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The present study aims at proving the existence of long memory (or long-range
dependence) in the earthquake process through the analysis of time series of induced
seismicity. Specifically, we apply alternative statistical techniques borrowed from
econometrics to the seismic catalog of The Geysers geothermal field (California), the
world’s largest geothermal field. The choice of the study area is essentially guided by the
completeness of the seismic catalog at smaller magnitudes (a drawback of conventional
catalogs of natural seismicity). Contrary to previous studies, where the long-memory
property was examined by using non-parametric approaches (e.g., rescaled range
analysis), we assume a fractional integration model for which the degree of memory is
defined by a real parameter d, which is related to the best known Hurst exponent. In
particular, long-memory behavior is observed for d > 0. We estimate and test the value of d
(i.e., the hypothesis of long memory) by applying parametric, semi-parametric, and non-
parametric approaches to time series describing the daily number of earthquakes and the
logarithm of the (total) seismic moment released per day. Attention is also paid to
examining the sensitivity of the results to the uncertainty in the completeness
magnitude of the catalog, and to investigating to what extent temporal fluctuations in
seismic activity induced by injection operations affect the value of d. Temporal variations in
the values of d are analyzed together with those of the b-value of the Gutenberg and
Richter law. Our results indicate strong evidence of long memory, with d mostly
constrained between 0 and 0.5. We observe that the value of d tends to decrease
with increasing the magnitude completeness threshold, and therefore appears to be
influenced by the number of information in the chain of intervening related events.
Moreover, we find a moderate but significant negative correlation between d and the
b-value. A negative, albeit weaker correlation is found between d and the fluid injection, as
well as between d and the annual number of earthquakes.
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INTRODUCTION

The concept of long memory in the seismic process has a
relatively long history. Most research on this topic dates back
to the 80s, when Mandelbrot interpreted earthquakes as self-
similar “objects” (Mandelbrot, 1983) and Bak et al. (1987)
introduced the notion of self-organized criticality (SOC).
According to this latter study and Bak and Tang (1989),
earthquakes are interpreted as the result of interactive
dissipative dynamical systems that evolve spontaneously
toward critical (i.e., at the edge of collapsing), stationary states
that can collapse in events of any size, forming self-similar fractal
patterns. Systems that show significant statistical correlations
across large time scales are said to be long-memory processes
or processes with long-range dependence (LRD) (Karagiannis
et al., 2004). The word “memory” is related to the connections
between certain observations and those occurring after an
amount of time has passed. The word “long” indicates that
observations are correlated across widely separated times
(i.e., the dependence among observations is significant, even
across large time shifts). Interested readers on this topic may
refer to the exhaustive dissertation of Samorodnitsky (2006).

Since then, many studies interpreted seismicity and tectonic
deformations as the results of a dynamical process exhibiting a
self-organized critical behavior (e.g., Sornette and Sornette, 1989;
Ito and Matsuzaki, 1990; Sornette, 1991; Turcotte, 1999). In
particular, Scholz (1991) used data from artificially induced
seismicity to assert that the continental crust is virtually
everywhere in a state close to seismic failure. Concurrently,
Kagan and Jackson (1991) observed that earthquake clustering
is a major long-term manifestation of the seismic process. In
particular, it was observed that regions of recent high seismic
activity have a larger than usual chance of producing new strong
earthquakes (e.g., Lomnitz, 1994; Kagan and Jackson, 1999;
Kagan and Jackson, 2013). In other words, periods of high
release of seismic deformation will most likely be followed by
years of higher-than-average seismic strain release. Conversely,
seismically quiet periods will tend to be followed by quiet years.
This implies that the process of accumulation and release of
seismic strain is governed by long memory and presents a
persistent behavior (e.g., Barani et al., 2018).

These findings have important consequences on the reliability
of most earthquake forecasting models. Specifically, long-term
clustering and self-organized criticality invalidate three
important assumptions that are widely used in probabilistic
seismic hazard analysis (PSHA), a key element of earthquake-
resistant design, and long-term forecasting (e.g., Bak, 1991; Kagan
et al., 2012): 1) seismicity as a Poisson process; 2) quasi-periodic
or recurrent behavior; 3) characteristic earthquake model. A first
attempt to incorporate long-term earthquake interactions into a
forecasting model is the double-branching model of Marzocchi
and Lombardi (2008). In this model, the first-step branching
accounts for the short-term clustering, in which the occurrence of
triggered events is modeled according to the modified Omori law
(Utsu, 1961), while the second-step branching models the long-
term triggering associated with post-seismic stress transfer
produced by stronger events. The long-term evolution is

essentially modeled according to an inverse exponential
distribution of the form e−t

τ , where t is the elapsed time from
the occurrence of the earthquake that generates stress variations,
and τ is the characteristic time of the interaction.

Attempts to detect longmemory in the earthquake process in a
statistical robust way, were made by analyzing time series of
earthquake frequency (Ogata and Abe, 1991; Li and Chen 2001;
Jimenez et al., 2006), released energy (Jimenez et al., 2006),
seismic moment (Cisternas et al., 2004; Barani et al., 2018;
Mukhopadhyay and Sengupta, 2018), and time series of
b-value (Chen, 1997). Gkarlaouni et al. (2017) searched for
persistency in time series of magnitudes, inter-event times,
and inter-event epicentral distances of successive events. Series
of inter-event periods were also analyzed by Liu et al. (1995) and
Alvarez-Ramirez et al. (2012). Most of these studies examine the
long-memory feature through the rescaled range analysis (R/S
analysis), which was originally proposed by Hurst (1951) and
described rigorously by Mandelbrot and Wallis (1968). This
technique estimates the Hurst exponent (H), a parameter that
measures the level of correlation in time series. It takes values
between 0 and 1 and indicates long memory for values different
from 0.5. A value close to 0.5 indicates a stochastic process whose
values have no dependence or mutual correlation (e.g., white
noise). Most recently, in order to determine H, Peng et al. (1994)
proposed the Detrended Fluctuation Analysis (DFA). The DFA
was used in seismological studies by Lennartz et al. (2008),
Telesca et al. (2004), and Shadkhoo et al. (2009). Shadkhoo
and Jafari (2009) used a generalization of DFA, known as
multifractal-DFA (Kandelhardt et al., 2002).

