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When droughts and floods struck ancient agrarian societies, complex networks of
exchange and interaction channeled resources into affected settlements and migrant
flows away from them. Did these networks evolve in part to connect populations living in
differing climate regimes? Here, I examine this relationship with a long-term archaeological
case study in the pre-Hispanic North American Southwest, analyzing 4.3 million artifacts
from a 250-year period at nearly 500 archaeological sites. I use these artifacts to estimate
how the flow of social information changed over time, and to measure how the intensity of
social interaction between sites varied as a function of distance and several regional
drought patterns. Social interaction decayed with distance, but ties between sites in
differing oceanic and continental climate regimes were often stronger than expected by
distance alone. Accounting for these different regional drivers of local climate variability will
be crucial for understanding the social impacts of droughts and floods in the past and
present.
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1 INTRODUCTION

Exchange networks are part of the broad toolkit of social and physical infrastructure humans use to
manage environmental risk in social-ecological systems (Anderies, 2015). The environment can
structure these exchange networks by influencing the costs and benefits of social interaction. Recent
theoretical and empirical work highlights how spatial, social, and environmental factors interact with
networks of exchange and interaction (Fafchamps and Gubert, 2007; Bloch et al., 2008; Nolin, 2010;
Verdery et al., 2012; Freeman et al., 2014; Koster and Leckie, 2014; Hao et al., 2015; Schnegg, 2015).
Distance is a key factor in such systems, making it difficult to monitor conditions in potential
migration destinations (Anderies and Hegmon, 2011) and know the resources and reputation of
potential interaction partners (Fafchamps and Gubert, 2007), as well as increasing the metabolic
costs of transport (Drennan, 1984). For agricultural societies in water-limited environments,
hydroclimate variability–changes in the balance of precipitation and evapotranspiration–may be
another key factor. The benefits of interacting with others in different drought regimes can outweigh
the costs of traveling longer distances. As a consequence, we might expect a greater “investment of
social energy in the maintenance of social ties” between populations experiencing poorly or
negatively correlated climate variability (Rautman, 1993). Norms and institutions that maintain
ties between different climate regimes are likely to evolve (Durante, 2009). This process is difficult to
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measure in the present day due to the mismatch between the
generational time scale on which cultural evolution occurs and
the limited time horizons available to contemporary social
sciences. Instead, we can turn to the archaeological record.

Archaeology focuses on the material correlates of human
behavior and is unique in addressing how social and physical
infrastructure modulate human interactions with the
environment over long time spans. Not only do archaeologists
catalog the remains of field systems, road networks, canals, and
other components of hard infrastructure directly, but also the
ceramics, raw materials, and luxury goods that are the material
correlates of past networks of exchange and interaction. A
powerful idea in archaeology is that, because of the interaction
between societies and their biophysical environments, the spatial
and temporal patterns of environmental variability can be used to
predict “ideal” cultural responses and compared to archaeological
observations (Halstead and O’Shea, 1989). Yet in practice it is
often difficult to find archaeological data fit for purpose due to the
incomplete nature of the archaeological record and the paucity of
detailed paleoclimate data at the scales most relevant to human
populations.

