some of the largest and most destructive Mediterranean earthquakes are located
according to available historical catalogs. Offshore seismic data along with bathymetric grids
iluminate the shallow subseafloor setting and allow more accurate mapping of the seafloor
expression of previously identified faults in the area. The seismic interpretation and the near-
fault sediment pattern analysis provide constraints on fault 3D geometries as well as on their
through-time tectonic activity, suggesting also that part of the observed deformation may have
been caused by nontectonic processes. ldentified faults form currently an E-dipping, roughly
N-S trending, and 60 km-long extensional belt deforming the seafloor with a significant
displacement amount in the lonian offshore between Catania and Siracusa. 3-dimensional
parameters of faults were then used to derive expected magnitudes and their reactivation
propensity. Empirical scaling relationships and forward methods point to a high seismic
potential for the detected fault as well as predict the fault slip behavior according to the field-
derived differential stress. This combined analysis along with faults displacement
measurements pointed out how the longest and most continuous fault could be capable
of generating M > 7 seismic events, putting forward strong seismotectonic implications for the
adjacent and densely populated Hyblean Plateau. The expected magnitude and the estimated
recurrence time interval are compatible with those inferred for large historical earthquakes in the
area even if other offshore seismic sources cannot be ruled out.

Keywords: seismic potential, fault slip prediction, 3D data modeling, recent/active tectonics, field deformation
pattern, offshore seismic investigation, malta escarpment
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INTRODUCTION

The Malta Escarpment in the Western Ionian Basin (Southern
Italy, Figure 1) is a 300 km long structural and bathymetric
discontinuity inherited from the Permian-Triassic paleotectonic
setting (Scandone et al., 1981; Fabbri et al., 1982; Casero et al,,
1984) separating at that time two sectors of the African plate with
different crustal thickness/rheology: the thinned/oceanic Ionian
Basin to the east and the Hyblean continental “promontory” to
the west. More recently, this inherited discontinuity has been
partly reactivated in the frame of the Nubia—Eurasia convergence
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dynamics and forms an impressive NNW-SSE trending
submarine fault-scarp in the near-offshore of the densely
populated SE Sicily. Although debated, several studies have
considered this tectonic structure as a potential source for major
historical earthquakes and tsunamis in Eastern Sicily in historical
times (Piatanesi and Tinti, 1998; Bianca et al., 1999; Azzaro and
Barbano, 2000; Argnani and Bonazzi, 2005; Argnani et al., 2012).
For this reason, it is considered a key feature for the seismotectonics
of SE Sicily and the Western Ionian Basin. Based on macroseismic
data and numerical modeling (Mulargia et al., 1985; Barbano and
Rigano, 2001; Sirovich and Pettenati, 2001; DISS working group,
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FIGURE 1| (A) The Malta Escarpment framed in the structural setting of the central Mediterranean region. Large blue arrows indicate diverging geodetic velocities

(see Ward 1994; Mastrolembo et al., 2014; D’Agostino and Selvaggi, 2004; Grenerczy et al., 2005; Palano et al., 2012) measured in the lower plate (Hyblean Plateau and
Apulia Block) of the collisional system. The diverging motion resolves a resultant WNW-ESE extension along the E-Sicily/Western lonian Basin domain (small blue arrows)
where the inherited NNW-SSE trending Malta Escarpment occurs. (B) Structurally, the investigated area places at the shallow portion of an ancient
(Permo—Triassic) ocean—continent transition domain where the Malta Escarpment is widely considered to be a Mesozoic passive margin related either to E-W spreading
of an lonian oceanic ridge (see Catalano et al., 2001), or as has been recently suggested a transform margin, related to NE-SW extension (Gallais et al., 2011; Dellong et
al., 2018). (C) Structural setting of the Malta Escarpment footwall block, the SE Sicily. Black circles indicate the epicentres of the most energetic historical earthquakes
occurred in the area. Acronyms are as follows: SRFS, Scicli-Ragusa Faults System; PAFS, Pozzallo-Avola Faults System; MAFS, Monterosso-Agnone Faults System;
BSFS, Brucoli-Siracusa Faults Systems; NAF of AEF, North Alfeo Fault or Alfeo Etna Fault (Gutscher et al., 2016; Polonia et al., 2016).
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2018) and according to CPTII5 reference catalog (Rovida et al,
2016), epicentres of most historical events (e.g., February 4, 1169,
and January 11, 1693, events, among the most destructive) have
been positioned in the footwall of this tectonic feature. Whatever the
source, Southeastern Sicily, forming the footwall block of the Malta
Escarpment, is one of the most seismically active areas in Europe
having experienced many destructive earthquakes (M > 5.5) and
associated tsunamis (Boschi et al., 1995; Tinti et al., 2001; Tinti et al.,
2004; Jenny et al., 2006).

Despite the many authors mentioned above, identifying the
Malta Escarpment as the most likely fault system as having
produced most of the historical and recent earthquakes,
evidence of recent/active tectonics has so far remained elusive.
This is due to the absence or scant evidence of faulted Quaternary
sediments on-land and to the unavailability of offshore data
capable of adequately imaging the shallow subseafloor
environment, where the youngest sediments occur.
Accordingly, the seismic potential of the Malta Escarpment
along with its structural architecture, fault dimension, and
kinematics, as well as deformation rate, remains poorly
understood. In this study, we present a detailed investigation
of the structural architecture of the northernmost sector of the
Malta Escarpment by using marine geophysical data with
unprecedented resolution, field constraints, and data modeling.
Interpretation of 2D seismic reflection profiles provides further
constraints on the tectonic setting of the investigated area
allowing for the classification of the activity and the geometric
parameters of the detected faults. All available 2D seismic data
were analyzed to build-up a consistent 2%2D model of the fault
planes. Reconstructed fault surfaces combined with stress
orientations coming from field investigations performed
alongshore Southeastern Sicily allow us to evaluate their
seismic potential by assessing the likelihood of their reactivation.