Although the majority of the previous studies give H > 0.5
(indicating a persistent, long-memory process), no general
agreement about the presence of long memory in seismicity
seems to emerge. Hence, this issue can be considered still
open, and motivates the need of spending further efforts in
this field of research with the aim of filling the lack of robust
statistical evidence of this hypothesis.

In the present work, we apply for the first time techniques
borrowed from econometrics to investigate the long-memory
feature in seismicity. We analyze time series of earthquakes
(i.e., daily number of earthquakes versus time and logarithm
of seismic moment released per day versus time) associated with
the industrial activity of The Geysers geothermal field (northern
California), a dry-steam field in a natural greywacke sandstone
reservoir at around 1.5–3 km depth. In this area, part of the
seismic activity is induced by injection of fluids, but also present is
triggered seismicity that includes aftershock sequences, swarms,
and earthquake clusters (e.g., Johnson and Majer, 2017). The
choice of the study area is essentially guided by the completeness
of the seismic catalog at smaller magnitudes, which is a major
drawback of conventional catalogs of natural seismicity. This
allows examining the sensitivity of the results to the uncertainty
in the completeness magnitude of the catalog. Moreover, since it
has been shown that both seismic activity and clustering
properties vary according to injection operations (e.g.,
Martínez-Garzón et al., 2013; Martínez-Garzón et al., 2014;
Martínez-Garzón et al., 20s18; Trugman et al., 2016;
Langenbruch and Zoback 2016), The Geysers field is an ideal
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area for investigating temporal variations of the long-memory
property in seismicity time series. Such variations are examined
in relation to those of the b-value of the Gutenberg and Richter
relation.

Contrary to the studies mentioned above, which investigate
the property of long memory in a non-parametric way (i.e., they
do not assume any specific parametric model for the time series of
interest), we consider a parametric model based on the concept of
fractional integration that imposes a pole or singularity in the
spectrum of the time series at zero frequency (see “Methodology”
section). The level of correlations among observations in the time
series is expressed by a real parameter d, which is related to the
Hurst exponent. Long memory behavior is observed for d > 0.
The results obtained by using the parametric approach are
compared to those resulting from semi-parametric (i.e., the
“local” Whittle approach of Robinson (1995)) and non-
parametric (i.e., modified R/S analysis) methods applied to the
same time series.

DATA

The data set considered in this study is the Berkeley-Geysers (BG)
catalog, made available by the Northern California Earthquake
Data Center (NCEDC, 2014). It collects 458,459 earthquakes with
local magnitude (ML) from 0 to 4.7 recorded between April 2003
and June 2016 in the area of The Geysers geothermal field
(Figure 1). As stated above, the catalog includes earthquakes
induced by injection of fluids, but also present is triggered

seismicity (i.e., aftershock sequences, swarms, and earthquake
clusters). Johnson and Majer (2017) found no basic differences
between the source mechanisms of these different types of
earthquakes.

In the subsequent analyses, we consider the events located
within the red polygon in Figure 1. Specifically, first we
analyze the property of long memory in the entire The
Geysers field by comparing and contrasting alternative
statistical techniques. Then, we analyze how temporal
fluctuations in seismic activity induced by injection
operations affect the value of d. This latter analysis is
presented for the entire data set and northwestern sector
(Zone 1 in Figure 1). Many authors (Stark, 2003; Beall
et al., 2010; Beall and Wright, 2010) have observed that this
part of The Geysers field is more active seismically than the
southeastern part (Zone 2), following the expansion of the field
in that sector. Following Beall and Wright (2010) and
Convertito et al. (2012), the northwestern area includes all
earthquakes with magnitude greater than 4, whereas the
southeastern one is characterized by smaller magnitude
events. Moreover, in Zone 1, earthquake hypocenters reach
greater depths, reflecting the migration of fluids deeper into
the reservoir (Johnson et al., 2016).

In order to compute the completeness magnitude (Mc) of
the data set (i.e., the minimummagnitude value above which a
data set can be assumed representative of the seismic
productivity of an area), we apply the maximum curvature
approach (Wiemer and Wyss, 2000), which defines Mc as the
magnitude value corresponding to the maximum of the

FIGURE 1 | Seismicity distribution in The Geysers geothermal field (from the Berkeley-Geysers catalog (NCEDC, 2014)). The polygon in red delimits the study area:
the dashed line separates the northwestern sector (Zone 1) from the southeastern one (Zone 2). Faults are displayed by white lines (see acknowledgments).
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incremental magnitude-frequency distribution. In our
catalog, the maximum curvature of the distribution
corresponds to Ml � 1.0 (see Figure 2). Following
Woessner and Wiemer (2005), a correction term is added
to this value in order to avoid possible underestimation. We
consider two alternative correction values, equal to 0.3 and 0.5
magnitude units, which lead to values of Mc of 1.3 and 1.5,

respectively. Note that these correction values are both greater
than 0.2, a standard value in such kind of applications (e.g.,
Tormann et al., 2015). Thus, both Mc values considered in the
present study can be interpreted as conservative estimates of
the completeness of the catalog. For both these values,
Figure 3 displays bar graphs showing the variability of the
monthly number of earthquakes in the period covered by the

FIGURE 2 | Incremental (red dots) and cumulative (blue circles) magnitude-frequency distribution. The gray and black lines indicate alternative magnitude
completeness thresholds: Mc � 1.3 (gray line) and Mc � 1.5 (black line). Bins of 0.1 magnitude units are used.

