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Natural hazards can be initiated by different types of triggering events. For landslides, the
triggering events are predominantly earthquakes and rainfall. However, risk analysis
commonly focuses on a single mechanism, without considering possible interactions
between the primary triggering events. Spatial modeling of landslide susceptibility
(suppressing temporal dependence), or tailoring models to specific areas and events
are not sufficient to understand the risk produced by interacting causes. More elaborate
models with interactions, capable of capturing direct or indirect triggering of secondary
hazards, are required. By discretising space, we create a daily-spatio-temporal hazard
model to evaluate the relative and combined effects on landslide triggering due to
earthquakes and rainfall. A case study on the Italian region of Emilia-Romagna is
presented, which suggests these triggering effects are best modeled as additive. This
paper demonstrates how point processes can be used to model the triggering influence of
multiple factors in a large real dataset collected from various sources.
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1 INTRODUCTION

Quantitative hazard assessments are crucial to evaluate the potential risk and consequences of
natural hazard events. While natural hazards are common threats to many communities, they are
generally well studied if taken separately (Rodriguez-Iturbe and Eagleson, 1987; Musmeci and Vere-
Jones, 1992; Onof and Wheater, 1994; Gorum et al., 2011). Nevertheless, recent events, such as the
Kaikoura earthquake (Dellow et al., 2017; Massey et al., 2018), have highlighted how the assessed risk
of cascading or interacting events might be severely underestimated. This is because multi-hazard
assessment has not yet been established on a quantitative footing, with the lack of understanding of
hazard interactions being an important cause. Several authors have reviewed the knowledge on
natural hazards interaction. Liu et al. (2015) refer to cascading events (a directly produced occurrence
of a secondary event), conjoint events (two phenomena occurring in the same area and time
window), and dynamic hazards (the occurrence of one hazard affecting the chances of the occurrence
of a secondary hazard). Gill and Malamud (2014) define a primary hazard as one that can directly
trigger one or more secondary hazards, or otherwise increase/decrease the probability that one or
more secondary hazards might occur. Furthermore, events can overlap in time and space, affecting
the probability of occurrence of secondary events. The importance of understanding the interaction
between primary events in the triggering of a single secondary hazard becomes even more important
in a longer time horizon, where triggering can be slow, or incremental, rather than instantaneous. For
instance, the cumulative effect of long periods of rain may interact with geological events such as
earthquakes or volcanic eruptions (Gill and Malamud, 2014). It is thus important to explore data
from a long period of time in order to formulate a multihazard triggering model. In order to explore
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possible quantitative approaches to natural hazards interactions,
we need to focus on some well-studied types of events.

Landslides are a common hazard in many terrains. Usually
they are triggered by rainfall (Berti et al., 2012; Aristizábal et al.,
2015; Marc et al., 2015; Peruccacci et al., 2017) or seismic activity
(Lee, 2014; Robinson et al., 2016a; Havenith et al., 2016). The risk
associated to landslides can be quantified (Papathoma et al., 2015;
Vega and Hidalgo, 2016), by probabilistic modeling (Lari et al.,
2014). Landslides are thus part of an important, and relatively
well-documented, hazard chain (Han et al., 2007; Gill and
Malamud, 2014), which also includes landslide dams, river
aggradation and floods among other perils. Earthquakes and
rainfall are only coincidentally related; they can occur
randomly in the same tectonically active areas at the same
time (Gill and Malamud, 2014; Havenith et al., 2016). Because
landslides can be triggered by either, there is a need (Kappes et al.,
2012) for a statistical model that incorporates both features, in
such a manner that the separate and joint triggering effects can be
estimated. This work is aimed at the apportionment of the relative
and combined effects on landslide triggering given by
earthquakes and rainfall. However, we do not attempt to
assign a specific trigger to individual landslides, but rather see
how the total hazard can be best apportioned across causes. This
will hopefully provide clues to a general framework with the
potential to be extended to other chains of events. To
quantitatively accomplish this and formulate a probabilistic
model, we require a large database with landslide, earthquakes
and rainfall well distributed throughout the spatial and temporal
extents.

While seismic and precipitation databases are commonly
available, landslide ones are rarer and usually incomplete
(Malamud et al., 2004; Guzzetti et al., 2012; Xu, 2015; Steger
et al., 2016). Previous work on landslide triggering has been
commonly done via laboratory experiments (Wang and Sassa,
2003; Wu, 2017), numerical modeling (Sarkar et al., 2012; Lo
et al., 2016) or modeling the susceptibility (Aristizábal et al., 2015;
Kritikos et al., 2015; Feng et al., 2016), i.e., the spatial distribution
of events, in which the temporal dependence in triggering is
suppressed. Some studies have focused on high-resolutionmodels
specifically tailored for a single area or short time period. Such
models incorporate location-specific factors like slope, presence
of watersheds and soil characteristics (Montrasio et al., 2012; Lee,
2014; Aristizábal et al., 2016) driving the occurrence of landslides.
It is difficult to extend this approach to a scale that supports
robust statistical analysis of triggering causes due to data
demands: small and localized datasets are much more refined,
however the collection of such data is time-consuming and
expensive. For this reason, physically based causative
approaches are difficult to apply to large regions (Segoni et al.,
2009), being more often used for limited areas or even single
events. At regional scale, local agencies more often use a “black
box” approach, where the physical setting is ignored in favor of
empirical or statistical approaches such as rainfall thresholds
necessary to initiate landslides (Martelloni et al., 2012). Another
problem is that it is equally important to account for times and
locations when there are no landslides, but the relative scarcity of
landslides can then bias the analysis unless careful control is