GEOLOGICAL SETTING

The Malta Escarpment (hereinafter MESC) is a steep, E-facing
submarine slope with a total bathymetric drop of more than
3,000 m (Figure 1A). Structurally, it marks the ocean—continent
transition zone as its separates two sectors of the African margin
with different lithospheric thicknesses: the thinned (oceanic)
Ionian Basin to the east and the Hyblean continental
promontory to the west (Dellong et al., 2018, Figure 1B). This
transition zone is a remnant of a paleotectonic setting related to
the Permo-Triassic opening of the Neo-Tethys (Sengor, 1979)
and to the subsequent Jurassic-Cretaceous spreading stage (Ben-
Avraham and Grasso, 1991; Catalano et al., 2001; Gallais et al.,
2011; Dellong et al., 2018). Successively, this passive paleomargin
has been reactivated during the Neogene convergence between
Africa and Eurasia plates as it is oriented transversally NNW-SSE)
to the roughly E-W trending of the advancing front of the resulting
collisional system (Figure 1A). The progressive foreland-ward
migration of the collisional system involved the
ocean—continent preorogenic configuration leading to the
shaping of the Sicilian fold and thrust belt (SFIB in Figure 1A)
to the west and the Calabrian accretionary wedge to the east
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(Figure 1A). In this context, the impingement of the collisional
front against the MESC paleotopography probably allowed the
passive margin to be reactivated by oblique extension during the
Plio-Quaternary (Scandone et al., 1981; Fabbri et al., 1982; Casero
et al., 1984; Bianca et al., 1999; Palano et al,, 2012). The footwall
block of the MESC is locally known as the Hyblean Plateau
(Figure 1C), and it represents the emergent of a larger foreland
domain, the Pelagian Block (Burollet et al., 1978; Ben-Avraham
and Grasso, 1991, Figure 1A), a 25-30 km thick continental crustal
compartment of the African margin. The Hyblean Plateau
sedimentary covers consist of 10km-thick, Meso-Cenozoic
open-shelf to shallow-water carbonate sequences, hosting several
intercalations of volcanic products (Patacca et al., 1979; Bianchi
etal,, 1987; Grasso et al., 2004). The Quaternary top sequences are
widespread all over the plateau edges on the coastal domains where
they are generally preserved within fault-bounded structural
depressions (Grasso and Lentini, 1982, Figure 1C).

Structurally, the Hyblean Plateau consists of a rigid, highly
fractured crustal intender delimited by the front of the Sicilian
Fold and Thrust Belt to the north-west and by the MESC to the
east (Figure 1C). This structural pattern, strongly influenced by
inherited Mesozoic structures (Grasso and Reuther, 1988;
Henriquet et al, 2019) is dominated by major structural
features and associated minor structures pervasively deforming
the plateau. The NW and SE margins are controlled by large,
NE-SW trending normal fault systems (Monterosso-Agnone
and Pozzallo-Avola fault systems, respectively, see Cultrera
et al, 2015, Figure 1C) which have been associated with
flexural bulging processes (Pedley and Grasso, 1992; Cogan
et al, 1989; Billi et al, 2006). To the west, the Hyblean
Plateau is sliced by a roughly N-S-oriented strike-slip fault
belt known as the Scicli-Ragusa fault system (Ghisetti and
Vezzani, 1980; Grasso and Reuther, 1988). The eastern margin
is structurally controlled by an NNW-SSE, E-dipping extensional
fault system (Brucoli-Siracusa fault system, Figure 1C)
encompassing the MESC and its associated on-land structures.
Here, Plio-Quaternary tectonic activity is testified by the
occurrence of syntectonic sediments within extensional basins
mainly occurring on the footwall of MESC, whereas in the
hanging wall, located offshore, Quaternary deformation was
imaged through deep-penetrating but low-resolution seismic
lines (Bianca et al, 1999; Adam et al, 2000; Argnani and
Bonazzi, 2002; Argnani and Bonazzi, 2005). More recently,
some authors framed the MESC in the Ionian subduction
dynamics, interpreting it as the upper crustal expression of a
deep-seated lateral tear in the Ionian lithosphere (Subduction
Transform Edge Propagator—STEP fault, see Argnani and
Bonazzi, 2005; Govers and Wortel, 2005; Polonia et al., 2012;
Argnani et al, 2013). However, since STEP fault propagation
typically produces alongside vertical-axis structural rotations (see
Govers and Wortel, 2005; Barreca et al.,, 2016), the adjacent
paleomagnetically unrotated Hyblean Plateau (Grasso et al.,
1983; Cifelli et al., 2004) doesn't support a STEP behavior for
the MESC. Late Quaternary sense of motion along the MESC is
also still debated primarily due to the impossibility of measuring
African plate movements in the offshore and also due to the lack
of clear temporal and kinematic constraints on-land. Based on
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neotectonic observations, Adam et al. (2000) suggested that on-
shore structures related to the MESC fault system are characterized
by left-lateral kinematics. Although doubtful, this assertion appears
to be consistent with seismological data (Amato et al, 1995;
Musumeci et al, 2014). On the contrary, regional-scale
geodynamic interpretations (e.g., Doglioni et al, 2001) and
seismological (Presti et al, 2013) and geodetic data (Palano
et al, 2012) suggest a right-lateral component of motion for the
considered fault system. Diverging GPS vectors measured on the
lower plate (including the Hyblean and Adria blocks, see Ward
1994; Mastrolembo et al., 2014; D’Agostino and Selvaggi, 2004;
Grenerczy et al,, 2005) indicates the latter as a crustal domain
extending according to the resultant ESE-WNW-oriented vector
(Figure 1A). In this geodynamic frame, the NNW-SSE trending
MESC should have been reactivated with an oblique (right-lateral
transtensional) component of deformation.

DATA AND METHODS

The analyzed data primarily consist of seismic reflection lines
recorded during various marine geophysical cruises performed in
the Western Ionian Basin (Figure 2). Interpreted seismic data

consist of high-resolution seismic profiles sounded in the frame of
the CIRCEE-HR project (R/V le Suroit, October 2013, see also
Gutscher et al, 2016) and Poseidon expedition POS496 (R/V
Meteor, March-April 2016, see also Krastel, 2016). The
CIRCEE-HR seismic data were acquired using a 450 m long, 72
channel Sercel seismic streamer with an average geophone spacing
of 6.25 m. The seismic source was a six mini-GI airgun array with a
total volume of 111 cubic inches fired at a cadence of once every 6 s,
for an average shot spacing of 16 m and a 24-fold coverage for each
common midpoint. Quality control of the seismic data, including
processing of the navigation files (shot position and streamer
geometry), was performed with the SISPEED software (Ifremer).
The seismic data were subsequently bandpass filtered (70-425 Hz),
stacked, and time migrated (water velocity of 1500 m/s), using the
Seismic Unix software package. During cruise POS496, an 80-
channel digital solid-state Geometrics GeoEel streamer with a
group interval of 1.5625 m was used for seismic acquisition. A
Sercel Mini GI-Gun seismic source, with a total volume of 0.4 L,
was shot in a harmonic mode. The shot interval was set to 6,
resulting in a shot distance of ~12 m at a ship’s speed of four knots.
The seismic profiles were processed by using the commercial
software package Schlumberger Vista Seismic Processing. The
processing workflow includes bandpass filtering with corner
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frequencies of 40/80/600/1000 Hz, despiking, debias filtering, CMP
binning, and normal-move-out (NMO) correction. All data were
time migrated by using the software’s finite difference migration.
Due to the relatively short streamer and the high water depths, no
dedicated velocity analysis could be applied during NMO
correction and migration. Hence, a constant velocity of 1500 m/
s was applied. Moreover, other published seismic dataset (Argnani
and Bonazzi, 2002; Argnani and Bonazzi, 2005; Argnani et al.,
2012; Polonia et al., 2016; Polonia et al., 2017) and high-resolution
bathymetry (Gutscher et al, 2016; Gutscher et al., 2017) were
considered to better constraint the spatial extension of faults at the
seafloor and their in-depth geometry.