The North American Southwest is an exception. The climate
of this region has been intensively studied by paleoclimatologists
and climate modelers (Cook et al., 1999; Sheppard et al., 2002;
McCabe et al., 2004; Herweijer et al., 2007; Cook et al., 2011;
Bocinsky and Kohler, 2014; Coats et al., 2015; Routson et al.,
2016; Ault et al., 2018). Its aridity aids archaeological site
preservation and recovery, and nearly two centuries of survey
and excavation have yielded extensive, high quality settlement
pattern data (Hill et al., 2004). Detailed inventories of material
culture at hundreds of archaeological sites provide an
unparalleled view of the structure and dynamics of past social
networks. This archaeological record attests to extensive
exchange networks of durable goods such as ceramics and
obsidian (Malville, 2001; Taliaferro et al., 2010; Mills et al.,
2013a), and there is evidence for the long-distance transport
of limited quantities of maize to the large regional center at Chaco
Canyon (Benson et al., 2009; Benson, 2010). The populations of
the Southwest also underwent massive social transformation,
migration, and population decline in the late 13th century
contemporaneous with one of the worst droughts in the last
1,000 years (Hill et al., 2004). Past work has suggested a
relationship between the intensity of social interaction and
patterns of drought variability, but has been limited by small
sample sizes or sparse climate data (Rautman, 1993; Johnson,
1990; Cordell et al., 2007). The question is returning to the fore
with the advent of high resolution climate observations and
reconstructions, facilitating more detailed accounting of the
spatial patterns of drought in the North American Southwest
(Strawhacker et al., 2017; Strawhacker et al., 2020), and more
detailed archaeological datasets (Borck et al., 2015). Simulations
suggest that the precise nature of environmental variability is
critical for exchange dynamics (Freeman et al., 2014). With these
advances in our ability to map droughts in space and time comes
the need to more precisely define what patterns of climate
variability are actually important.

Here, I draw on hydroclimate data from the past and present
to isolate specific reoccurring climate patterns, or modes of
variability, in the American Southwest. I then compare these
patterns to prehistoric social networks, inferred from a dataset of
4.3 million ceramic artifacts from nearly 500 archaeological sites,
to examine the relationship between hydroclimate variability,
distance, and social interaction over a 250-year span.

2 METHODS

2.1 Archaeological Interaction Networks
I analyzed data from nearly 500 archaeological sites in the
Southwest Social Networks (SWSN) database, a compendium
of material-culture data from well-dated sites west of the
Continental Divide in Arizona and New Mexico (Mills et al.,
2013a; Mills et al., 2013b; Peeples and Haas, 2013; Borck et al.,
2015; Hill et al., 2015; Mills et al., 2015). Version 1.0 of the SWSN
database cataloged nearly 4.3 million ceramic artifacts and nearly
5,000 obsidian artifacts, providing quantitative estimates of the
topology of the region-wide social network during five 50-year
time steps spanning the period 1200–1450 CE (Mills et al., 2013a;
Mills et al., 2015). Raw site-level ceramic counts were allocated to
each time step according to an apportioning procedure that
combined the occupation span of each site and the production
span of each ware type with a parametric assumption of the wares’
changing popularity through time (Mills et al., 2013a; Peeples and
Haas, 2013).

I aggregated the point-based SWSN data into 10 km grid cells
(Figure 1A) so that the network estimates were less sensitive to
local settlement dispersal or aggregation as reflected in the
assemblages at individual sites (Paliou and Bevan, 2016). The
choice of 10 km grid cells reflects a day’s round-trip travel,
bounding the area for farming and raw material collection
around a site, so the procedure effectively smooths over the
approximate area of each site’s resource catchment (Varien,
1999; Hill et al., 2015). Then I calculated a modified version of
the Jensen-Shannon divergence (Masucci et al., 2011) between
the empirical frequency distributions of 15 decorated ceramic
wares at each of the grid cells as

Dij �
H(0.5Pi + 0.5Pj) − 0.5H(Pi) − 0.5H(Pj)

−ln 0.5 (1)

where Dij is the divergence between the empirical frequency
distributions of ceramic wares at sites i and j, Pi is a vector of
the proportions of ceramic ware type k in the assemblage at site i,
andH(P) � −∑kpk ln pk is the Shannon entropy of Pmeasured in
nats. This equation measures the similarity of two sites by the
distributions of the ceramic types shared by both sites and the
types exclusive to each. Analogous to the use of divergence
measures in population genetics, divergence here is a (inverse)
proxy for information flow. For visualization and analysis, I
convert this divergence measure into a similarity metric by taking

Sij � 1 −
���
Dij

√
(2)
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The resulting cultural similarity network (Figure 1B) is similar
to that resulting from other similarity measures such as the
Brainerd-Robinson index (Mills et al., 2013a) save for different
behavior in the tails of the distribution, but the Jensen-Shannon
index provides a more natural interpretation as a measure of
information flow. By focusing on a general measure of
information flow, aggregate patterns of social interaction can
be inferred regardless of the precise mechanisms of that
interaction (e.g., trade, migration, shared history or raw
materials). The index can thus be loosely interpreted as a
probability of interaction between two sites, with identical
patterns of ceramic discard at two sites indicating a higher
probability of interaction than between sites that share no
ware types in common.