exercised through the modeling process. Nevertheless, thanks to
recent efforts in landslide risk management, there exist some
datasets that suit our need. One of the largest and most complete
data sets is the Italian historical archive of landslides, collected by
the IFFI project (Trigila et al., 2010). This has combined all the
local and historical landslide archives, together with modern erial
photos. Additionally, Italy is prone to medium to high intensity
earthquakes (Gasperini et al., 2013) and, in many areas, intense
seasonal rainfall that can lead to flooding and landslides. Of all the
Italian regions, Emilia-Romagna has the longest complete record
of landslides, and an exploratory analysis of part of the landslide
record has been performed by Rossi et al. (2010). Importantly,
this record is not dominated by a single event, as in typical
coseismic landslide analysis (Dadson et al., 2004; Wang et al.,
2008; Kargel et al., 2016), and temporal correlation is preserved,
in comparison to static rainfall threshold analysis (Berti et al.,
2012; Palenzuela et al., 2016; Giannecchini et al., 2016).

The remainder of the paper is structured as follows: We next
review the landslides, earthquakes and rainfall data we used to
develop our model. Section 2.2 outlines the stochastic model
formulation, and the results in Section 3 are followed by
discussion and conclusions. Finally, some technical aspects of
the model are presented in the Appendix.

2 MATERIAL AND METHODS

2.1 Data
The region of Emilia-Romagna occupies a large area in Northern
Italy, the southern boundary of which follows the Apennines
range from north-west to south east. Half of the region consists of
plains (part of the Po valley), while the remaining part is equally
split between hills and mountains. The landslide prone areas are
located on the Apennines, which represent a complex geological
and tectonic setting (Martelloni et al., 2012), of a “fold-and-thrust
post-collisional belt” formed by the subduction of the Adriatic
plate with the European one (Bertolini et al., 2005). The
Appennine ridge is mostly formed by a composite setting of
continental sedimentary rocks, with predominance of ophiolites
in the western part, toward the region of Liguria, and sandstones
or calcarenites (Vai and Martini, 2001) in the middle and eastern
part (Abbate et al., 1970; Rossi et al., 2010). The morphology of
the area presents asymmetric slopes and a complex network of
streams producing erosion. The highest mountain is Mt. Cimone
(2165 m). Emilia-Romagna is an example of a region where a
statistical approach is commonly used. In fact, there are several
examples of rainfall threshold analysis (Guzzetti et al., 2007;
Brunetti et al., 2010; Martelloni et al., 2012; Peruccacci et al.,
2017; Rossi et al., 2017). The region also has records of substantial
landsliding, rainfall and earthquakes spanning many years.
Therefore, it represents a good development space for our work.

2.1.1 Earthquake Data
The earthquake dataset covers all seismic events of magnitude
three or above which occurred in Italy from 1981 to 2018. The
dataset is an updated version of the one compiled by Gasperini
et al. (2013) (up to 2015), provided by INGV (Istituto Nazionale
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di Geofisica e Vulcanologia), and extended until 2018 with the
INGV online database. Note that this sets the temporal limits of
our analysis. The data includes the location (latitude and
longitude) of the epicentre, the moment magnitude, and time
(to the nearest second). A large number of earthquakes could not
possibly trigger landslides in Emilia-Romagna due to their
distance (e.g., events in Southern Italy). Therefore, we have
pruned the dataset using the distance from each epicentre to
the centroid of the Emilia-Romagna region, retaining only the
events within 400 km (Khazai and Sitar, 2004). This subsetting
method is much less severe than those in other studies (Marc
et al., 2015), but our model will automatically discount
earthquakes at too great a distance for their magnitude. This
threshold allowed us to retain the L’Aquila sequence, containing
many of the most recent and strongest events in the dataset. The
number of events in the dataset is 8,584, with a moment
magnitude ranging between 3 and 6.5. The per annum rate of
earthquakes in the triennium 2016–2018 is substantially greater
than that for the 1981–2015 portion of the dataset, as the number
of events per year in Italy doubled (Italian National Institute of
Geophysics and Volcanology, 2019). Figure 1 shows that most of
the earthquakes have occurred along the Apennines, affecting
particularly the province of Forlì-Cesena.

2.1.2 Rainfall Data
The rainfall dataset (from ARPAE, the Emilia-Romagna
environmental agency) is a compendium of daily precipitation
from 1981 to 2018. The data are from 441 rain gauges across the
328 municipalities of the region, and each day/gauge observation
is characterized by the amount of precipitation (mm), the
geographical location (latitude and longitude) of the
municipality and the type of precipitation: daily (from 00:00
to 24:00), cumulated (over a number of days) or snow (whether
the precipitation is flagged as snow precipitation or not). We have
redistributed cumulated values equally over their given time
periods, averaged values for municipalities with more than one
operating gauge, and imputed missing values at a given
municipality with that from the closest municipality value
available. The imputation of partial records (18 municipalities)
and completely missing ones (12 municipalities) was done by
interpolating from the ten closest municipalities See Figure 2. We
have settled on using 10 stations in order to average the variability
within the same area (e.g., a valley). For instance the municipality
of Palagano in the province of Modena had its rainfall imputed
from the surrounding Montefiorino, Frassinoro, Pievepelago,
Riolunato, Lama Mocogno, Polinago and Prignano sul Secchia
municipalities, all with very similar altitude.