Only the most representative seismic lines will be described in
detail in this article (see Deformation Pattern and Fault Activity),
whereas basic line drawing of the POS496 dataset (TWT) and of the
entire time to depth-converted seismic dataset (including published
seismic lines) can be found in the Supplementary Material
(Supplementary Figures 1 and 2). To obtain geometric realistic
parameters of the faults, seismic profiles (Supplementary Figure 3A)
were time/depth converted by assigning average acoustic velocity to
the two-way travel time sequence thickness (see Seismic Stratigraphy).
The adopted acoustic velocity model was achieved from previous
studies in the area (Gallais et al.,, 2011; Gross et al., 2016; Kokinou et
al., 2013; Le Meur, 1997; Maeasano et al., 2017), and it is reported in
Supplementary Table 1. Once time/depth converted, 2D linear
features (fault traces and top/base reflectors) picked all along the
seismic dataset (Supplementary Figure 3B) were modeled as 2%2D
features using common interpolation methods (e.g., kriging and
IDW, Supplementary Figure 3C) operated into the Move 2019.1
geomodelling software package (Petex Ltd.). Bathymetric fault
expression allowed us to further constrain the along-strike fault
geometry (see Supplementary Material).

The local stress field orientation was derived by structural
measurements performed on-land in the adjacent coastal sector.
Structural data consist of mesofaults and fracture planes attitude
and kinematic indicators mainly collected along the outcropping
Miocene carbonate and Quaternary top sequences (see
Supplementary Table 2). Even if the weak lithology (coarse
sandstones, gravels, etc.) of Quaternary deposits does not
usually favor the development or preservation of kinematic
indicators, movement directions along faults planes have been
obtained by tectogrooves, Riedel fractures, and rare slickenlines.
All data were digitally stored on field by using Field Move Mobile
App and finally analyzed and plotted using the FaultKin eight
software (Allmendinger et al., 2012; Cardozo and Allmendinger,
2013) by adopting Schmidt’s lower hemisphere projection.

Obtained stress field orientation was compared to other data
concerning the modern deformation field at local and regional
scales and finally applied on the 2% D modeled fault surfaces to
predict their tendency to the tectonic reactivation.

OFFSHORE GEOPHYSICAL DATA
Seismic Stratigraphy

Interpretation of seismic profiles allowed us to recognize four
main seismic units based on i) their seismic features (e.g.,
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amplitude, lateral continuity, and frequency of internal
reflectors), ii) bounding discontinuities, and iii) strata
architecture. Accordingly, basin-fill seismostratigraphic units
were distinguished and labeled from older to younger as pre-
MES, MES, and PQ, and the latter was furtherly subdivided into
the subunits PQ; and PQ, (Figure 3A). The units are generally
confined between well-defined discontinuities that have been
interpreted as angular and/or erosional unconformities (S1, S2,
and S3 in Figure 3A).

The pre-MES (acoustic basement) consists of a chaotic, locally
transparent unit occasionally characterized by isolated and highly
reflective bodies (Figure 3B). To the west, the seismic unit is
truncated upward by an erosive surface (S1 in Figure 3A), a
paleoslope above in which the younger units unconformably
deposited, generally with on-lap and/or off-lap geometries
(Figure 3B). The overlying MES unit is characterized by low-
to medium-amplitude reflectors with medium frequency and
locally subparallel geometry (Figure 3B). The unit is limited
upwards by the S2 discontinuity (Figure 3A) that consists of an
irregular erosive surface above which the overlying units often
rest in paraconformity (Figure 3B). The PQ; unit consists of a
variable in thickness alternance of low- to high-amplitude, low-
medium frequency, subparallel or occasionally cross-stratified
continuous reflectors (Figure 3B). Toward the west, along the
MESC slope, the PQ; unit on-laps directly on the pre-MES unit,
while upwards, it is delimited by the S3 discontinuity that is
locally represented by an undulated erosive truncation. Close to
the fault planes, the unit includes wedge-shaped seismic bodies
with chaotic facies thinning away from the faults (Figure 3C). To
the bottom, the PQ; unit is locally floored by a semitransparent
seismic unit (subunit PQ;a in Figure 3A) that, although
discontinuously, was detected in most of seismic lines, where
generally, it occurs within structural depressions or
paleochannels (Figure 3D). The overlying PQ, unit is
characterized by high-frequency, laterally continuous, parallel,
and high-amplitude reflectors (Figure 3B). Locally, the PQ, unit
on-laps against or down-laps on the older PQ; unit, and it is
limited upwards by the seafloor.

In the absence of drill-hole data from the sediment section, we
provide a basic lithological interpretation of the detected seismic
units by following the available literature and by comparing the
marine geophysical data with the on-land geology. The pre-MES
unit is not well highlighted by the seismic signal, but locally its
seismic features are consistent with carbonate-type sequences, a
lithology widely outcropping on-land. Accordingly, the pre-MES
unit has been interpreted as a Cenozoic sediment package that
includes mainly limestone and marls, locally pierced by volcanic
and/or mud intrusions forming sometimes cone-shaped
seamounts at the seafloor (Figure 3A) (see also Scandone
et al,, 1981; Catalano et al,, 2001; Barreca, 2014). According to
its seismic characters (high reflectivity of the top reflector) and to
the abundant literature concerning similar deposits occurring all
around the Mediterranean basin (Lofi et al., 2011; Micallef et al.,
2019 and references therein), the MES unit has been interpreted
as Messinian in age deposits (mainly gypsum and evaporitic
carbonate). The overlying Unit PQ; is interpreted as a part of the
Pliocene succession since it correlates with the subunits “PQb”
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FIGURE 3 | (A) Seismostratigraphic analysis performed over the representative CIR-01 line displaying the recognized seismic facies/units and bounding
discontinuities (B). (C) In the upper part of the Pliocene section and within the Pleistocene succession, wedge-shaped chaotic bodies occur supporting syntectonic
sedimentation during the considered time interval. (D) The base of Pliocene section is occasionally and discontinuously floored by a semitransparent seismic unit (PQ1a)

interpreted as a Zanclean in age Trubi Fm.

and “PQc” described by Camerlenghi et al. (2019) and partly with
the “Unit one” of Micallef et al. (2018). The basal portion of this
unit is locally characterized by the occurrence of a
semitransparent body (PQ;a in Figure 3D) that for its
stratigraphic position is interpreted as the Zanclean in age
Trubi formation (Butler et al., 2015). The seismic character of
the PQ, unit suggests that it consists of a well-layered alternance
of marly-arenaceous succession. Accordingly, PQ, unit can be
interpreted as part of the Pleistocene sequence since it correlates
for stratigraphic position and lithology with the distal part of the
Panchina formation, outcropping on-land and characterized by
Middle-Late Pleistocene sands and biocalcarenites (Servizio
Geologico d’Italia, 2011). Moreover, it correlates with the PQa
unit of Camerlenghi et al. (2019), whose basal erosional surface
has been dated at 650 ka from DSDP site 374 cores (Hsii et al.,
1978).