2.2 Hydroclimate Variability
To estimate large-scale patterns of interannual drought and flood
variability, I analyzed a 122-year record of the Standardized
Precipitation-Evapotranspiration Index (SPEI) from across the
US states of Arizona, New Mexico, Colorado, Utah, and
California (Abatzoglou et al., 2017). The large spatial domain
sampled variability across the western US climate zone, ensuring
that estimated spatio-temporal climate patterns were not
sensitive to the exact location and dimension of the
archaeological study area. SPEI is the normalized deviation
from the average climatic water balance for a given month on
varying time scales (Vicente-Serrano et al., 2010). I focused on the
12-month SPEI calculated in the August of each year, which
captures the water balance over the year leading up to each
summer growing season. This index was calculated from 4 km

temperature and precipitation grids interpolated from weather-
station observations using the topographically-sensitive PRISM
algorithm (Daly et al., 1997).

Weather can vary for many reasons across space and time, so it
is important to separate climatic signal from random noise.
Principal Components Analysis (PCA) of spatiotemporal data
is a common tool for extracting “modes of variability” in the
climate sciences (Lorenz, 1956; Hannachi et al., 2007), but its use
for this purpose is rare in archaeology (though see (Weiss, 1982;
Cordell et al., 2007)). PCA of a dataset’s space-time covariance
matrix decomposes it into sets of orthogonal time series
(principal components) and spatial patterns (eigenvectors),
arranged by their contributions to the total observed variance
(eigenvalues). The resulting modes of variability are an efficient
means of representing a complex spatiotemporal field by a limited
set of patterns.

After multiplying each grid cell by the cosine of its latitude to
weight for differences cell area, I performed PCA on the stack of
122 annual SPEI maps via singular value decomposition. Then, I
selected the leading modes of variability using both a scree test
and North’s rule of thumb, which is a method to detect
degenerate patterns caused by temporal autocorrelation in the
observed data (North et al., 1982). I rotated the leading PCmodes
using a varimax rotation in order to relax the spatial
orthogonality constraints of the PCA analysis and reveal
coherent, physically meaningful patterns (Richman, 1986). The
resulting eigenvectors were then multiplied by the square root of
the corresponding eigenvalues to yield correlation coefficients
and were mapped in space. I refer to these resulting spatial
patterns as empirical orthogonal functions (EOFs), and their

FIGURE 1 | The Southwest Social Networks dataset, version 1.0 (Mills et al., 2013a). (A) Site locations for all time periods in the dataset, aggregated into 10 km
patches to reduce biases from local settlement aggregation and dispersal. Site sizes are estimated from room counts. (B) Social networks reconstructed from ceramic
assemblage similarity between each pair of sites. A similarity coefficient of one means that the sites share the same decorated ceramic wares in the exact same
proportions, and a coefficient of zero means there is no overlap in the ceramic assemblages. The similarity network can be interpreted as the degree of social
interaction and cultural transmission between sites, whether via migration, trade, or copying. Networks are shown over successive 50-year time spans, starting at
1200 CE.
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associated time series as principal components (PCs). The PC
amplitude time series were then compared to the observational
record, and the signs of the eigenvalues and vectors were reversed
to match the historical record (so that a positive time series value
corresponded to a positive SPEI and vice versa). To determine
whether these patterns were robust over time, the observed EOFs
were compared to the EOFs of a SPEI reconstruction over the past
millennium (Steiger et al., 2018) (see SI for details).