FIGURE 1 | Earthquake distribution in centre-north Italy from 1981 to 2018. The L’Aquila sequence is visible in the bottom-right corner of the map. In Emilia-
Romagna (shaded, inset), earthquakes mostly follow the Apennines ridge but some events also occurred on foothills (between Rimini and Ravenna) and flat lands of Po
Valley (all the top part of the region). The light blue concentration below Verona is the 2012 earthquake series. Municipality boundaries are shown in black.
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We thus have created the potential for a finer spatial analysis of
landslide triggering than that of Rossi et al. (2010), who analyzed
the region as a whole using only a single rain record. The resulting
geographical distribution of rainfall over Emilia-Romagna is
shown in Figure 3, highlighting the higher levels of
precipitation along the Apennines. In particular, Figure 3
shows two clusters with higher than average levels of
precipitation, one in the south-east area of the region, but
especially the one in the north-west. This mountain area

characterized by higher rainfall values is in the province of
Piacenza.

2.1.3 Landslide Data
The landslide data (ISPRA, 2019) for Emilia-Romagna contains
15,118 landslides from prehistory to present. The data is
heterogeneous, reflecting the multiple sources used to build
the archive. The majority of landslides are reported with
location (usually the name of the municipality), time (see

FIGURE 2 | Completeness of rainfall records by municipality.

FIGURE 3 | Geographical distribution of daily rainfall average (mm) in 1981–2018. Municipality boundaries are shown in black.
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paragraph below) and, when available, size. About 30% of records
are incomplete. Rossi et al. (2010) discussed the completeness of a
portion of this data set at considerable length, arguing that it is
complete enough for use from 1950 onward, the remaining time-
inhomogeneities being ascribed to changes in triggering effects
(primarily meteorological) and anthropogenic influences such as
land use. We will further truncate this to the period 1981–2018, to
match the earthquake/rainfall catalog, leaving 7,743 landslides.
The main triggering factor of landslides in Emilia-Romagna is
considered to be rainfall, while seismic-induced events are less
frequent but still possible (Pizziolo et al., 2015; Troiani et al., 2017;
Piacentini et al., 2018). Figure 4 shows the resulting geographical
distribution of landslides, with the majority of landslides located
in the mountainous area of the Apennines.

The major issue encountered in the dataset is that of dating
accuracy and precision. This is exemplified by the “first day problem”
- the number of landslides recorded as occurring on the first day of a
month is 2,239 (Figure 5A), 29%of the total amount. This appears to
be a consistent feature of the data, across years, seasons and
municipalities. Figure 5B shows the distribution of landslides in
relation to the accuracy code, a variable included in the data set that
should express the dating precision of each event. The figure
indicates that the first day problem is spread across all accuracy
classes, and hence these codes cannot be used to stochastically
reallocate landslides over appropriate time intervals. Moreover, we
can deduce that the accuracy codes on other days of the month are
not reliable. From Figure 5A, there appears to be no clear pattern
from day two onward, so we have proceeded by assuming that days
recorded as other than day one can be treated as precise to the day,
and that day one events occurred on either day one (with a
probability that we will estimate), or on another day of the
month, with some unknown distribution that we will likewise
estimate. The rest of our solution to this problem is part of the
model inference, which is covered in Section 2.2 and the Appendix.

2.1.4 Distances and Geographical Location
While the earthquake data is specified to a high precision in space
and time, the rainfall and landslide data are only geographically
specified in terms of municipality name, and with (at best) daily
precision in time. Hence, distances between earthquakes and
potentially triggered landslides will be calculated from the
earthquake epicentre to the municipality centroid. Our model
will consider the number of landslides per day for each
municipality, relative to the amount of precipitation within
those municipalities and the distances to and magnitudes of
seismic events. The metadata of the datasets used are
summarized in Table 1.

2.2 Stochastic model(s) for Landslide
Triggering
As mentioned in Section 1, the main triggering factors for
landslides are rainfall and earthquake events. Additionally,
many papers suggest a possible connection between these
causes (Marc et al., 2015; Havenith et al., 2016). In this paper,
we seek to quantify this influence by proposing a stochastic model
that involves earthquakes, rainfall, landslides and their
interactions in order to estimate the possibility of landslide
events in relation to time and magnitude of seismicity and
precipitation.

Because precipitation and earthquakes are two distinct types of
triggering events, our model need to incorporate the effect of
magnitude at distance of each of the triggering events and link
their effects to landslide occurrences. As a suitable tool for this
purpose, we will consider a spatio-temporal point process over
the space S in Emilia-Romagna and the time horizon
[1981, 2018]. Particularly, we consider a non-homogeneous
Poisson process denoted by a counting function N(S, T )
which counts the number of events occurring in S ⊂ S and

FIGURE 4 | Landslide locations 1981–2018 in the region of Emilia-Romagna. Municipality boundaries are shown in black.
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T ⊂ [1981, 2018]. It is commonly assumed that landslide
occurrences follow a Poisson process (D’Odorico and
Fagherazzi, 2003; Lari et al., 2014), hence we will examine
this assumption in our model. A Poisson process can be
characterized by its intensity function (in continuous time
and space) which describes how events are distributed in
time. At the location s ∈ S and time τ ∈ [1981, 2018], the
intensity function of landslides is a non-negative function
denoted by λ(s, τ), where the probability of an event in a
sufficiently small interval of space with measure Δs and a
time window Δt is approximately λ(s, τ)ΔsΔt. The landslide
dataset in use supports the assumption of landslide occurrences
following a Poisson process if we exclude days with no
landslides. This conclusion holds even if we disaggregate the

distribution in time or space, for instance by month or by
provinces of Emilia-Romagna. Hence we will model landslide
occurrence using a Poisson process parametrized to incorporate
rainfall and earthquake effects, and the excess of zeros (day-
locations without landslides) will be accounted for using similar
means, as detailed below.