Deformation Pattern and Fault Activity

Displaced reflectors observed throughout the entire seismic
dataset (Supplementary Figure 1B) and the analysis of the
available bathymetric data (i.e, Gutscher et al, 2017 and
Emodnet database) have allowed depicting the tectonic pattern
that characterizes the northernmost sector of the Malta
Escarpment. The recognized tectonic structures form an array

of sea-dipping, NNW-SSE trending, dip-slip faults extending
offshore from Catania (in the north) to Siracusa (in the south) for
a total length exceeding 60 km (Figures 4 e-f). Within the system,
three major faults segments (F1, F2, and F3 in Figure 4A) and
minor faults (F4 and F5) have been structurally and geometrically
characterized following their offsets in seismic lines and their
bathymetric expression (see Supplementary Material). The F1
fault segment is the westernmost tectonic structure of the system
and consists of an E-dipping, roughly N-S trending, 45 km-long,
dip-slip fault. Following the seafloor expression, the F1 fault
terminates against the NAF (North Alfeo Fault of Gutscher
et al,, 2016 or Alfeo-Etna Fault of Polonia et al., 2016, see
Figures 1A,C for location) as suggested by cross-cutting
relations. To the south, F1 merges to F3, the longest fault of
the system. The fault has propagated throughout the illuminated
subseafloor setting and has displaced the detected
seismostratigraphic units with variable offsets (Figure 4B).
According to the adopted time/depth conversion model (see
Supplementary Table 1 and Offshore Geophysical Data), F1
has displaced the base of the PQ; (S2 surface) and PQ, (S3
surface) units up to 460 and 260 m, respectively. Displacement
has propagated up to the seafloor producing in average a vertical
offset of about 70 m with a maximum value (about 150 m) along
the MESCO9 line. The F2 fault segment occurs about 2 km east of
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F1 and consists of an E-dipping, NNW-oriented, 34 km-long
fault structure. To the north, F2 converges toward F1, whereas to
the south toward F3 (Figure 4E). This array suggests F2 as a
subordinated splay fault. Fault activity has produced in average
displacement in the S2 surface (MES top reflector) of about 150 m
and in the S3 surface (PQ1 top reflector) of about 65 m, whereas
seafloor appears to be displaced in average of about 30 m
(Figure 4B). The F3 fault segment is the easternmost structure
of the system controlling the foot of the MESC. The structure
consists of an E-dipping, NNW trending fault with a total length
of about 57km. It has deformed the whole illuminated
seismostratigraphic succession, displacing in average the S2
and S3 discontinuities of about 150 and 47 m, respectively
(Figures 4B,D). Further east, a narrow (about 3.5km wide)
graben structure deforms the abyssal plain occupied by a
7 km-wide, N-S-oriented, sedimentary basin (turbidic valley of
Gutscher et al, 2016, see Figure 4A). The graben structure
roughly extends from the CIR-01 line, in the South (see
Figure 2 for location), to the Catania offshore, in the north,
whereas its continuation further south has been only inferred
because of lack of good quality seismic lines (see Figure 4E). It is
bounded by opposite-dipping normal faults (F4 and F5 in
Figure 4A), both characterized by a moderate offset gradually
increasing with depth (Figures 4C-D). Diffuse minor splays
associated with the major bounding faults internally deform
the down-faulted block. The interpreted seismic dataset (see
Supplementary Figures 1 and 2) revealed the continuity of
the detected faults all along the offshore E Sicily, allowing to
map accurately their spatial distribution (Figure 4E) and to
follow their bathymetric expression at the seafloor (Figure 4F).

It is worth noting that a prominent structural culmination
occurs to the east of the analyzed fault system, bounding the
turbiditic valley (the uplifted area of Argnani and Bonazzi, 2005).
It consists of ~10 km-wide folded sectors interpreted as a positive
flower structure related to the recent activity of the North Alfeo
Fault System by Gutscher et al. (2016) or as a forced fold related to
the upraise of a mantle-derived serpentinite diapirs by Polonia
et al. (2017). Seismostratigraphy and growth geometry on the
limbs of the folded structure suggests that it was active from the
Late Miocene up to the Late Pliocene before being eroded on its
top (S3 discontinuity), sealed by Pleistocene sediments, and it was
finally pierced by some diapiric structures (Figure 4G).
Accordingly, the time-growing of the folds indicates that they
cannot be related to the recent activity of the North Alfeo Fault
nor (as proposed by Argnani and Bonazzi, 2002; Argnani and
Bonazzi, 2005) to the tectonic shortening of the deformation front
of the Calabrian accretionary wedge since it was located far away
(>100 km) to the NW during the Late Miocene-Pliocene. In this
frame, most of the diverging pattern of the upper
Miocene-Pliocene strata is interpreted as related to the time-
growing uplifting of the fold system rather than to the Quaternary
activity of North Alfeo and/or MESC faults, accounting thereby
for a more recent onset of the extensional deformation in the area.
The occurrence of some wedge-shaped, chaotic seismic bodies
thinning away from the faults mainly within the PQ, unit (see
Seismic Stratigraphy and Figure 3C) along with the very slight
sediment thickening observed close to the F1, F2, and F3 faults in

Malta Escarpment Deformation Pattern

the older sections (Figure 4B) support, in fact, the initiation of
extensional tectonic activity around the Early Pleistocene. During
this period, slight fanning strata and the nondevelopment of a
typical sedimentary wedge opening toward the faults should be
charged to the consistent rate of sedimentation (about 0.4 mm/
yr) characterizing the Pliocene section that was higher than the
tectonic rate of the three extensional faults (<0.1 mm/yr, see
Deformation Pattern and Fault Activity).