FIGURE 3 | Variability of the number of earthquakes in the period covered by the Berkeley-Geysers earthquake catalog (NCEDC, 2014) (April 2003–June 2016).
Light and dark gray bars indicate the monthly number of events above the completeness thresholdsMc � 1.3 andMc � 1.5, respectively. Curves of cumulative seismic
moment are superimposed. The solid line is for Mc � 1.3, while the dashed one is for Mc � 1.5.
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catalog along with the (cumulative) seismic moment (M0)
released over time. The seismic moment (in Nm) was
calculated by applying the Ml-M0 relations of Chen and
Chen (1989) for California:

logM0 � Ml + 10.5 (Ml ≤ 3.6) (1)

logM0 � 1.5Ml + 8.7 (3.6<Ml ≤ 5.0) (2)

logM0 � 3Ml + 1.2 (5.0<Ml ≤ 6.3) (3)

The reliability of these relations when applied to induced
seismicity is checked by comparison with the Ml-Mw data set
of induced earthquakes of Edwards and Douglas (2014), which
also includes data relevant to The Geysers geothermal field
(Figure 4). Moment magnitude (Mw) values were calculated
from M0 by using the well-known Hanks and Kanamori
(1979) relation.

Besides fluctuations of seismic activity, which can be related
to injection operations, Figure 3 shows relatively long periods of
much milder (or absent) seismicity (e.g., October 2004, March
2009, November 2014; October 2015) that can be attributed to
temporary issues in seismic monitoring operations rather than
to actual periods of seismic inactivity. Such “instabilities” in the
seismic catalog, along with short-period ones, are also
discernible from the time series analyzed in the following
(Figure 5). We indicate the time series of the daily number
of earthquakes with N13+ and N15+ (where N stands for
‘number’, while ‘13+’ and ‘15+’ recall the values of the
completeness magnitude Mc). Likewise, the time series of M0

are labeled as M13+ and M15+.

METHODOLOGY

As mentioned in the earlier parts of the manuscript, we use
alternative techniques to examine the long-memory property. We
start by providing two definitions of this concept, one in the time
domain and the other one in the frequency domain.

According to the time domain definition, a covariance stationary
process {xt, t � 1, 2, . . . , T} with autocovariance function E[(xt −
E[xt])(xt+u − E[xt+u])] � cu (with the usual notation E for the
expectation operator) displays long memory if the infinite sum of
the absolute value of its autocovariances is infinite, namely:

lim
T→∞

∑T
u�−T

∣∣∣∣cu∣∣∣∣ � ∞ (4)

Now, assuming that xt has a spectral density function f(λ), defined
as the Fourier transform of the autocovariance function

f (λ) � 1
2π

∑∞
u�−∞

cucos(λu) − π < λ≤ π (5)

the frequency domain definition of long memory states that the
spectral density functionmust display a pole or singularity at least
at one frequency in the interval [0, π), namely:

f (λ)→∞, as λ→ λp, for λp ∈ [0, π) (6)

In simple words, Eq. 6 states that, in the context of long-memory
processes (i.e., d > 0), the spectral density function is unbounded
at a specific frequency λ, typically the zero frequency. The
periodogram of the data1, which is an estimator of the spectral
density function of the series, should reproduce that behavior,
with a large value at the smallest frequency. This can be observed
in Figure 6A, which displays the first 200 values of the
periodograms of the time series considered in this study for
the completeness threshold Mc � 1.3. However, taking the first
differences of the data (i.e., yt � xt − xt−1), the periodograms
(Figure 6B) display values close to zero at the zero frequency,
which is clearly an indication of over-differentiation. This is
indicative of d < 1 in the original time series. This was
precisely the issue mentioned in Granger (1980) for the
motivation of fractional integration with order of integration d
in the range (0, 1). For further readings, see Granger (1980),
Granger (1981), Granger and Joyeux (1980), and Hosking (1981).

In this article, we claim that the time series under investigation
satisfy the two properties above, and we will test the hypothesis of
long memory by using alternative methods based on parametric,
semi-parametric, and non-parametric approaches.

Among the many methods to test the hypothesis of long
memory, we focus on the fractional integration or I(d)
approach, which was originally developed by Granger (1980),

FIGURE 4 | Relation between local and moment magnitude for induced
earthquakes in Hengill (Iceland), Basel (Switzerland), and Geysers (California)
geothermal areas (modified from Edwards and Douglas (2014)). The Chen and
Chen (1989) scaling relation is superimposed.

1The periodogram of a time series of length T {xt, t � 1, 2, . . . , T}, is defined as:

I(λ) � 1
2πT

∑T
t�1

∑T
s�1

xtxse
λi(t−s)
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Granger (1981), Granger and Joyeux (1980), and Hosking (1981),
and was widely used in the last twenty years in different fields
(interested readers may refer Gil-Alana and Hualde (2009) for a
review of applications involving fractional integration). In
particular, assuming a generic time series {xt, t � 1, 2, . . . , T},
the fractional integration approach is based on the following
equation:

(1 − L)dxt � ut , t � 1, 2, . . . , T (7)

where L is the lag operator (i.e., Lkxt � xt−k), d is a real value, and
ut is assumed to be a short memory or I (0) time series, defined as
a covariance stationary process satisfying

lim
T→∞

∑T
u�−T

∣∣∣∣cu∣∣∣∣<∞ (8)

or, in the frequency domain,

0< f (λ)<∞, for λ ∈ [0, π) (9)

In this framework, xt is said to be integrated of order d, or I(d), in
the sense that “d differences” (i.e., the operator (1 – L) is applied d
times on xt as expressed in Eq. 7) are required to remove the long
memory from xt, thus leading to a new time series ut
characterized by short memory (i.e., integrated of zero order, I
(0)). Applying the Binomial expansion to the left-hand side of Eq.
7 leads to:

(1 − L)dxt � ∑t−1
k�0

( d
k
)(−1)kLkxt (10)

Thus, if d is a positive, non-integer value, then xt depends on all its
past history (i.e., the dependence among observations is
significant, even across large time shifts), and the higher the
value of d is, the greater the level of dependence between the

FIGURE 5 | Time series plots. Time series in the left column consider earthquakes with magnitudes above the completeness thresholdMc � 1.3, while time series in
the right column are for Mc � 1.5. Top panels: time series of the daily number of earthquakes (N13+ and N15+). Bottom panels: time series of the (logarithmic) seismic
moment M0 released per day (M13+ and M15+). Time series go to zero when no data are reported in the catalog.
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observations is. Therefore, d can be interpreted as an indicator of
the degree of dependence in the data.