2.2.1 Discrete Approximation
As mentioned in Section 2.1, our datasets have different levels of
spatial and temporal resolution, and that of rainfall and landslides
as insufficient to fit a continuous (in time and space) model. This
feature of the data implies a need to discretise time and space.
Time is specified as days, which leads to a natural discretisation of
time in days. We have used the centroid of a municipality as the
nominal location of corresponding landslides. This leads to a
discretisation of space as S � ∪​ X

x�1Sx which is a disjoint union of
spaces associated with municipalities over the index set of all
municipalities x ∈ {1, . . . ,X}. In other words, eachmunicipality is
treated in its entirety as a single spatial element. Therefore, we
only observe the counts N(Sx, [t, t + 1)) for landslides where
t ∈ {1, . . . ,T} is the index set of different days. Basically, we
count the landslide occurrence for each day t and each
municipality x. For the sake of simplicity, we replace Sx by x
and [t, t + 1) by t in the following analysis without ambiguity.
Since we use a Poisson process with intensity λ(s, τ), the number
of events N(s, t) follows a Poisson distribution with mean

μ(x, t) � ∫
s ∈ Sx

∫
τ ∈ [t,t+1)

λ(s, τ)dsdτ.

FIGURE 5 | Distribution of landslides by day of the month (A) and in relation to the accuracy code provided (B). The dataset includes an “accuracy code”, which
should give an idea of the precision of the date. A landslide with code 1 indicates a claimed daily precision of dating, while code 2 means a short period precision
(1 − 7 days). Codes 3 to 7 indicate a monthly, bimonthly, seasonal, biannual and yearly precision. Code 8 stands for a multiple year precision, while 9 and 10 indicate the
date on the document or an uncertain date. Finally, 11 stands for events with unknown accuracy.

TABLE 1 | Description of the datasets used.

Event type Earthquakes Rainfall Landslides

Time window 1981–2018 1981–2018 1981–2018
Time
precision

Seconds Days Day at best

Location Epicentre lat/long Municipality
centroid

Municipality centroid

Magnitude Moment
magnitude

Millimeters per day Area or volume

Features > 8,000 events Average Average 1.11 landslides
Distance
<400 km

825.17 mm per
year

per municipality/

Magnitude ≥3 year
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2.2.2 A Zero-Inflated Poisson Model for Landslides
Because of the nature of the landslide series, the daily values are
dominated by zeros (Witt et al., 2010), on 99.76% of the
municipality-days. This suggests fitting a Poisson model is
inappropriate, as the variance is nowhere near the mean. The
standard approach in such circumstances, which we adopt here, is
to use a Zero-Inflated Poisson (ZIP) model, a random mixture of
a Poisson variate and an atom at zero. If N(x, t) is the number of
landslides at location x and time t, the ZIP model augments the
Poisson model by setting

Pr(N(x, t) � n)

� { q(x, t) + (1 − q(x, t))exp(−μ(x, t)), n � 0(1 − q(x, t))exp(−μ(x, t))(μ(x, t))n/n!, n> 0.
(1)

Briefly, a zero count can be produced either by the zero process or
by the Poisson process, while a landslide occurrence will be
produced only by the latter. Therefore, the probability of
getting a zero count is q(x, t), plus 1 − q(x, t) times the
probability that the Poisson distribution produces zero. The
probability q(x, t) is estimated with a logit model (see, e.g.,
Lambert (1992)):

qx,t � exp(−]x,t)
1 + exp(−]x,t) (2)

where ]x,t ∈ (−∞,∞) will be defined as a linear function of
the data.

2.2.3 Breaking Down the Triggering Factors
The core of Equation 1 is μ(x, t), a conditional mean function
that links the occurrence of landslides with the possible
triggering processes. We seek to parameterize it in terms of
antecedent rainfall and earthquakes, modeling their temporal
correlations and clustering, identified by Witt et al. (2010), as
follows:

μ(x, t) � μ0(x) · g(C1(x, t),C2(x, t), . . . ,Cn(x, t)). (3)

where μ0(x) is a baseline and Ci(x, t) are components that
capture the triggering effects of the primary events. The
function g(·) is a link function, as is commonly used in
generalized linear models. The purpose of the link function is
simply to express the relationship between the components and
the expected occurrence of landslides. The function g(·) and the
components have now to be defined, based on our physical
understanding of the triggering process. The components
should increase with triggering propensity, and g(·) must be
non-negative and monotonically increasing (Lawless, 1987; Daley
and Vere-Jones, 2003).

One of our components will register the shaking effect of
earthquakes, as they are one of the possible triggers of
landslides. Then, we want to differentiate between short and
long-term rainfall, as it has been established that there are two
distinct rainfall processes for triggering landslides (Rossi et al.,
2010). In Equation 3, we want to consider measures of short-
term rainfall (denoted CRS), long-term rainfall (CRL) and

seismic intensity (CE) that increase with the triggering effect
of the respective events. The parameter μ0 abstracts the
susceptibility of municipality x to landslides, in terms of
geography, lithology, soil structure and anthropogenic
effects. This acknowledges the fact that landslides can be
affected by local effects and isolate these to our search for a
spatio-temporal relationship between earthquakes, rainfall and
landslides. In the following paragraphs we will explain the
components.