2.3 Least-Cost Networks
Distance ultimately constrains social interaction, as the further
one travels to interact with a partner the greater will be the cost in
time, energy, and other resources. In order to control for the effect
of distance on social interaction, I calculated the least-cost
network between all sites in the SWSN network. The
topography of the study area was represented using a 90 m
SRTM DEM, resampled to 250 m to reduce computation time
and smooth fine-scale topographic noise. A cost matrix was
calculated containing, for each DEM cell, the amount of time
in seconds it would take a foot traveler to move to each of the 16
neighboring cells. Time costs were calculated using a version of
Tobler’s hiking function, which estimates walking speed from
terrain slope. The function was modified to make it isotropic
(i.e., averaging the uphill and downhill walking speeds) and
adding an extra penalty to very steep slopes consistent with
human cognitive biases (Pingel, 2010). This cost matrix (time)
was then inverted to represent conductance (speed), facilitating a
sparse matrix representation and estimation of least cost paths
using efficient graph theoretic algorithms (van Etten, 2017). The
resulting transition matrix was used to calculate all pairwise
isotropic least cost paths between the centroids of each pair of
10 km grid cells containing archaeological materials.

2.4 Spatial Interaction Models
Spatial interaction models are used across the social and natural
sciences (Wilson, 1971; Fotheringham and O’Kelly, 1989; Sen and
Smith, 1995; Bavaud, 2008; Murphy et al., 2010; Head andMayer,
2015). In a regression context, a spatial interaction model
estimates the pairwise flow–of resources, migrants, or
information–among entities as a multiplicative function of
predictors influencing the production and attraction of flows
as well as measures of their mutual separation or other
generalized costs of moving. Archaeologists have used
statistical spatial interaction models sparingly (Tobler and
Wineburg, 1971; Hodder, 1974; Johnson, 1990) because of the
rarity of archaeological data on social interaction strength,
although the method is common in simulation studies where
data quality is less of a restriction (Bevan andWilson, 2013; Evans
et al., 2011; Davies et al., 2014; Paliou and Bevan, 2016). The
conceptual justification for the use of spatial interaction models
on archaeological networks is similar to that used in molecular
ecology (Murphy et al., 2010), with information flows among a
spatially-structured metapopulation measured by the divergence
of those populations (Mesoudi, 2018).

Data of this type have three features that make traditional
statistical spatial interaction modeling difficult. These are: 1) the
data are bounded between zero and one; 2) the measures are

pairwise symmetric; 3) we have no exact functional expectations
for the specific terms in the spatial interaction model because
empirical work on this scale and type is rare. To address these
issues, I used a generalized additive model (Wood, 2006), a
semiparametric extension to generalized linear models useful
for more complex spatial interaction models (Lebacher et al.,
2018).

Specifically, I fit models of the form

logit(Sijt) � f (distij) + ft(EOFij) + τit + τ jt + ϵijt (3)

where the logit functionmaps the data from [0, 1] to [−∞,+∞], t
is the time step, f () is an arbitrary function estimated during
model fitting using penalized cubic regression splines, τi and τj
are time-varying random effects for the nodes incident on each
edge, and ϵ is Gaussian error. This model assumes only that
information flows are at equilibrium with settlement population,
not that the populations themselves are at equilibrium (Wilson,
2008). The τ terms account for the non-independence of edges
that share a node, and were estimated using a maximum
likelihood population effects correlation structure appropriate
for pairwise data (Clarke et al., 2002). I compared the AIC, BIC,
and R2 of models fit using maximum likelihood with and without
the EOF terms, and refit the best performing model using
restricted maximum likelihood (Clarke et al., 2002; Shirk et al.,
2018).