In the context of I(d) models, three values of d assume an
importantmeaning. The first, d � 0, implies that the series is I (0) or
short memory. The second, d � 0.5, allows distinction between
covariance stationary processes (i.e., d < 0.5) and nonstationary
processes (i.e., d ≥ 0.5)2. Finally, d � 1 is another turning value, as
separates series that display the property ofmean reversion (i.e., d <
1), for which any random shock will have a transitory effect
disappearing in the long run, and series (with d ≥ 1) for which
the effect of the shocks become permanent and increases as d
increases above 1. Thus, the fractional integration approach is a
very flexible method because it allows considering different
categories of I(d) processes, with the following properties:

a. d < 0: anti-persistence (i.e., a time series switches between
high and low values in adjacent pairs);

b. d � 0: I(0) or short-memory behavior
c. 0 < d < 0.5: covariance stationary, long-memory behavior

with mean reversion;
d. 0.5 ≤ d < 1: nonstationary though mean-reverting long-

memory behavior, with long-lasting effects of shocks
(i.e., any random shock in the series will disappear in the
long run though taking longer time than in the previous
case);

e. d � 1: nonstationary I (1) behavior with shocks having
permanent effects in the series (i.e., lack of mean reversion);

f. d > 1: explosive behavior with lack of mean reversion.

Note that ut in Eq. 7 can also display some type short memory
structure like the one produced by the stationary and invertible
Auto Regressive Moving Average (ARMA)-type of models. Thus,
for example, if ut follows an ARMA (p, q) model (where p and q

FIGURE 6 | First 200 values of the periodograms relative to the N13+ and M13+ time series (top and bottom panels of (A), respectively) and relative to the time
series of the first differences of N13+ andM13+ (top and bottom panel of (B), respectively). The horizontal axis refers to the index i of the frequency λi � 2πi/T , where i � 1,
2, . . . , 200.

2It is nonstationary in the sense that the variance of the partial sums increases
with d.
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are respectively the orders of the AR and MA components), we
say that xt is a fractionally integrated ARMA (i.e., ARFIMA (p, d,
q)) model (Sowell, 1992; Beran, 1993).

There are severalmethods for estimating the value of the parameter
d (or testing the hypothesis of long memory) in time series. The
subsections below describe those applied in the present work.

Robinson Tests for Fractional
Differentiation
The tests of Robinson (1994) are a number of parametric tests in the
frequency domain that allow verifying the hypothesis of long-memory
in time series assuming a fractional integration model. They consist in
disproving the null hypothesisHO : d � dO for different real values dO.
Such tests are widely used in many disciplines, including climatology
(Gil-Alana, 2005; Gil-Alana, 2008; Gil-Alana and Sauci, 2019),
economics (Gil-Alana and Robinson, 1997), finance (Gil-Alana and
Moreno, 2012;Abbritti et al., 2016), and environmental sciences (Solarin
and Bello, 2018; Gil-Alana and Trani, 2019).

In the present study, we use two tests. The first one (RBWN
hereinafter) imposes a linear trend to the data, and uses the
residuals to compute ut (Eq. 7) for different values d0 in order to
find the value leading to a white noise series. Specifically, the
regression model fitted through the data is expressed by:

xt � β0 + β1t + ξt (11)

where β0 and β1 are regression coefficients, and ξt indicates the
residual. In the present study, we consider three standard cases: 1) β0
� β1 � 0 (Model 1), 2) β1 � 0 and β0 determined from the data
(Model 2), and 3) both β0 and β1 estimated from the data (Model 3).

The residuals are then used to compute ut by applying Eq. 7:

(1 − L)d0ξt � ut (12)

The value d0 that leads to a white noise series ut is assumed the
best value for d (i.e., the null hypothesis H0 : d � d0 is accepted if
d0 leads to a white noise series).

The second test (RBBL hereinafter), which is based on the
original approach of Bloomfield (1973), is similar to the previous
one but assumes short-memory as autocorrelation feature for ut.
The best value for d is chosen as the value d0 that generates a time
series ut with spectral density function of the form of:

f (λ) � σ2

2π
e
(2∑p

j�1 τj cos(λj))
(13)

where p � 1 in the present study (this means that any value in
the series is correlated to the previous one only), and τj
indicates the autocorrelation coefficients (see Robinson
(1994) for details).

Bloomfield (1973) showed that the logarithm of f (λ)
approximates very well the logarithm of the spectrum of
autoregressive (AR) processes. Thus, Eq. 13 is used here to
express the autocorrelation in ut, which also accommodates
very well in the context of fractional integration (see also Gil-
Alana (2004)).

Robinson Test Based on the “Local”Whittle
Approach
The Robinson test based on the “local” Whittle approach is a
semi-parametric test originally proposed by Robinson (1995)
(RB95 hereinafter). The word “local” is used to indicate that
the method only considers a band of frequencies close to zero.
The estimate of d (d̂) is calculated as:

d̂ � arg min
−0.5≤ d ≤ 0.5

⎛⎝logC(d)p − 2d
1
m

∑m
i�1

log λi⎞⎠ (14)

where m � Tδ (in this study, we assume δ � 0.40, 0.45, . . . , 0.70
with step of 0.05) is the bandwidth parameter, λi � 2πi/T , and

C(d)p � 1
m

∑m
i�1

I(λi)λ2di (15)

Although this method was extended and improved by many
authors (e.g., Velasco, 1999; Shimotsu and Phillips, 2006; Abadir
et al., 2007), we use the Robinson (1995) one due to its simplicity.
In particular, unlike other methods that require additional user-
chosen parameters and the results are typically very sensitive to
them, it only requires the bandwidth parameter m.