2.2.4 Seismic Component
An earthquake’s ability to trigger a landslide is related to its
magnitude within a certain period of time and within a certain
distance from the epicentre (Kritikos et al., 2015;Marc et al., 2015;
Parker et al., 2015; Robinson et al., 2016b). Kritikos et al. (2015)
identified, via a fuzzy logic methodology, the most important
factors in the triggering of coseismic landslides to be ground
shaking intensity and distance. Similar results were obtained by
Parker et al. (2015) and Parker et al., (2017) using logistic
regression on data sets of various origins. As a proxy of
ground shaking we will use the relationship (Utsu, 1970;
Ogata, 1988; Wetzler et al., 2016) between main event
magnitude and aftershock productivity, assuming that the
forces that produce aftershocks are proportional to those that
initiate landslides.

As it is not clear whether a landslide registered on day t has
resulted from an earthquake on day t or day t − 1, we aggregate
the overall effect of seismic events occurred on both days.We thus
propose a component

CE(x, t) � ∑
t−2≤ tk ≤ t

101.5(mk− 3)

rβx,k
(4)

where the kth earthquake has magnitude mk, at time tk, a
distance rx,k from location x. Spatial decay is modeled by a
power law, with the distance being expressed in hundreds of
kilometers (for numerical reasons). Following Zonno and
Montaldo Falero (2009) and Meunier et al. (2007) we take
β � 1, although a value of 1.8 (Travasarou et al., 2003) or
even an exponential decay (Meunier et al., 2007) could be
considered. The threshold of three in the magnitude simply
reflects the cutoff in the catalog.

2.2.5 Long-Term Rainfall Component
In order to define a tool for rainfall triggering landslides, we
follow a similar approach to the one by Monsieurs et al. (2019),
using a measure of the antecedent rainfall rather than intensity-
duration techniques. We have two rainfall components in order
to evaluate both the short and long-term effects on the triggering
of landslides. While the short-term rainfall component will
summarize the rainfall effect on the days t and t − 1, for the
long-term component we will use an exponential smoother
(Montrasio et al., 2012) on a period of Δ days prior to t − 1
(i.e. days t − Δ − 1, . . . , t − 2):

CRL(x, t) � 1
Δ ∑Δ

δ�1
ωδ−1P(x, t − δ − 1), (5)

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 8 | Article 6050037

Porta et al. Earthquake/Rainfall Triggered Landslides Statistical Model

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


where P(x, t) is the precipitation recorded at location x on day t.
Some experimentation established that values of Δ � 150, ω �
0.98 produced the best fit to the data, although the fit was
statistically similar for any Δ ∈ (120, 180) days. The
exponential smoother increases the effect of the days closer to
the landslide day such that with ω � 0.98 day t − 152 contributes
approximately 5% as much as day t − 2. The 150 days period,
which may include multiple rain events (Palenzuela et al., 2016),
agrees with the range of 42–400 days identified by Rossi et al.
(2010), but is in excess of the approximately 30 days suggested by
Guzzetti et al. (2012) and Berti et al. (2012). The sub-continental
climate of Emilia-Romagna may drive the length of this
influenced period as the precipitation is generally well-
distributed during the year, with two peaks in spring and
autumn (Nistor, 2016).

2.2.6 Short-Term Rainfall Component
Treating the long-term rainfall as in Equation 5 allows us to use
the simple average rainfall of the day of the landslide (t) and the
day preceding (t − 1) as a component expressing the mean
intensity of the last two days.

CRS(x, t) � P(x, t − 1) + P(x, t)
2

(6)

As with earthquakes, this accounts for the inability to separate
which day of rain may have triggered the landslide. The
components Equations 5, 6 do not define a cumulated
rainfall-duration threshold in the sense of Rossi et al. (2017)
or Peruccacci et al. (2017). Instead we are using a ‘soft threshold’,
where events become more or less likely depending on their
values, rather than possible/impossible. Effectively we are
describing the variation in the triggering conditions by a
different metric, driven by the fact that we include non-events
(days without landslides) in our analysis. In other words, the
model will not give dichotomous results, but rather the rate of
daily landslides depending on the levels of the three components.
Hence, we expect the short-term component to capture low-
duration-high-intensity events and the long-term component
prolonged periods of rainfall.

2.2.7 Three Interaction Models
We trialled three arrangements for the link function g(·) in
Equation 3, in order to test the interactions between the
components. Recalling Equation 3, each model is a
combination of the susceptibility term μ0(x) and a function of
the three components previously listed. All the components were
normalized by dividing them by their grand mean across
municipalities and time.

Model 1:

μ(x, t) � μ0(x)exp[μ1CRS(x, t) + μ2CRL(x, t) + μ3CE(x, t)] (7)

treats the component effects as multiplicative.
Model 2:

μ(x, t) � μ0(x){exp[μ1CRS(x, t)] + exp[μ2CRL(x, t)]
+ exp[μ3CE(x, t)]} (8)

treats the effects as additive, while in.
Model 3:

μ(x, t) � μ0(x){exp[μ1CRS(x, t) + μ2CRL(x, t)] + exp[μ2CRL(x, t)
+ μ3CE(x, t)]}

(9)

there are multiplicative effects between long-term rainfall and the
other components, which are then added. This model represents
long-term rainfall as a weakening factor, with the final impetus
being provided by either intense precipitation or seismic shaking.
The relative strengths of each component or interaction are
measured by coefficient parameters μ1, μ2, μ3.

2.2.8 Zero-Inflated Poisson Terms
The ZIP terms are trailled in four different forms (A to D), from
the simplest ZIP form A, including only the intercept ]0

A : ]x,t � ]0 (10)

to models B and C, which are ZIP model forms that account for
inflated zeros from the short or the long-term rainfall
components:

B : ]x,t � ]0 + ]1CRS(x, t) (11)

C : ]x,t � ]0 + ]2CRL(x, t) (12)

and finally model D, which is the full model, accounting for
inflated zero from all the three components:

D : ]x,t � ]0 + ]1CRS(x, t) + ]2CRL(x, t) + ]3CE(x, t). (13)

3 RESULTS

The model fitting was restricted to municipalities with at least
ten recorded landslide in the period 1981–2018, to avoid the
model fitting driven by individual landslides. The likelihood

TABLE 2 | Parameter estimates (normalized components) and resulting log-
likelihood for each model.