3 RESULTS

3.1 Six Drought Patterns Explain 83% of
Observed Drought Variability in the
American Southwest
I used PCA to decompose the 122-year gridded observational
record of western US summer moisture availability into a reduced
set of spatio-temporal patterns. The leading six principal
component time series together explain 83% of the variance in
the observational record. The PCs represent time series that are
maximally representative of the entire data set (Figure 2). I
rotated the six PCs before mapping, in order to capture more
physically meaningful patterns and minimize statistical artifacts.
PCs beyond the leading six were not retained for rotation and
mapping, as they represent spatially and temporally incoherent
variability and spurious correlations introduced by sampling
error in the observational record. The same PC time series are
also present in the coarse-resolution SPEI reconstruction, where
they explain 96% of the reconstructed variance over the last
millennium (Supplementary Figures S5, S12, S13).

3.2 Different Drought Patterns Are
Associated With Different Zones of Oceanic
or Continental Influence
To reveal the latent spatial structures associated with the temporal
modes of variability, I mapped the spatial patterns associated with
each of the leading six PCs (Figure 3). The results are robust,
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recurring patterns of spatially-coherent variability, and can be
interpreted as the degree to which the 122-year record at each grid
cell correlates with the associated rotated PC time series. These
spatial patterns are known as the (rotated) empirical orthogonal
functions (EOFs). The patterns are consistent across observations
and reconstructions (Supplementary Figure S9) and regardless
of the exact SPEI time scale used to calculate them, which
supports their overall robustness. The spatial and temporal
patterns associated with the leading six PCs allows us to trace
the sources of each mode of variability back to the global climate
system.

The origins of each drought pattern can be determined by
examining the EOF maps, along with the correlations of the PCs
to global sea surface temperatures and the timing of extreme dry
and wet years. EOF1 reflects southwesterly flow from the tropical
Pacific, bringing moisture across the low desert zones of
California and Arizona. The pattern attenuates with elevation
and as distance from the ocean increases. PC1 shows a broad
drying trend to the present day, possibly related to increased
evaporative demand due to recent warming, although the spatial
pattern in the associated EOF is not itself anthropogenic. EOF2
similarly represents southeasterly flow from the Gulf of Mexico,
centered on eastern New Mexico. As with EOF1, the pattern
attenuates with increasing elevation and distance from the ocean
due to orography and continentality, respectively. It represents
cyclonic storms coming from the Gulf of Mexico, in turn
influenced by variability in Atlantic sea surface temperatures.
PC2 shows a major dry period centered on the Texas/New
Mexico drought of 1956. EOF3 represents northerly flow

associated with polar continental cold fronts, and its associated
PC shows a wet peak in the 1983 Salt Lake City floods. EOF4
represents the influence of westerly flow off the Pacific Ocean and
the orographic effect of the Sierra Nevada mountains intercepting
this flow, and is associated with events such as the 1924 drought
in California. EOF5 is centered over the great plains and
attenuates across the Rocky Mountains, and was most strongly
expressed during the Dust Bowl of the 1920s. EOF6 is centered on
the Colorado Plateau, likely reflecting local circulation of hot
continental air masses.

3.3 The Intensity of Social Interaction
Decays Nonlinearly With Distance
I calculated the cost of moving between each pair of archaeological
sites as the shortest amount of time it would take a foot traveler to
move between them. I then used a nonlinear regression model to
estimate the functional relationship between distance and
interaction. The null model for the statistical network analysis
was that distance alone explained the intensity of social
interaction as measured by the similarity in the decorated
ceramic assemblages at each pair of sites. This null model was
sufficient to explain 37.8% of the variance in the ceramic similarity
data. The empirical distance deterrence function estimated on all
time periods using a penalized regression spline predicts a falloff in
interaction at distances of more than 100 h (Figure 4). As expected,
the resulting distance-based network predicts many strong
interactions at close distances, and the residuals of the model
show long-distance transitive ties.