Modified Rescaled Range Analysis
The rescaled range analysis (R/S analysis) is a non-parametric
method that allows computation of the so-called Hurst exponent,
H (Hurst, 1951). As with d, Hmeasures the level of correlation in
time series. It takes values between 0 and 1, and indicates anti-
persistence if H < 0.5 and persistent behavior if H > 0.5. A value
close to 0.5 indicates no correlation within the series. In the case
of covariance stationary processes, the Hurst exponent is related
to d through the following relationship (e.g., Beran, 1993):

H � d + 0.5 (16)

In the present work, we apply the modified R/S procedure
proposed by Lo (1991). Given a stationary time series xt of
length T, sample mean x, sample variance σ̂2x , and sample
autocovariance at lag u given by ĉu, the modified R/S statistic is:

QT(q) � 1
σ̂T(q)⎛⎝ max

1≤ k≤T
∑k
t�1
(xt − x) − min

1 ≤ k≤T
∑k
t�1
(xt − x)⎞⎠ (17)

where

σ̂2
T(q) � σ̂2x + 2∑q

u�1
ωu(q)ĉu (18)

and

ωu(q) � 1 − u
q + 1

1≤ u≤ q<T (19)

The parameter q in the previous equations is known as the
bandwidth number. In this study, we assume q� 0, 1, 3, 5, 10, 30, 50.

An advantage of the modified R/S statistic is that it allows us to
obtain a simple formula to estimate the value of the fractional
differencing parameter d, namely:
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d̂ � logQT(q)
logT

− 0.5 (20)

In the previous formulation, assuming q � 0 leads to the classic
Hurst R/S analysis (Hurst, 1951).

The estimates of d are considered acceptable for values of the
parameter VT(q) above 1.862 or less than 0.809 (corresponding
to a 5% level of significance) (Lo, 1991), being VT(q) defined as:

VT(q) � QT(q)��
T

√ (21)

The limit distribution of VT(q) is derived in Lo (1991), and the
95% confidence interval with equal probabilities in both tails is
[0.809, 1.862].

Monte Carlo experiments conducted, for example, by
Teverovsky et al. (1999) showed that the modified R/S analysis
is biased in favor of accepting the null hypothesis of no long
memory as q increases. Thus, using Lo’s modifiedmethod alone is
not recommended as it can distort the results.

RESULTS

We first present the results obtained by using the two
parametric approaches of Robinson (1994). Table 1
summarizes the estimates of d (and the relative 95%
confidence band) obtained by using RBWN (Table 1) and
RBBL (Table 1). As stated in the foregoing, we show the
results for three standard cases: β0 � β1 � 0 (Model 1), β1 �
0 and β0 determined from the data (Model 2), and both β0 and
β1 estimated from the data (Model 3). We have marked in bold
the most significant model according to the statistical
significance (i.e., t-value) of the values of β0 and β1 for the
three cases considered (see Table 2).

Analyzing the values of d in Table 1 reveals that all time
series present the long-memory feature (d > 0), thus
confirming the results from a number of previous studies
showing that seismicity is a long-memory process (see the
“Introduction” for a list of references about this issue). Model

2 has always been resulted the most significant model based on
t-values (Table 2). Specifically, both Table 1 show that the
values of d corresponding to the time series of the daily
number of earthquakes (N13+ and N15+) are in the range
(0, 0.5), while those relative to the time series of M0 (M13+
and M15+) are in the range (0.5, 1). Precisely, concerning
these latter series, the values of d indicate a nonstationary,
mean-reverting behavior with long-lasting effects of shocks.
For these series, the values obtained by using RBBL are
significantly lower (up to ≈25%) than those resulting from
RBWN. This may be explained by recalling that RBBL
assumes short-memory as autocorrelation feature for ut
(Eq. 13) while RBWN assumes that ut is white noise.
Roughly speaking, this means that if the data presents
some short memory (which is reflected in ξt in Eq. 11),
RBBL takes it into consideration (as a feature of ut) while
RBWN does not. Hence, in the case of RBWN, the values of d
may be biased by the short memory in the data. Thus, the
higher level of nonstationarity indicated by the values of d
resulting from the application of RBWN to M13+ and M15 +
may be attributed to some short memory in ξt. Comparing the
estimates of d obtained by applying RBWN and RBBL to N13+
and N15 + shows that the latter approach provides greater
values. However, in this case, the difference is negligible, as it
is less than 10%. Finally, for both types of time series, we can
observe that the value of d tends to decrease with increasing
the magnitude completeness threshold Mc.

Table 3 summarizes the results obtained by applying the
RB95 semi-parametric approach for different values of the
bandwidth parameter m � Tδ (i.e., δ � 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, and 0.70). We observe that, for the N13+ and N15 +
series, the values of d reach around 0.5, which is the highest
value allowed (see Eq. 14). This indicates an effect of
saturation of d at lower m values (see also Figure 7, top
panels). To overcome such an effect, we take the first
differences of the data and apply RB95 to them. The final
value of d is then obtained by adding 1 to the value resulting
from the application of RB95 to the series of the first
differences of the original data. The d values calculated this

TABLE 1 | Values of d (and relative 95% confidence interval) resulting from the two
parametric approaches of Robinson (1994): a) RBWN; b) RBBL. Results are
presented for three standard cases: β0 � β1 � 0 (Model 1), β1 � 0 and β0
determined from the data (Model 2), and both β0 and β1 estimated from the data
(Model 3). In bold is the model accepted according to the t-values associated
with the estimates of β0 and β1 for the three cases (see Table 2).