Fault Displacement Analysis and

Deformation Rate
With the aim of estimating the deformation rate of tectonic
structures characterizing the MESC, a fault displacement analysis
was performed on the time/depth-converted seismic dataset (see
Supplementary Figure 2). The displacement produced by the
activity of the main detected faults (F1, F2, and F3) was measured
considering the vertical component (throw) and using fault-
displaced reference timelines (S2, S3, and S4-seafloor, see
Supplementary Table 3). Throws measured along each fault
for the S2 (top-MES), S3 (top-PQ1), and the seafloor describe
in general an along-strike variable pattern with displacements
decreasing from the fault center to the tips (Figure 5).
Longitudinal trends for F1 and F2 faults define a double bell-
shaped pattern for the three displaced timelines with relative
maxima of throw (about 460 and 300 m, respectively) recorded by
the older F1-displaced S2 surface, whereas the younger S3 is less
deformed by the same fault as it reaches the maximum offset of
about 260 m (Figures 5A,B). By contrast, longitudinal throw
trend of the F3 structure outlines a double bell-shaped pattern
only for the older S2 surface, whereas S3 and the seafloor
timelines (S4) tend to assume an irregular pattern resembling
a single bell-shaped throw curve (Figure 5B). Displacement of the
seafloor was analyzed to evaluate the recent deformation history
of the detected faults even if a large uncertainty could affect offset
estimation, related to the erosive or depositional nature of the
seafloor. Nonetheless, the along-strike trend of the seafloor throw
produced by the considered faults displays different patterns
varying from a double bell-shaped curve for the F1 structure
(Figure 5A) to a single bell-shaped curve for the F2 and F3
structures (Figure 5C). The recent and combined activity of the
faults has produced a cumulative offset at the seafloor of ~210 m.
Based on the vertical and along-dip offsets measured on the
displaced S2 (top-MES), S3 (top-PQ;), and on the seafloor (S4)
reference timelines and considering time intervals for the fault-
deformed sections PQ1 (Pliocene, 2.75 Myr), PQ2 (Middle-
Upper Pleistocene, 0.63 Myr, see Seismic Stratigraphy), and
~Holocene (0.0117 Myr), the long- and short-term throw (T,)
and propagation rates (P,) for the three main faults have been
estimated (Figures 5E,F,G). Accordingly, measured vertical (T,)
and along-dip (P,) displacement components were restored at the
considered time interval by removing from the cumulated older
offsets the contribution of the younger fault movement. During
the Pliocene, faults slipped simultaneously but with different rates
according to the measured two-component of movement, in
average higher for the F1 (Tp ~ 0.05mm/yr and Py ~
0.09 mm/yr) and lower for the F2 (Tr ~0.04 mm/yr and Pr~
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FIGURE 5 | Vertical displacement (throw) analysis performed for the F1 (A), F2 (B), and F3 (C) extensional structures based on the fault-displaced reference
timelines (S2, S3, and seafloor S4). Amount of vertical and along-dip displacements for each fault allows to calculate their throw and propagation rate for the Pliocene (D),

0.05 mm/yr) and F3 (Tr~ 0.04 mm/yr and Pg ~0.06 mm/yr),
respectively (Figures 5E1-2 and Supplementary Table 4). Since
the Middle Pleistocene, faults accelerated slipping at a higher rate
compared to the Pliocene. During this time interval, the F1 still
slipped faster (in average Tr~ 0.27 and Pr~0.4 mm/yr) than the
F2 (in average Tg~ 0.12 and Pg~0.16 mm/yr) and F3 (in average
Tr~ 0.04 and Pr~ 0.12 mm/yr), respectively (Figure 5F). In this
stage, the segmented F1 and F2 evolved (fault linkage) in well-
defined  structures. The poorly constrained Holocene
deformation pointed out a further acceleration of the faults

during this time interval even if, as stated above, large
uncertainties (erosion, slope instability, etc.) could affect
bathymetric throw measurements. Ty for F1 and F2 reaches in
average the value of ~7.3 and 3.1 mm/yr, respectively, whereas
about 3.2 mm/yr has been calculated for the F3 structure
(Figure 5G). The high throw rate value calculated for the FI1
suggests that this value could be amplified by a nontectonic
component. Conversely, throw rates for F2 and F3 are
consistent with tectonic deformation and coherent with the
return periods for large earthquakes in the area (see Discussion).
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FIGURE 6 | (A) Location of the sites of structural measurements performed along the footwall block of the Malta Escarpment (SE Sicily coastal domain, see
Figure 1B for the geology on-land) and collected fault planes and kinematic indicators (B-G). Diagrams on the right panels (Schmidt lower hemisphere) show faults plane
attitude and movement on the respective hanging walls (black arrows) and calculated pseudofocal mechanisms. h-1) Rose diagram of the whole mesostructural dataset
showing the faults having a dominant strike in the range N130-140E. h-2) Stress field derived from slip-data inversion highlighting the area as deformed under a
slightly transtensional tectonic regime characterized by a ~70° plunging, NNW-SSE trending omax.
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ON-LAND STRUCTURAL DATA

To derive the orientation of the local stress field, geostructural
data were collected in six key sites along the Hyblean coastal
domain, between the cities of Augusta and Syracuse, on the
footwall block of the offshore faults that were analyzed
(Figure 6A). According to available geological maps (Carbone
et al., 1984; Carbone et al., 1986; Servizio Geologico d’Ttalia,
2011), in this area Lower-Middle Miocene carbonates mostly
outcrop, unconformably covered by a regressive Quaternary
sequence made up of marly-clays, sands, and calcarenites. The
investigated sector has been deformed by an array of NNW-SSE
trending and dip-slip/oblique faults (Figure 6A) whose activity
has produced horst (ie, Brucoli-Mt. Tauro, Magnisi, and
Maddalena) and graben (i.e, Augusta and Floridia Basins)
structural associations whose bounding structures are roughly
coaxial to the faults detected in the offshore (see Deformation
Pattern and Fault Activity and Figure 6A for location).

Faults and Fractures

Along the Brucoli-Mt. Tauro horst structure, in the North
(Figure 6A), Miocene and Quaternary deposits have been
mainly deformed by oblique faults systems and associated
fracturing. In the Brucoli area (Station-1, Figure 6A),
mesostructures mostly consist of subvertical (70-80° dipping)
NNW-SSE and NW-SE trending fault segments. Kinematic
indicators (slickenlines and rare tectogrooves, see Figure 6B),
suggest oblique right-lateral and dip-slip movement and a rare
left-lateral component on the NNW-SSE and NW-SE-oriented
fault planes, respectively (see diagram in Figure 6B). At the Capo
Campolato locality, in the northern termination of the Mt.
Tauro-Brucoli structural culmination (station-2, Figure 6A),
outcropping carbonates are pervasively deformed by a system
of extensional cross-joints (Figure 6C). The system is arranged in
a ladder-like geometry with a more continuous and principal
joint-set-oriented NW-SE and a secondary one oriented
orthogonally according to the NE-SW direction (see diagram
in Figure 6C). At Sbarcatore dei Turchi (station-3, Figure 6A), a
system of south-dipping, roughly E-W striking fault planes has
been measured (Figures 6D-L). Sense of movement on fault
planes was derived by dislocated geological markers exposed on
both sides of the structures. The reconstructed vertical and lateral
component of movement (resulting slip-vector plunging toward
the SE at 60-80°) and alongside pull-apart basins (Figure 6D)
suggest oblique, left-lateral kinematics for the detected fault
planes (see diagram in Figure 6D). At Capo S. Croce locality
(station-4, Figure 6A) in the southernmost termination of the Mt.
Tauro-Brucoli horst, structural measurements were performed
on the eastern border fault. The structure is well exposed along
the coastline where it forms a subvertical sea cliff (Figures 6E-L)
and consists of an ENE-dipping, NNW-SSE trending fault.
Slickensides on fault plane dipping at 70 toward the N65E
direction (Figures 6E-2) indicate an extensional dip-slip sense
of movement according to an ENE trending extension (see
diagram in Figure 6E-3). Further south, data were collected
along the Magnisi Peninsula (station-5, Figure 6A), a narrow
carbonate horst bounded by NNW-SSE trending faults