FIGURE 2 | Time series associated with the leading six PCs for the observational period, after varimax rotation. The y-axis corresponds to the 12-month
Standardized Precipitation-Evapotranspiration Index (SPEI), the normalized deviation from the average climatic water balance for a given month on 12-month time scale.
SPEI values can be interpreted as z-scores in a normal distribution (i.e., a value of 1 is one standard deviation wetter than average for that location, −1 is one standard
deviation drier). 10-year moving averages superimposed over raw annual values.
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3.4 Hydroclimate Variability Explains a
Moderate But Clear Proportion of the
Intensity of Social Interaction
A model predicting information flow using distance and
climatic dissimilarity, measured as the absolute difference
between the EOF loadings of a pair of sites, explains 42.5% of
the variance in the ceramic similarity data. The increase over
the distance-only null model is moderate but statistically
significant, and the EOF model is superior in all measures
of parsimony and goodness-of-fit. This difference changes
over time, and refitting each model on data from each time
step individually reveals that the improvement in the
explanatory power of the EOF model over the distance-
only null is most pronounced at and after 1300 CE (see
SI). The improvement in explanatory power over the null
model is quite small in the 1200 and 1250 CE time steps. This
pattern suggests that ties shaped in part by the EOF patterns
are more common during and after the period of regional
relocation around 1300 CE.

The smooth functions estimated in the EOFmodel are all close
to piecewise linear on the scale of the linear predictor, but the
intensity of these functional relationships varies smoothly over
time and across EOFs (Figure 5). Increasing distance along a
particular EOF sometimes increases the intensity of social
interaction, as was expected ahead of time, but some EOFs (3,
6) appear to slightly reduce social interaction at larger differences.
The smoothness penalty also selects some EOFs out of the model
entirely by estimating functions close to a horizontal line, and
almost all the functions are flat when the climate differences are
less than 0.2. Surprisingly, the fluctuations in the effect size of a
particular EOF have no clear association with the sign of the
associated PC amplitude time series reconstructed for each period
(Supplementary Figure S14). This suggests that additional
dynamic processes, such as cultural memory or institutional
growth and decay, are in effect on time scales longer than a
single generation. These processes may explain why different sets
of EOF patterns appear to influence social interaction before and
after the period of drought and interregional migration ca.
1275–1300 CE.

FIGURE 3 | Leading six rotated empirical orthogonal functions (EOFs) associated with the respective PC time series in Figure 2, derived from gridded PRISM
climate data (Daly et al., 2008; Abatzoglou et al., 2017). These regions represent different oceanic and atmospheric influences; people living in the same EOF will often
experience dry and wet years at the same time as one another.
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FIGURE 4 | Empirical distance deterrence function estimated with a generalized additive model, describing how the intensity of social interaction, defined as the
information flow between two settlements and measured by the similarity in their decorated ceramic assemblages, decreases as a function of distance. Shaded area
indicates the 95% confidence interval for the smooth function. Dashed lines indicate key thresholds in the function at 10 and 100 hours.

FIGURE 5 | Estimated smooth functions describing how the intensity of social interaction increases or decreases with increasing distance along each of six spatial
drought patterns from Figure 3, compared over five time steps. As above, information flow is inferred from the similarity of the decorated ceramic assemblages at each
pair of sites. Climatic difference is defined as the absolute difference between the EOF loadings of each pair of sites. Shaded regions correspond to the 95% confidence
intervals for the smooth functions.
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4 DISCUSSION AND CONCLUSION

The six spatial patterns of hydroclimate variability isolated here
are consistent with the general mechanistic understanding of
hydroclimate variability in the American Southwest. These
patterns represent different zones of moisture transport,
reflecting the influence of topography and marine or
continental moisture sources (Liu et al., 2010; Hu et al., 2011).
These spatial and temporal drought patterns, and their
hypothesized drivers in the global climate system, are largely
consistent with those from other studies using varied
observational data and time windows (Comrie and Glenn,
1999; Cook et al., 1999; McCabe and Dettinger, 1999; McCabe
et al., 2004; Ryu et al., 2010; Seager and Hoerling, 2014;
Herrmann et al., 2016). These patterns from the observational
period also appear in drought reconstructions spanning the past
millennium, emphasizing the fact that these are robust, time
invariant spatial modes.