Series Model 1 Model 2 Model 3

N13+ 0.36 (0.34, 0.38) 0.36 (0.34, 0.38) 0.36 (0.34, 0.38)
N15+ 0.33 (0.31, 0.35) 0.32 (0.30, 0.34) 0.31 (0.29, 0.33)
M13+ 0.74 (0.71, 0.77) 0.73 (0.69, 0.76) 0.73 (0.69, 0.76)
M15+ 0.67 (0.64, 0.70) 0.66 (0.63, 0.69) 0.66 (0.63, 0.69)

Series Model 1 Model 2 Model 3

N13+ 0.40 (0.37, 0.42) 0.39 (0.36, 0.41) 0.39 (0.36, 0.41)
N15+ 0.34 (0.32, 0.37) 0.33 (0.31, 0.36) 0.33 (0.30, 0.36)
M13+ 0.60 (0.56, 0.65) 0.55 (0.50, 0.61) 0.55 (0.50, 0.61)
M15+ 0.58 (0.54, 0.63) 0.54 (0.50, 0.58) 0.54 (0.50, 0.58)

TABLE 2 | Values of β0 and β1 (Eq. 11) for the three models in Table 1: a) RBWN;
b) RBBL. The t-values computed for each coefficient are reported in brackets.
A model has to be rejected if at least one of its coefficients presents a t-value less
than 1.95.

Series Model 1 Model 2 Model 3
β0, β1 β0, β1 β0, β1

N13+ 0, 0 21.6 (9.0), 0 21.5 (7.0), 3.6E-5 (3.2E-2)
N15+ 0, 0 13.3 (9.5), 0 15.9 (9.6), −9.5E-4 (−1.6)
M13+ 0, 0 14.0 (10.9), 0 13.3 (9.4), −9.0E-7 (−3.5E-4)
M15+ 0, 0 13.2 (9.4), 0 13.2 (9.3), −3.1E-5 (−2E-2)

Series Model 1 Model 2 Model 3
β0, β1 β0, β1 β0, β1

N13+ 0, 0 20.8 (7.1), 0 20.5 (5.7), 1.4E-4 (0.1)
N15+ 0, 0 13.2 (13.6), 0 15.6 (8.4), −9E-4 (−1.4)
M13+ 0, 0 13.9 (10.1), 0 13.1 (12.9), −4.8E-5 (7.7E-2)
M15+ 0, 0 13.1 (12.8), 0 13.1 (12.0), 1.0E-5 (1.6E-2)
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way are shown in Figure 7 (red lines) in comparison with those
obtained from the original data series (blue lines). Note that
repeating the analysis on the series of the first differences
produces a saturation of d as m increases. Saturated values

have to be obviously discarded. Such a saturation effect along
with the high variability of d, which is particularly evident for
smaller values of m, could be indicative of “spurious” long
memory due to regime change (e.g., short memory) or
smoothly varying trend (Qu, 2011). This is confirmed by
the results (not shown here for the sake of brevity) of test
statistic proposed by Qu (2011) (which uses the local Whittle
estimate of d for m frequency components) for the null
hypothesis that a given time series is a “pure” stationary
long-memory process. The saturation is not observed for
the d values obtained for the M13+ and M15 + series
(Figure 7, bottom panels), which range between about 0.1
and 0.4, thus indicating a covariance stationary, long-memory
behavior with mean reversion. As opposed to the values of d
obtained for N13+ and N15+ (Figure 7, top panels), for these

TABLE 3 | Values of d obtained by applying the Robinson test based on the “local”
Whittle approach (RB95) for different values of the bandwidth parameterm � T δ.

Series T0.40 T0.45 T0.50 T0.55 T0.60 T0.65 T0.70

N13+ 0.50 0.50 0.50 0.50 0.50 0.48 0.44
N15+ 0.50 0.50 0.50 0.50 0.48 0.44 0.39
M13+ 0.19 0.14 0.18 0.18 0.23 0.34 0.39
M15+ 0.19 0.14 0.18 0.19 0.23 0.34 0.38

FIGURE 7 | Values of d obtained by applying the Robinson test based on the “local”Whittle approach (RB95) versus the bandwidth parameter m � T δ . Charts in
the left column refer to the magnitude completeness thresholdMc � 1.3, while those in the right column are forMc � 1.5. Top panels: d values computed from the time
series of the daily number of earthquakes (N13+ and N15+). Bottom panels: d values computed from the time series of the (logarithmic) seismic momentM0 released per
day (M13+ and M15+). Blue and red lines display the d values resulting from the original data series and by taking the first differences of the data, respectively (see
the main text for details).
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series d tends to increase markedly with m. This leads of the
observation that the values of d computed through the
application of RB95 tend to converge toward those resulting
from RBWN and, above all, RBBL as m increases. Finally, note
that increasing the magnitude completeness threshold yields
lower values of d only in the case of the time series of the daily
number of earthquakes (i.e., N13+ and N15+). Conversely, the
values of d obtained for the time series of M0 are insensitive
to Mc.

Table 4 lists the values of d determined through the modified
R/S analysis for a selected number of q values. Evidence of long
memory is once again found in all cases, with the values of d
constrained between 0 and 0.5 for all series. On average, the
values of d are lower than those discussed previously, with a better
agreement for lower values of q. This seems in agreement with the
observations of Teverovsky et al. (1999) showing that the
modified R/S analysis is biased in favor of accepting the null
hypothesis of no long memory as q increases. Again, increasing
themagnitude completeness threshold yields lower values of d. As
with RB95, this is observed only for the time series of the daily
number of earthquakes.

DISCUSSION

As is widely known and remarked in the introduction, the rate
of seismicity in geothermal areas is strongly related to fluid
injection operations. Fluid injection induces perturbation in
the crust that affect the local stress field and may lead to fault
failure. Therefore, changes in the injection can induce changes
in earthquake productivity (i.e., number of earthquakes),
clustering properties, and known seismological parameters
such as the b-value of the Gutenberg and Richter relation.
Temporal variations in seismic activity at The Geysers
geothermal field were studied by different authors (e.g.,
Eberhart-Phillips and Oppenheimer, 1984; Martínez-
Garzón et al., 2013; Martínez-Garzón et al., 2014;
Martínez-Garzón et al., 2018; Kwiatek et al., 2015; Johnson
et al., 2016; Trugman et al., 2016), as well as changes in the
b-value (Convertito et al., 2012; Martínez-Garzón et al., 2014;
Kwiatek et al., 2015; Trugman et al., 2016). This section
discusses how temporal fluctuations in fluid injection affect
seismic activity and, consequently, the degree of memory in
seismicity time series. To this end, time series of the daily
number of earthquakes were analyzed in order to examine
temporal variations in the value of d since 2005 both in the
entire The Geysers area and in the northwestern sector (Zone