Malta Escarpment Deformation Pattern

(Figure 6F). Slickensides on mesostructures planes were
collected on the landward side of the peninsula where strike-
slip faults with related pull-apart basins and associated fractures
occur (Figure 6F). The few kinematic indicators suggest a right-
lateral sense of movement for the detected faults (see diagram in
Figure 6F). Some data have also been collected along the
Maddalena horst south of Syracuse (station-6, Figure 6A)
which consists of NW-SE and NE-SW trending oblique right-
lateral transtensional mesofaults (Figure 6G).

Stress Field

The paleostress tensors for the onland faults were derived by
using directional statistics (e.g., Linked Bingham Analysis,
Bingham, 1974) that is based primarily on the slip-data
inversion of fault planes exhibiting clear kinematic indicators.
Extensional joints pattern measured at the station two were
included, considering that, in a ladder-like joint arrangement,
the orientation of the principal joints-set (the more continuous,
Figure 6C) coincide with that of the maximum stress axis (Bai
and Pollard, 2000; Bai et al., 2002). Data analysis revealed that the
on-land area has been deformed by an array of slightly (right-
lateral) oblique faults oriented in a prevailing NNW-SSE
direction (18.75% between N131 and 140E, see rose diagram
in Figure 6H) developed under a stress field characterized by a 70°
plunging, nearly N-S-oriented (N330E) o max and by a
subhorizontal, about E-W oriented omin (Figure 6H). Slip-
data inversion also provides a pseudofocal mechanism which
is characterized by a P-axis plunging toward N332E at about 70°
and by a subhorizontal T-axis-oriented N70E (Figure 6H).
Although field measurements and slip-data inversion point to
the on-land faults being deformed under a slight transtensional
tectonics regime, the propagation of the tectonic structures
through the Quaternary sequences remains doubtful;
accordingly, the age of last deformation events is not fully
determinable. Despite this, the comparison of our results with
other published data concerning stress tensors at local and
regional scales suggests that the derived stress field is
compatible with the recent kinematic of SE Sicily. In fact,
computed ENE-WSW trending 0y, is roughly consistent with
i) the regional NE-SW to WNW-ESE extension derived from
inversion of slickensides data on fault planes (Adam et al., 20005
Monaco and Tortorici, 2000; De Guidi et al., 2013), ii) geodetic
data (D’Agostino and Selvaggi, 2004; Mattia et al., 2012; Palano
et al, 2012), and iii) the local ENE-WSW trending minimum
stress resulting from boreholes breakout data analysis in the
eastern sector of the Hyblean Plateau (Ragg et al., 1999
Montone et al.,, 2012).

FAULT MODELING AND SEISMOTECTONIC
POTENTIAL

Structural interpretation and interpolation of 2D seismic profiles
and time/depth conversion of seismic dataset along with faults
bathymetric expression (see Deformation Pattern and Fault
Activity and Supplementary Table 1 for adopted velocity
model) allowed us to build up a simplified but consistent
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FIGURE 7 | (A) 22D fault surfaces (perspective view from the SE) modeled according to reference lines (fault traces) picked along the seismic dataset (see
Supplementary Figure 1 for the workflow) and related attitude in the 3D environment (B).

TABLE 1 | Geometric parameters derived from the 22D data modeling and expected magnitudes from empirical-scaling relationships (Wells and Coppersmith, 1994;

Leonard, 2010). Note that, according to fault segmentation inferred from the fault displacement analysis (see Fault Displacement Analysis and Deformation Rate), seismic
potential for F1 and F2 faults may be overestimated.

Geometric parameters

F1

F2 F3
Mean strike N345E N340E N352E
Mean dip () 36 46 49
Length (km) 44 .44 33.72 56.46
Fault depth range and width (m) min Width* Max* min Width* Max* min Width* Max*
-1,813 4,337 -6,150.5 -1908 3,322 -5,230 -1854 5,275 -7,129
Area (km?)* 276.92 98.65 334.05
Expected magnitude, Wells and Coppermisth (1994)
min mean max min mean max min mean max
M based on surface rupture length (SRL) 6.27 7.03 7.80 6.14 6.88 7.61 6.38 7147 7.97
M based on rupture area (RA)* 5.95 6.42 6.90 5.53 5.96 6.39 6.02 6.50 6.99
M based on downdip rupture width (RW)* 6.27 7.04 7.81 6.15 6.89 7.63 6.38 717 7.97
(*) underestimated
Expected magnitude, Leonard (2010)
M based on surface rupture length (SRL) 6.99 6.79 7.16
M based on rupture area (RA)* 6.44 5.99 6.5
% difference WC94-1.10 on SRL 0.54 1.23 0.09
% difference WC94-1.10 on RA 0.32 0.5 0.3

2%D model of the faults occurring in the study area (Figure 7A,
see also Supplementary Figure 3 for the workflow). Although
depth-limited, due to the penetration of the seismic signal in the
subseafloor, the model provides an estimate of the geometric
parameters (i.e., length, width, dipping, and strike, see Figure 7B
and Table 1) for the shallow portion of the investigated faults.

According to the reconstructed model and to the fault
displacement analysis, the F1 consists of a roughly 45km-
long, two-branched structure-oriented N345E with a fault
plane dipping toward the ENE at about 45°. The F2 is a
N340E trending two-branched structure, about 35km-long
dipping at 50° toward the ENE. Finally, F3 is a continuous,
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FIGURE 8 | Slip tendency analysis performed on the 2%2D modeled fault surfaces (A-C) and based on the remotely applied stress field orientation. Stress
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TABLE 2 | Deviatoric stress applied to the modeled fault surfaces and considered elastic parameters of the medium.
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roughly 60 km-long fault with a N352E-oriented fault plane
dipping toward the east at 55° (see pole/attitude diagrams in
Figure 7B and Table 1). Derived fault geometric parameters
were then used as input data to estimate the maximum expected
earthquake magnitude for each fault assuming a reactivation
where there is a seismic slip along their entire length. Based on
the surface rupture length (SRL) and the underestimated rupture
area (RA) and considering fault segmentation (i.e., for F1 and F2,
see section 4.3), empirical scaling relationships (Wells and
Coppersmith, 1994; Leonard, 2010) put forward a high
seismic potential for the most continuous F3 faults capable of
generating events exceeding magnitude 7 (see also Trippetta
et al., 2019). (Table 1). Even if fault reactivation depends on
several parameters such us surface frictional characteristics, fault
cohesion, shear normal stresses on the fault plane, and fluid
pressure, potential reactivation of faults has been here evaluated
through a slip tendency analysis (Morris et al.,, 1996), which
defines the propensity of a surface to undergo slip when a stress is
applied. Slip tendency (T;) is based on Amonton’s law which
governs the slip of a cohesionless plane and is expressed by the
shear/normal stress ratio acting on the surface (Morris et al.,
1996). The formulation is