Objective measures of hydroclimate variability, as opposed to
point-to-point sample correlations, help isolate the most
important drivers of that variability. Droughts and pluvials
associated with tropical Pacific and Atlantic influences seem to
have been most important for structuring social interaction, with
ties connecting these regions greater than expected by chance and
distance alone. Tropical Pacific sea surface temperatures are
known to be the primary driver of variability in Southwest,
with additional influences from moisture sources in the North
Pacific and Atlantic (McCabe et al., 2004). A disruption in these
patterns is thought to be one reason why droughts in this period led
to such social transformation, as the networks of social infrastructure
that had developed over previous centuries were unable to adapt fast
enough to unusual conditions (Cordell et al., 2007).

In spite of the robustness of these spatial patterns, there
remains considerable diversity in the functional responses of
human social networks to these drought patterns. One
possible explanation is that large-scale climate regimes
influence the formation of ethnolinguistic groups. Quotidian
interaction may have been biased toward groups of shared
ethnolinguistic affiliation, as kinship and ethnicity both
influence social exchanges (Nolin, 2010). At larger, regional
scales, goods and information might also flow on sociopolitical
hierarchies (Crumley, 1979). Populations in the late pre-Hispanic
Southwest were also out of equilibrium (Hill et al., 2004). Strong
social networks take time to form and effort to maintain and
monitor. Free-riders who avoid that effort can damage this
critical social infrastructure when it is most needed (Kohler
and West, 1996). A simulation approach could better capture
these processes and more clearly resolve social responses to
interannual climate variability. Dynamic, as opposed to
statistical, spatial interaction models can explicitly trace the
coevolution of social and physical infrastructure networks
(Bevan and Wilson, 2013). Simulations can also explore the
biases that static archaeological data introduce in representing
dynamic social processes (Crema et al., 2014, 2016).

The residuals of the statistical network models retain
unexplained structure. These structures appear to represent
cultural clusters, a common feature in social networks that is not

accounted for by either distance or drought variability. One source
of this error may be irrigation-dependent groups who relied on
streamflow driven by remote precipitation and evapotranspiration
andmay thus have hadmore complex, indirect dependencies on the
large-scale climate patterns isolated here (Nelson et al., 2010). At
finer scales, the model residuals also display evidence of transitivity
and triad closure, with more closed triangle structures than would
be expected by chance. Although this feature is common in human
social networks, it is also to be expected because the measure of
cultural similarity is a metric subject to the triangle inequality.
Statistical methods specifically designed for such structures will be
useful in future work (Stillman et al., 2017). In addition, the
archaeological data are not spatially extensive enough to sample
the full range of hydroclimate variability. Given the relative spatial
scales of the environmental and cultural data, there is a risk that
many different correlated climate patterns will be indistinguishable
at the scale of the cultural data. Correlations between competing
hypotheses are a source of error in model selection using
information criteria (Shirk et al., 2018). In spite of these
concerns, these results highlight two key points: the need to use
objective and physically meaningful measures of hydroclimate to
assess the social impacts of climate variability in the past and the
need to capture social dynamics out of equilibrium with the
biophysical environment.

These results refine our understanding of the geography of
human adaptation to climate and climate change, and emphasize
the role of social interaction in increasing the robustness of
human populations to environmental variability. Much of the
world’s food is still grown on small farms, and these farmers rely
on complex spatial networks of formal and informal
arrangements in much the same way as their predecessors
have for thousands of years. Prehistoric exchange
infrastructure evolved in part in response to robust, time-
invariant spatial climate patterns. But social adaptions to one
mode of variability are fragile to changes in the nature of that
variability (Janssen et al., 2007). Large-scale patterns of
hydroclimate variability act as a dynamic selective
environment in which societies evolve new norms and
institutions for regulating social interaction. Tracing the flows
of information and energy within these complex social-ecological
systems is essential for understanding their long-term behavior,
and leveraging our archaeological understanding of why such
systems succeed or fail will be critical to anticipating the impact of
impending climate changes on farming communities in the
developing world.
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