Model 1 Model 2 Model 3

ZIP B ZIP D ZIP B ZIP D ZIP B ZIP D

μ0 (Mean) 1.18E-03 3.95E-02 3.18E-03 3.93E-
03

1.96E-03 1.53E-03

μ0 (SD) 8.03E-04 4.09E-02 2.15E-03 2.68E-
03

1.34E-03 1.04E-03

μ1 0.23 0.23 0.18 0.18 0.21 0.15
μ2 6.69E-08 0.16 0.06 0.16 0.02 0.15
μ3 1.01E-05 1.02E-05 1.06E-06 1.44E-

12
2.00E-04 6.00E-04

]0 7.64 8.05 7.55 7.92 7.58 11.9
]1 −22.7 −0.27 −2.24 −2.27 −22.9 −0.30
]2 −0.19 −0.45 −4.70E-75
]3 −3.20E-11 −

1.0E-04
−0.01

Log-
likelihood

−44710 −44670 −44393 −44337 −44587 −44792
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functions of the models are calculated in the Appendix. The
models are as discussed in Sections 2.2.7 and 2.2.8. The
parameters were numerically optimized to maximize the
likelihood. The susceptibility parameters μ0(x), location
based multipliers, were estimated as described in the
Appendix. Table 2 shows the estimated parameters and the
value of the log-likelihood.

Of the ZIP forms presented in Equations 10–13, only B and
D have been retained as they are clearly superior to the others.
Model 2 is preferred, as the log-likelihood is much the largest of
the three, indicating that the earthquake/rainfall triggering
effects on the number of landslides are best described as
additive. Models 1 and 3 performed poorly in comparison
with Model 2. Looking at the performance of the overall
models, including the ZIP form, the difference in log-
likelihood between Model 2B and Model 2D is not large,
with a slight preference for 2D. Due to the complexity of the
model, it is not clear if the improvement in log-likelihood from
2B to 2D is significant bearing in mind the two additional
parameters (]2 and ]3). These two extra parameters allow for
different interpretations, particularly in terms of earthquakes,
with one model (2B) including earthquakes as a term that
mainly increases the number of landslides when at least one
occurs, and the other (2D) having earthquakes affect the
probability of there being any landslides at all.

The normalization of the components (Figure 6) allows us
to compare the importance of different components via the
parameters with estimates in Table 2, while the graphical
representation in Figures 8, 9 shows visually whether each
model properly represents the data. Focusing on Models 2B
and 2D, we first see that, regardless of which model is
considered, the short-term rainfall parameter μ1 is the
largest contributor to landslide occurrences when only
short-term rainfall is considered in the ZIP portion of the
model. If the full ZIP parameterization (13) is considered, the
long-term rainfall parameter μ2 increases in magnitude, but
this is offset by the contribution from ]2 in the ZIP portion.
While the earthquake component parameter μ3 is
superficially low, we note that the values of the normalized
seismic component can be orders of magnitude larger than
the rainfall terms (Figure 6). Hence the seismic component is
more variable, with a long tail, and the lower value of μ3
means that the model is separating out the higher values of
shaking. However, its effects can apparently be expressed
through either μ3 or ]3, but not both. Turning to whether the
models reflect the data, in Figure 8 we see the expected
number of landslides consistently following the expected
pattern from Model 2B. However, Model 2D shows a poor
fit (Figure 9), where the expected landslides process is
visually very different from the observed landslides one,
being dominated by the 2016–2018 period which had
slightly higher levels of rainfall overall. Hence Model 2D
appears to be over-sensitive to the rainfall level. Model 2 B
shows a representation of landsliding which is more in line
with other studies, which determined short-term rainfall to
be the main driver of landsliding in Emilia-Romagna (Troiani
et al., 2017; Piacentini et al., 2018).

The location-specific susceptibilities μ0(x) are shown in
Figure 7 against the number of landslides per municipality:
while μ0 increases in general with the number of landslides, the
triggering effects of the model are demonstrated in the
variation around a hypothetical straight line. Again, we see
that Model 2D extracts less information from the
triggering data.

Figures 8, 9 each present three panels showing the
components and the expected/observed landslides across all
municipalities in the time window 1981–2018 for Model 2B and
2D, respectively. The first plot displays short and long-term
rainfall, the second one observed and expected landslides and
the third one the earthquake component. As expected, looking
at the first and second panels it is possible to see that the
expected number of landslides has a temporal pattern which
mainly follows the rainfall one. At the end of the time window,
due to the high peak of rainfall (the last three years of data show
an increase in short-term rainfall), the expected landslides
count is elevated. In the same period, there is a peak in the
estimated earthquake effect which may have affected the
triggered landslides. This 2016–2018 effect is seen more
clearly in Figure 9, where the line expressing the expected
landslides is higher compared to the one in Figure 8. Model 2B
as illustrated in Figure 8 seems to provide a good representation
of expected landslides against observed ones, remembering that
many “day 1” landslides are obvious artifacts in the wrong
temporal location. In contrast, Model 2D exhibits poor
correlations between expected and observed landslide
numbers, with the former being over sensitive to rainfall,
and hence dominated by the higher levels of rainfall in
2016–2018.