Ts = 1/0'n,

where tis the shear stress and o', is the effective normal stress
(i.e., the normal stress minus fluid pressure) acting on the
plane. Following the assumptions proposed in the
Wallace-Bott hypothesis (Wallace, 1951; Bott, 1959) and
using the stress analysis tools of Move 2019.1 software
(Petex Ltd.), stress field tensors orientation derived from
slip-data inversion (see Stress Field) were remotely applied
to the modeled fault surfaces (Figure 7). Considering an
average density of 2,600 and 1050kg/m’ for the
overburden rocks and seawater, respectively, and
approximating the maximum stress (o;) to the lithostatic
load, a confining stress is resolved at a mean depth in the
medium around each fault (see applied stress and relative
pressure profiles for each fault in Figure 8 right panels and in
Table 2). Slip tendency computation (T in Figure 8) found that
the F3 as the fault structure most prone to be reactivated along its
entire length with the highest average T, value (0.90)
homogeneously distributed along the fault plane (Figure 8A).
F2 also exhibits a high mean T, value of 0.83 with a maxima
(Ts = 1) reached mainly on the southern portion of the fault plane
(Figure 8B). Conversely, F1 shows the lowest average T, value
(0.71) with a maxima (T, = 1) occurring over limited and shallow
portions of the fault plane mainly off Siracusa and Augusta
(Figure 8C). Additionally, the fault displacement analysis (see
Fault Displacement Analysis and Deformation Rate) suggests
segmentation of the F1 and F2 faults (ie, the double bell-
shaped displacement pattern, see Figure 5C), suggesting these
structures have grown following a segment linkage pattern.
Accordingly, a lower seismic potential should therefore be
applied to these tectonic structures. Conversely, fault
displacement analysis revealed that the F3 fault structure has
grown in a radial way since at least the Pleistocene whereby its
seismic potential has likely not been overestimated.
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DISCUSSION

Structural interpretation of seismic reflection data on the Ionian
Sea offshore of SE Sicily, field measurements, and 2%D data
modeling provide further information on the tectonic pattern and
deformation rates affecting the northernmost sector of the Malta
Escarpment since the Pliocene times. Seismic data illuminates,
with good resolution, the shallowest portion of some of the
tectonic structures previously mapped in the area (e.g., Bianca
et al., 1999; Argnani and Bonazzi, 2002; Argnani and Bonazzi,
2005; Argnani et al., 2012; Polonia et al., 2012; Gutscher et al.,
2016, Maesano et al., 2020) providing an opportunity to better
characterize their dimension and through-time tectonic activity.
These data reveal that deformation in the Ionian Sea offshore of
SE Sicily is accommodated by a nearly N-S trending fault belt that
is composed of three main, E-dipping, and slightly oblique (right-
lateral) fault segments (F1, F2, and F3 in Figure 4).
Seismostratigraphic pattern analysis within the recognized
seismic units was performed to achieve information on fault
activity. However, the growth of the fold and thrust system
located to the east of the investigated faults and the thickening
of late Miocene-Pliocene sediment on its flanks (Figure 4H) has
posed significant issues in discerning inception of the extensional
phase in the area. Dipping toward the culmination of the axial
plane of the fold deforming the late Miocene-Pliocene sediment
wedge in the turbiditic valley (see Figure 4H) allows excluding
that fanning and folding of the strata could be generated by a
sedimentary draping process. Accordingly, even though the
geometry of the sedimentary wedge could be associated with
the Quaternary activity of the extensional faulting to the west, we
attribute the growth strata pattern of Upper Miocene-Pliocene
sediments mostly to the trough-time uplift of folded system. This
interpretation accounts for a possible more recent onset of the
extensional deformation reactivation of the northernmost sector
of the Malta Escarpment.

Fault deformation rates point out the investigated area as a
slow-rate extensional domain where fault activity was modulated
through time. The longitudinal fault-throw trend and the
through-time deformation rate provide further information on
the inception of extensional tectonics in the area and on the
growing mode of the faults. According to the along fault strain
localization over time, the very low deformation rate affecting the
faults during the Pliocene strongly confirms the onset of
extensional deformation since that time (see Seismic
Stratigraphy), hence simultaneously to the growing of the
folded system eastwards (see above). The observed bell-shaped
pattern on the longitudinal fault-throw trend reveals that F1 and
F2 faults have grown discontinuously in the Pliocene and suggest
that they are probably segmented into two branches (Figures
5E-F). Consequently, each of these faults appears to have grown
in the near-surface mainly by segment linkage rather than in a
radial way (see Cartwright et al., 1995 for further explanation)
even if no overlapping setting and relay ramps have been resolved
at the seafloor where their vertical offset decreases considerably.
Fault segmentation pattern seems also to have characterized the
F3 fault activity only during the Pliocene, whereas since the
Pleistocene, this fault has grown in a radial way working as a

Malta Escarpment Deformation Pattern

continuous structure (Figures 5E-F). The increasing dip of the
faults from west to east (36, 46°, and 49", respectively, for F1, F2,
and F3, see Table 1) would suggest a rotational (simple shear)
dominostyle deformation context where block-bounding faults,
as the effect of rotation, become progressively unfavourably
oriented to the maximum stress axis and new high-angle faults
form. However, the simultaneous activity observed with the fault
displacement analysis (see Deformation Pattern and Fault
Activity) leads to interpret such faults as merging down-dip
into a single tectonic structure even if depth penetration of
seismic data does not resolve its deeper trajectory. Detected
faults should be therefore thought of as low hierarchical-order
splay structures through which the strain accumulated by the
deeper and larger tectonic structure is partitioned at a shallow
crustal level. Strain partitioning in the upper crust appears to be
supported by the along-strike trend of displacements and throw
rates (Figure 5).