1 in Figure 1)3. For both cases, we divided the catalog into
sections, each covering 1 year4, and, for each of them, we
computed the value of the completeness magnitude Mc.
Specifically, we used a moving window approach with a 1-
month shift between consecutive annual time series. Given the
substantial fluctuation of the Mc value with time (1.0 ≤ Mc ≤
1.5, not shown here), which may bias the results, we chose to
consider only events with Mc ≥ 1.5. Then, we applied the
RBBL, RBWN (following the results in Table 1, the regression
coefficients in Eq. 11 were determined according to Model 2),
and standard R/S (i.e., assuming q � 0 in Eq. 17) techniques to
determine the value of d for each section of the catalog. The
RB95 method was not used because of the sensitivity of the
results to the choice of the amplitude of the bandwidth
parameter m (i.e., because of the subjectivity in the choice
of the m value). Contextually, we computed the b-value of the
Gutenberg and Richter relation through the maximum
likelihood approach (Aki 1965) in the search of a possible
relation between it and d.

For the entire The Geysers field, the charts in Figure 8
present the temporal variation of fluid injection (we aggregated
monthly injection data provided by the Department of
Conservation State of California to obtain values of yearly
fluid injection), annual number of earthquakes above Mc �
1.5 (N (Mc)), b-value, and d. On average, the value of d ranges
between 0.15 and 0.35, thus indicating again a stationary long-
memory process. However, temporal fluctuations are evident,
suggesting that the value of d is modulated to some extent by
the hydraulic operations in the study area. A visual
examination of the trend of d in conjunction with that of
the fluid injection seems to indicate a negative correlation,
with d that tends to assume smaller values during periods of
increased fluid injection. However, the level of correlation
between these variables, which is quantified here by the
well-known Pearson correlation coefficient (r), is weak (and
not always significant), as r varies between −0.08 and −0.34

TABLE 4 | Values of d determined through the application of the modified R/S analysis for different values of the bandwidth number q. The number in brackets are the values
of VT(q) in Eq. 21.

Series q = 0 q = 1 q = 3 q = 5 q = 10 q = 30 q = 50

N13+ 0.32 (15.45) 0.29 (12.17) 0.26 (9.41) 0.25 (8.03) 0.22 (6.27) 0.16 (4.05) 0.14 (3.28)
N15+ 0.30 (13.25) 0.28 (10.75) 0.25 (8.56) 0.24 (7.41) 0.21 (5.90) 0.16 (3.89) 0.14 (3.18)
M13+ 0.24 (7.51) 0.20 (5.56) 0.17 (4.19) 0.15 (3.59) 0.13 (2.94) 0.09 (2.27) 0.09 (2.08)
M15+ 0.24 (7.73) 0.21 (5.78) 0.17 (4.37) 0.16 (3.76) 0.13 (3.08) 0.10 (2.37) 0.09 (2.17)

3Although the analysis was also carried out for Zone 2, results are not presented
because of their instability, which possibly reflects the combined effect of catalog
instabilities related tomonitoring issues and the milder seismic activity of this zone.
Both these factors contribute to the incompleteness of the catalog at smaller
magnitudes and, consequently, to a significant proportion of zeroes in the time
series analyzed.
4The length of the series was chosen in order to avoid instabilities in the results due
to too short time series and short-term instabilities in the seismic catalog. The use
of series with less than 300 samples is generally not recommended in this type of
applications as leading to excessively wide confidence intervals.
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depending on the method used to compute d (the values of r are
summarized in Table 5 along with the associated p-values).
Similarly, a weak negative correlation is found between d and N
(Mc) (−0.05 ≤ r ≤ −0.46), with this latter variable which, as
expected, is positively correlated to the fluid injection (r � 0.69).
Such a positive correlation is consistent with the results of
Martínez-Garzón et al. (2018), showing that periods of higher
seismicity coincide with periods of higher fluid injection.
During these periods, the b-value tends to decrease slightly,
in agreement with the study of Martínez-Garzón et al. (2014).
Following Martínez-Garzón et al. (2018), Eberhart-Phillips and
Oppenheimer (1984), and Johnson et al. (2016), such an
increase of N (Mc), and the concurrent decrease of both d-

and b-values, may be related to increased stress in the reservoir,
mainly accommodated by strike-slip and thrust faults
(Martínez-Garzón et al., 2014). Hence, fluid injection is
considered the major factor driving the seismicity at The
Geysers. Finally, moderate but significant negative
correlation (−0.53 ≤ r ≤ −0.31) is observed between d and
the b-value of the Gutenberg and Richter law. This finding is
consistent with the results of Lee et al. (2009) and Lee et al.
(2012), showing a negative correlation between the Hurst
exponent and the b-value, both using a sandpile model and
analyzing real seismicity in Taiwan. According to the
explanations of Lee et al. (2009), the decreasing b-value
during periods of high fluid injection, which reflects the

FIGURE 8 | Temporal variation of yearly fluid injection (top panel), annual number of earthquakes aboveMc � 1.5 (N (Mc)) (mid panel, black line), b-value (mid panel,
gray line), and d (bottom panel) in the entire The Geysers field (Zone 1 + Zone 2 in Figure 1). Data points are plotted at the end of each time interval considered in the
moving window analysis.
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increased number of events with larger magnitude, indicates
that the system is in a critical state or is approaching it (see also
De Santis et al., 2011). This is in agreement with the
observations of Martínez-Garzón et al. (2018), showing an
increase of main shock magnitude along with increased
foreshock activity during these periods. The concurrent
increase of d-value may be interpreted as an increase of the
degree of the persistence of larger and larger events in the
system. Conversely, the system is moving away from the critical
state during periods of increased b-values, presenting an energy
deficit. During these periods, the value of d tends to decrease,
thus indicating a decrease of persistence.