A big spike in the expected number of landslides around 2012
reflects the anomaly of that year, where no landslides were
recorded during or after the earthquake sequence mentioned
in Section 2.1. It is interesting to notice that the correspondence
in the number of observed and expected landslides around late
2008 to early 2009 includes considerable earthquake
contributions, and some medium scale short- and long-term
rainfall terms.

4 DISCUSSION

We have shown how point processes can be used to model the
triggering influence of multiple factors in a discrete
approximation, with different trial model configurations,
and for a coarse resolution dataset. Physical coefficients
such as the weight {μi} for each component are treated as
constants across space and time. Each location is assumed to
have its own susceptibility to landslides, which acts as a
multiplier. The temporal component is represented by a
time-series of the triggering factors, the model structure
remaining constant over time. The basis of the model is
one that accommodates a spectrum of behavior from
“increased probability” (Gill and Malamud, 2014), where
the occurrence of an event increases the chances for the
occurrence of a secondary event without directly triggering
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it, to almost direct triggering should the intensity rise quickly
enough.

The available data for the landslide triggering problem in
Emilia-Romagna is naturally at a daily precision. Hence the vast
majority of location-days had no landslides. This over-
abundance of zeros in the data required us to use a Zero-
Inflated Poisson (ZIP) model. This allowed us to treat the
power-law decay in number of landslides per day (Rossi
et al., 2010) as an aggregation across 139 municipalities of a

few Poisson values and many zeros. We found that long-term
rainfall exerted a strong effect on the likelihood of no landslides,
agreeing with previous work by e.g., Rossi et al. (2010), Rossi
et al. (2017), and Peruccacci et al. (2017). With this foundation,
the best triggering model has an additive form, where long-term
and short-term (i.e., duration and intensity) rainfall, and
coseismic triggering add together to raise the expected
number of landslides. A multiplicative form was explicitly
rejected by the model, as was a combined version where

FIGURE 6 | Histograms of the normalized three components.

FIGURE 7 | Estimated location susceptibilities for Model 2D (left) and 2B (right).
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long-term rainfall was used as a multiplier for short-term
rainfall and coseismic influence, and the terms added.

The combined used of short-term and long-term rainfall
components have worked satisfactorily, as together they were
able to capture extremely intense landsliding events, as well as
prolonged ones, as can be seen in Figure 8. For comparison,
we have calculated the threshold in our short-term/long-term
rainfall components matching the values estimated by
Peruccacci et al. (2017) which are shown in Figure 10. We
see that the threshold curve goes through the mass of the

landslide occurrence data, noting that some of the points
above the curve will be earthquake or anthropologically
triggered. While our results are compatible with those from
threshold models such as those presented by Brunetti et al.
(2010) and Peruccacci et al. (2017), our formulation allows the
model to be dynamic in the evaluation of the hazard due to the
interaction between rainfall and earthquakes. In particular,
the long-term (150 days) sum is forecasting an elevated risk
that future intense rainfall and earthquakes will trigger
landslides.

FIGURE 8 | Observed/expected landslides and normalized rainfall and earthquake components in Emilia-Romagna (Model 2B). The first plot displays short and
long-term rainfall, the second one observed and expected landslides and the third one the earthquake component.

FIGURE 9 | Estimated location susceptibilities for Model 2B (left) and 2D (right).
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A possibility we did not examine, due to the already low level of
coseismic landsliding estimated from our data set, is possibly
transient triggering effects of earthquakes. It has been suggested
that earthquakes can have a cumulative effect (even possibly a
negative one) on landslide triggering (Brain et al., 2017), or that
earthquakes and rainfall can interact in a complex manner over a
period of years (Marc et al., 2015). This would require a new term
in the model, where the cumulative effect of earthquakes is tracked
(Bebbington and Harte, 2003). Considerable experimentation will
be needed to identify characteristic time-windows and their
dependence on data such as magnitude. A complicating fact is
that the 2012 earthquake sequence represents a peculiar example of
a seismic event without landslides. The reason may be due to a
combination of factors, including the location of the epicentres of
the two main shocks (about 50 km away from the closest high
ground) on a non-Apenninic fault, and the SE direction of seismic
wave propagation, which hence propagated unilaterally through
the Po Valley toward the sea, rather than toward the mountains
(Cesca et al., 2013; Pezzo et al., 2013; Vannoli et al., 2015).

At a finer level, if sufficient data on landslide location is available,
the location susceptibility term could be parameterized in the usual
manner (Parker et al., 2015), leading to a mapped intensity.
However, this will require much more intensive development in
the fitting process, as the data will be dichotomous (either a landslide
occurs at that location and time, or not). Hence a spatial intensity will
need to be fitted, possibly with a model for a size mark (Bebbington,
2015). The problem of whether a landslide inhibits (or encourages) a
subsequent landslide at the same location will also need to be
addressed.

Other avenues for future work include the possibility of including
debris flows (Giannecchini et al., 2016) as a tertiary hazard, but with
a complex triggering mechanism from rainfall, conditioned on the
existence of previous landslides. The Melton ratio of the catchment

will then also have a role in the model (Welsh and Davies, 2011). A
similar treatment could be accorded landslide dams (Tacconi
Stefanelli et al., 2015; Frigerio Porta et al., 2020).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: github.com/gfrigerioporta/eqrfls.

AUTHOR CONTRIBUTIONS

The methodology was developed by GF, MB, XX, and GJ
following a concept proposed by MB. The formal analysis and
data curation was carried out by GF, who also wrote the original
draft of this paper. The computer code for the proposed model
was created by GF with assistance from MB. Review and Editing
was done by GF, MB, XX, and GJ.