By comparing the depicted tectonic pattern with other
structural settings concerning passive margin worldwide (e.g.,
along the Pard-Maranhdo Basin in the Brazilian equatorial
margin, see Matos, 2000) and considering i) the long-lived
(late Miocene—Pliocene) grown of the folds system, ii) its
inferred simultaneous activity, during the Pliocene, with the
extensional faults, iii) the high-rate of extensional deformation
during the Holocene (in average about 5 mm/yr for the F1 and F2
structures, see Figure 5G) and iv) the low-angle and down-dip
converging geometry of the F1, F2, and F3 faults, part of the
observed deformations should be also charged to large-scale slope
instability. According to this last hypothesis, both faults to the
west and the fold to the east may have been initially nucleated by
gravitational forces in a deep-seated gravitational slope
deformation context. Later, in Quaternary times, a tectonic
component of deformation probably prevailed as testified by
the occurrence on the MESC footwall block (SE Sicily coastal
domain) of a flight of out-of-water, Middle-Late Pleistocene
marine terraces (Bianca et al., 1999), by oblique deformation
on-land, and by the quite rectilinear fault traces at the seafloor. In
this perspective, previous extensional faults related to the deep-
seated gravitational slope deformation were obliquely reactivated
since the Middle Pleistocene according to the E-W trending
extensional kinematics resulting from regional-scale diverging
motion affecting the lower plate of the collisional system (see
Figure 1A).

Seismotectonic Implications

Whatever the process by which the normal faults were generated,
earthquakes occurring in the area reveal that a seismogenic stress
is anyway accumulating in the Western Ionian Basin at crustal
level (see Musumeci et al., 2014). In this frame, considering that
splays fall into an area, the SE Sicily, hit by large historical
earthquakes (e.g., January 11, 1693, event with M 7.4,
Rovida et al., 2016), we estimated their seismic potential using
empirical scaling relationships (Wells and Coppersmith, 1994;
Leonard, 2010) and slip tendency analysis (Morris et al., 1996).
Our combined analysis puts forward that the splays could be
capable of generating high-energetic seismic events (see Table 2)
and, among them, the longest and most continuous F3 fault could
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FIGURE 9 | Mapped faults (F1, F2, and F3) framed in the larger tectonic framework of the Western lonian Basin. Alfeo Fault system and lonian Fault are from
Gutscher et al. (2016) and Polonia et al. (2016). Available focal solutions of M > 3.5 earthquakes (Pondrelli, 2002; Scarfi et al., 2013; Musumeci et al., 2014; Scarfi et al.,
2016) and PT axes computation (see diagram in the top-left) support transtensional deformation in the studied area.

be the most prone structure to reactivation along its entire length
which could therefore produce an earthquake exceeding
magnitude 7. According to the empirical fault-scaling
relationships (Wells and Coppersmith, 1994; Leonard, 2010), a
7.17 magnitude event expected for the F3 (see Table 2) would
produce a maximum displacement (MD) of about 3m or an
average displacement (AD) of about 1.2 m. Assuming that the F3
seafloor scarp is the result of cumulative coseismic slips, the
number of seismic events with M = 7.17 needed to produce such
fault-scarp has been tentatively estimated by dividing the fault-
scarp height for the coseismic displacement expected for 7.17
magnitude earthquakes (see Table 2). Furthermore, by dividing
the age inferred for the S4 boundary (the seafloor) for the
obtained number of seismic events (about 22 events
considering the max throw/MD or about 25 seismic events

considering the mean throw/AD), a return period for large
earthquakes (M > 7) can be estimated over the considered
time interval. On this basis, given the height of the F3 fault-
scarp at the seafloor (mean and max throw of 66 and 29 m,
respectively, see Figure 5C and Supplementary Table 3B) and
the inferred age for S4 (11.7 ka), the return periods of 470 years
(considering the mean throw and the average expected
displacement) and 537 years (considering the maximum throw
and the maximum expected displacement), have therefore been
estimated. It is worth to note that our estimation is quite close to
the return periods provided by previous authors (e.g., Barbano
et al., 2001; Bianca et al., 1999) for the studied area. Based on the
inferred macroseismic intensity for historical earthquakes that
have occurred in the Hyblean Plateau, Barbano et al. (2001)
estimated indeed return periods of about 475 years for events
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with intensity IX-X and 644 years for events with intensity X,
even though the latter is associated with an extremely high error.
Expected magnitudes and the estimated recurrence time interval
are compatible with those inferred for large historical earthquakes
in the area (e.g., the 1693 and 1169 events, see Barbano, 1985;
Boschi et al.,, 1995; Rovida et al., 2016), suggesting the F3 fault the
potentially causative faults from which destructive seismic events
generated. This assertion appears to be supported for instance by
the intensity contours of the 1693 event macroseismic field (see
Barbano, 1985), suggesting an offshore seismic source since they
are open to the Ionian Sea. The mismatch between the NNW
orientation of the studied faults and the NE-SW trending of the
macroseismic high-intensity contours should be explained by
considering site effects according to which damages may have
concentrated on-shore in areas where soft sediments outcrop
(i.e, in the Augusta and Lentini basins, see Figure 1C and
Figure 9). Furthermore, the prevailing dip-slip kinematic of
the studied faults is in favor of producing tsunamis by
coseismic seafloor displacement even if slope failure triggered
by seismic shacking cannot be ruled out along the steep, 3,000 m
high bathymetric drops of the Malta Escarpment (see Billi et al.,
2010).

CONCLUSION

Seismic data interpretation from the offshore SE Sicily along with
fault-applied empirical scaling relationships and forward
methods allow is to achieve additional information on the
structural pattern and seimotectonics of the northernmost
branch of the Malta Escarpment. Primary findings are
summarized as follows:

e The northernmost branch of the Malta Escarpment has
been deformed recently according to E-W tectonic
extension, and this kinematics appears to affect mainly
the lower plate of the collisional system, whereas
eastwards of the studied area, strike-slip deformation
prevails within the Ionian accretionary wedge in the
tectonically overlaying upper plate (see Figure 9).

o The occurrence of extension and contraction at the same
structural level (see Deformation Pattern and Fault Activity)
suggests that, during the Pliocene, faulting and folding may
have been nucleated in response to the same process. By
similarity with the structural settings observed along other
passive margins worldwide, this process is inferred to be a
large-scale slope instability.

e Seafloor fault scarps suggest active deformation in the area
even if further investigations are needed to better

understand the deformation context (i.e., tectonic,
gravitative or both) and the related seismotectonic
implications.

e Derived fault dimensions (e.g., for F3) and recurrence time
interval are compatible with the magnitudes and return
period estimated for large historical earthquakes in the area
(e.g., the 1693 and 1169 events) although other seismic
sources such as the 80 km-long North Alfeo Fault (Gutscher
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et al., 2016 and Figure 9 for location) must be considered as
well in the seismotectonic framework of the Western Ionian
Basin (see Gutscher et al., 2006).

Finally, our data provide additional information to consider
reactivation of the Malta Escarpment as one of the potentially
causative processes from which destructive seismic events in the
area nucleated (see also Bianca et al., 1999; Azzaro and Barbano,
2000; Argnani and Bonazzi, 2005; Argnani et al., 2012). Assuming
a prevailing tectonic component of deformation during the
Quaternary, our data could provide useful information to
improve databases concerning potential seismogenic sources in
Italy (e.g., DISS or ITHACA) and contribute to a better
assessment of the seismic hazard in the densely populated SE
Sicily.
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