Similar observations can be done by analyzing the moving
window results for Zone 1 (Figure 9 and Table 5). According to
the findings of Martínez-Garzón et al. (2018), the similarity
between the results obtained for this zone and the entire field
suggests that the northwestern sector provides a fair
representation of the processes that govern earthquake
clustering in the whole field.

SUMMARY AND CONCLUSIONS

Our study has analyzed the long-memory feature in seismicity
through a comprehensive statistical analysis of a set of earthquake
time series associated with the activity in The Geysers geothermal
field. In particular, we have applied different statistical techniques
to time series of the daily number of earthquakes and seismic
moment for different magnitude completeness thresholds. We
have focused on the seismicity recorded in The Geysers
geothermal field because of the high level of completeness of
the seismic catalog.

Unlike to previous studies, which investigated the
property of long memory in a non-parametric way, we
have considered a parametric model based on the concept

of fractional integration. The level of correlations among
observations in the time series is expressed by a real
parameter d, which is indicative of long memory for values
greater than zero. The results obtained by using the
parametric approach have been compared to those
resulting from semi-parametric and non-parametric
methods.

Our results have pointed out the presence of long memory
for all the time series and methods considered, showing that
seismicity is a process characterized by long memory. In
particular, the estimates of the differencing parameter d
obtained by applying the parametric RBWN and RBBL
approaches have shown that the time series of the daily
number of earthquakes present long memory with
stationary behavior. Indeed, d ranges between around 0.3
and 0.4. The short memory does not affect the results, as the
values of d resulting from RBWN are close to those estimated
by RBBL. The long-memory feature has also been observed in
the time series of seismic moment. However, nonstationary
behavior has been shown in this case, as d resulted between
0.5 and 1. We have observed that the estimates obtained by
using RBWN could be biased toward higher values (up to
around 0.75) due to short-memory autocorrelation, which
affects the values of d computed via RBBL to a lower extent
(d ≈ 0.55).

Similar results have been obtained by applying the semi-
parametric RB95 approach and the non-parametric R/S
analysis, although they were shown to be rather sensitive to
the choice of the value of the bandwidth parameter. In
particular, as regards RB95, we have shown that the values of
d tend to converge to those resulting from RBBL at increasing
values of the bandwidth parameter m. The opposite occurs
considering the results of the modified R/S analysis. This
would confirm the bias due to short-memory in the results
obtained by applying RBWN to the seismic moment time series.

Finally, albeit moderately, our results have pointed out that the
value of d is influenced by the number of information in the chain of
intervening related events. In particular, d tends to decrease with
increasing the magnitude completeness threshold Mc. This is more
evident for the time series of the number of earthquakes. Indeed, the
value of Mc is controlled by small events and therefore significantly
affects the daily number of earthquakes in the series. Conversely, the
total seismic moment released daily is controlled by stronger events
and, therefore, the time series are less influenced byMc. Nevertheless,
according to the results obtained by applying RBWN to the seismic
moment time series, small magnitude earthquakes with short
memory effects would affect nonstationarity. Indeed, we have
observed that d increases significantly above 0.5 as Mc decreases.
Therefore, catalog completeness assessments may play a
fundamental role on the reliability of d estimates.

The analysis of the temporal variation of d, besides
corroborating the previous considerations about the long
memory in the seismic process, has revealed a certain
degree of correlation with hydraulic operations.
Specifically, our results indicate a moderate but significant
negative correlation between d and the b-value of the
Gutenberg and Richter relation. A negative, albeit weaker

TABLE 5 | Values of the Pearson correlation coefficient (r) and associated p-values
for the pairs of variables specified in the first column. N(Mc) indicates the
annual number of earthquakes aboveMc � 1.5; the subscript of dRBWN, dRBBL, and
dRS indicates the technique used to compute d. Bold text indicates significant
p-values (i.e., p < 0.05/17 � 0.0029 where 17 is the number of correlations
tested according to the Bonferroni correction for multiple tests (Kato, 2019)). The
correlation with fluid injection is not quantified for Zone 1, as specific injection data
are not available.

The geysers (whole) Zone 1

r p-value r p-value

N(Mc) versus fluid injection 0.69 3.4 × 10−19 - -
b-value versus fluid injection −0.26 0.005 - -
dRBWN versus fluid injection −0.17 0.06 - -
dRBBL versus fluid injection −0.34 1.0 × 10−4 - -
dRS versus fluid injection −0.08 0.39 - -
dRBWN versus N(Mc) −0.05 0.61 −0.08 0.39
dRBBL versus N(Mc) −0.46 7.5 × 10−8 −0.47 2.3 × 10−8

dRS versus N(Mc) −0.24 0.006 −0.19 0.04
dRBWN versus b-value −0.53 1.2 × 10−10 −0.56 9.9 × 10−12

dRBBL versus b-value −0.37 2.4 × 10−5 −0.28 0.002
dRS versus b-value −0.31 3.5 × 10−4 −0.31 3.3 × 10−4
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correlation, which deserves further investigation in the
future, is found between d and the fluid injection, as well
as between d and the annual number of earthquakes.

Besides proving long memory in seismicity, our study has
pointed out the importance of using multiple approaches to
obtain reliable estimates of the parameters capturing the
long-memory behavior in the earthquake process. The
augmented possibility of computing reliable values of such
parameters, along with the increasing availability of
earthquake data, can strengthen the awareness of scientists
on the importance of developing and using earthquake
forecasting models based on stochastic processes that allow
for long-memory dynamics (e.g., Garra and Polito, 2011).
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Conservation State of California T(https://www.conservation.ca.
gov/calgem/geothermal/manual/Pages/production.aspx). Faults in
Figure 1 were accessed through the United States Geological
Survey (United States Geological Survey and California
Geological survey, Quaternary fault and fold database for the
United States, accessed May 10, 2020, at: https://www.usgs.gov/
natural-hazards/earthquake-hazards/faults).
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