FUNDING

This work was supported by the Resilience to Natures Challenges
National Science Challenge, New Zealand.

ACKNOWLEDGMENTS

We would like to thank Sandro Nanni (ARPAE) for providing us
the rainfall dataset, Marco Pizziolo (Emilia-Romagna Region) for
the landslide data and Matteo Taroni (INGV) for the earthquake
catalogue.
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5 APPENDIX

5.1 Susceptibility
Defining N(x, t) as the actual number of landslides at location
x on day t, we have that

Pr(N(x, t) � n) � exp[ − μ(x, t)][μ(x, t)]n
n!

, (14)

for n � 0, 1, 2, . . ..
The log-likelihood for the process is therefore

logL � ∑T
t�1

∑X
x�1

[ − μ(x, t) + N(x, t)log(μ(x, t)) − logN(x, t)!].
(15)

Maximizing (15) is computationally expensive, due to different
susceptibility terms μ0(x) for every location. However, we can
simplify this using a property of the point process Maximum
Likelihood Estimate (MLE). Let us suppose that the conditional
intensity for continuous time is written as μ(x, t) � μ0(x)h(x, t, θ),
where h(x, t, θ) is a function of components expressing the
triggering mechanisms and of a vector θ of j parameters. The
parameter μ0(x) is a purely location basedmultiplier that expresses
the susceptibility of a location to landslides. In static approaches an
equivalent quantity is usually estimated via logistic regression
(Garcia-Rodriguez et al., 2008; Minder et al., 2009). For any
value of θ, the loglikelihood at each location x is maximized by
setting the conditional intensity (expected number of landslides)
equal to the (observed) number of landslides in a given location
across time

μ0(x)∑
t

h(x, t, θ̂) � ∑
t

N(x, t),

where θ̂ is the MLE of θ. We now assume that this property
is inherited by the ZIP model, thus equating the observed
and expected numbers of landslides at that location, and
hence

μ0(x)∑
t

h(x, t, θ̂) � ∑
t

N(x, t). (16)

This allows us to operate a two-step numerical optimization,
where θ̂ is first updated, holding {μ0(x)} fixed, and then the
{μ0(x)} are recalculated according to (16).

5.2 Landslide Dating Accuracy Problem
As described in Section 2.1, we decided to consider all landslides that
are reported on other than the first day of a month as reliable, and all
landslides dated on the first day as potentially unreliable. Considering
the intrinsic scarcity of landslide data (82% of days have no landslide
events), it is not feasible to reduce our analysis to only the landslides
not occurring after day one of each month, as we would not take
account of a large portion of events and,more importantly, we would
lose the continuity of their triggering effects. Moreover, the number
of day one events differs sharply by month, and hence they still
contain some information about triggering effects.

Let us define Y as the number of landslides at a given location
in a specific month, with µ as their average daily rate of
occurrence across the T days in the month. Then Y � y1 + y2,
respectively the number of landslides recorded on the first day of
a month and on the remaining days. Similarly, T � t1 + t2, split
into the number of first days (t1 � 1) and the number of
remaining days t2. Furthermore, let x1 and x2 denote the true
(unobservable) number of landslides on the first day of a month
and on the remaining days. Then if π is the unknown mis-
specification rate at which landslides occurred from non-first
days of a month but were recorded on the first day, we have
Y1 � X1 + ∑​ X2

i�1Zi, and Y2 � X2 −∑​ X2
i�1Zi � ∑ ​ X2

i�1(1 − Zi), where
Zi is a Bernoulli random variable with Pr(Zi � 1) � π. Taking
expected values, we obtain E[Y1] � E[X1] + πE[X2] � μt1 + πμt2
and E[Y2] � (1 − π)E[X2] � (1 − π)μt2. We can now impute the
missing data by replacing Y1, Y2, and µ with y1, y2 and
μ̂ � (y1 + y2)/(t1 + t2), obtaining

π̂ � y1/t1 − y2/t2
y1/t1 + y2/t1 (17)

where we need y1/t1 > y2/t2 (i.e., a noticeable excess of first day
events) for a reasonable estimate. In order to obtain the
probability that a landslide occurred on the first day of a
month (event A), given that it has been recorded as such
(event B), we can use Bayes Theorem to write

̂Pr(A|B) � t1
t1 + πt2

� t1/(t1 + t2)
y1/(y1 + y2) (18)

Thus we know (1 − ̂Pr(A|B))y1 landslides need to be
redistributed across other days of the month. We can do so by
using the Expectation Maximization (EM) algorithm (Dempster
et al., 1977), where they are allocated at each optimization step in
proportion to the expected number of events. Note that we do not
require landslides to be an integer at this point, as the
loglikelihood calculations (15) or (19) do not require it (the
factorial term in 15 is a constant, and thus does not feature in
the maximisation).

5.3 Log-likelihood of the Zero-Inflated
Poisson Model
The log-likelihood for the ZIP process is

logL�∑
t�1

T ∑
x�1

X

I0(N(x,t))log{q(x,t)+[1−q(x,t)]exp(−μ(x,t))}
+∑
t�1

T ∑
x�1

X ⎧⎨⎩⎡⎣1−I0(N(x,t))⎤⎦⎡⎣log(1−q(x,t))−μ(x,t)+N(x,t)logμ(x,t)

−log(N(x,t)!)]}
(19)

where I0(N(x, t)) is one if no landslide occurred at location x on
day t, 0 otherwise. The summation reveals that the model is fitted
to the daily counts summed across municipalities (Rossi et al.,
2010), but that each municipality contributes its own spatial
triggering factors in rainfall, earthquake and susceptibility.
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