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Landslide susceptibility mapping is very important for landslide risk evaluation and land use
planning. Toward this end, this paper presents a case study in Ningqiang County, Shanxi
Province, China. Slope units were selected as the basic mapping units. A traditional
statistical certainty factor model (CF), a machine learning support vector machine model
(SVM) and random forest model (RF), along with a hybrid CF-SVM model and a CF-RF
model were applied to analyze landslide susceptibility. Firstly, 10 landslide conditioning
factors were selected, namely slope-angle, altitude, slope aspect, degree of relief,
lithology, distance to rivers, distance to faults, distance to roads, average annual
rainfall and normalized difference vegetation index. The 23,169 slope units were
generated from a Digital Elevation Model and the corresponding 10 conditioning factor
layers were produced from both geological and geographical data. Then, landslide
susceptibility mapping was carried out using the five models, respectively. Next, the
landslide density (LD), frequency ratio (FR), the area under the curve (AUC) and other
indicators were used to validate the rationality, performance and accuracy of the models.
The results showed that the susceptibility maps produced from the different models were
all reasonable. In each map, the LD and FR were greatest in the zones classed as having
very high landslide susceptibility, followed by the high, moderate, low and very low
landslide susceptibility classes, respectively. From the comparison of the different
maps and ROC curves, the RF model based on slope units was the most appropriate
for landslide susceptibility mapping in the study area. It was also found that the
combination of weaker learner model (CF model here) with a stronger learner model
(SVM and RF model here) can impact the applicability of the stronger model.
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INTRODUCTION

As one of Earth’s major geological hazards, landslides are widely
distributed and occur at a high frequency, causing heavy damage,
which often leads to huge economic losses and casualties. Landslide
susceptibility mapping is important for the prevention and
mitigation of such hazards. In recent years, landslide
susceptibility mapping based on GIS technology has gradually
become the focus of landslide research (Tien Bui et al., 2012; Chen
et al., 2014; Chen and Li, 2020; Chen et al., 2021). In this field of
research, the selection of the mapping unit and the choice of the
susceptibility analysis method are two main components which
impact the accuracy of the resulting landslide susceptibility map.

The mapping unit is the smallest indivisible unit of space used
in the landslide susceptibility analysis, which can be either regular
or irregular. According to current research, all units can be
classified into five types (Table 1): grid units, terrain units,
unique condition units, slope units and topographic units
(Guzzetti et al., 1999). The advantages and limitations of each
type of unit are just shown in Table 1. Among all of these types of
mapping units, grid units are the most widely used for medium or
small-scale landslide susceptibility zonation because they are easy
to calculate and use for spatial analysis (Feizizadeh et al., 2017;
Dang et al., 2019; Nam and Wang, 2020; Chen et al., 2021).
However, grid units are not related closely to geological
environments. For large-scale studies, with the support of
abundant geological and geomorphic data, high-resolution
satellite images and detailed landslide survey data, a more
accurate landslide susceptibility map can be obtained by using
GIS-based slope units (Guzzetti et al., 1999; Erener and Düzgün,
2011; Ba et al., 2018).

The analysis methods for landslide susceptibility mapping can
be categorized into statistical and machine learning methods. The
learning ability of the first type of method is relatively weak and
mainly includes the analytic hierarchy process model (Park et al.,
2012; Kayastha et al., 2013), the information value model (Lin and
Tung, 2004; Sarkar et al., 2013; Sharma et al., 2014; Tan et al.,
2015), the certainty factor model (Binaghi et al., 1998; Pistocchi
et al., 2002) and the logistic regression model (Ohlmacher and
Davis, 2003; Ercanoglu and Temiz, 2011; Das et al., 2012; Regmi
et al., 2013; Lee et al., 2014). The second type of method generally
has a stronger learning ability and mainly includes the support

vector machine model (Tien Bui et al., 2012; Feizizadeh et al.,
2017), the random forest model (Youssef et al., 2016; Behnia and
Blais-Stevens, 2018; Dang et al., 2019; Nam andWang, 2020) and
the adaptive-network-based fuzzy inference model (Chen et al.,
2021), among others. Although certain models have been used for
landslide susceptibility mapping in specific areas, there has been
no model put forward that can be used across all kinds of
landslide conditions. Therefore, in recent years, landslide
mapping methods have changed from single-model to hybrid-
model approaches (Nieto et al., 2015; Meng et al., 2016; Zhou
et al., 2016; Moayedi et al., 2018; Mokarram and Zarei, 2018; Dou
et al., 2020; Li and Chen, 2020; Zhao and Chen, 2020). In this way,
not only can different models learn from each other, allowing
optimization of the evaluation results, but they can also be applied
to different geological conditions.

This study was based on Ningqiang County, which is located in
the hinterland of the Qinba Mountains of China. Landslides are
one of the most frequent and severe geological hazards in the area,
and geological and geomorphological conditions in the area have a
significant impact on landslide occurrence and distribution.
Initially, we completed a 1:50,000 scale landslide survey,
documenting detailed landslide characteristics and geological
data about the area. How to make full use of such materials to
obtain more accurate landslide susceptibility zonation maps is of
great practical significance for landslide risk evaluation and land
use planning in Ningqiang County. Based on the above
comparison of the different types of mapping units, combined
with knowledge from the landslide survey, we choose slope units as
the basic unit type for the landslide susceptibility mapping. For the
analysis methods, we focused mainly on the application of existing
mature models to produce more reliable landslide susceptibility
maps, rather than exploring and trying the latest models.
Therefore, the certainty factor model (CF), the support vector
machine model (SVM) and the random forest model (RF) were
applied. The CF model is a widely used statistical model with a
weak learning ability, while the SVM and RF models are two
machine learning models which have been often used in recent
years and have strong learning abilities. In addition, in order to
explore the effects of a hybrid approach, the CFmodel was coupled
with the SVM model (named the CF-SVM model) and the RF
model (named the CF-RF model), respectively, and these were also
applied to analyze landslide susceptibility in this area.

TABLE 1 | Classification and characteristics of different mapping units.

Unit type Primary ideas Advantages Limitations

Grid unit Divide the territory into regular squares with
same size

Small sampling limit and easy gridding The natural slope is separated, and the connection
with geological and geomorphic information is
lacking

Terrain unit According to geomorphological and geological
boundary

The relationship between landslide and land
surface is easy to analysis

Needs a lot of topography geology information, and
it is subjective

Unique condition
unit

Overlay all the landslide factor layers, delete the
smallest polygon, and get the element

Covering different factor attributes for statistical
analysis

Regional environment differences are not
considered, and it is subjective

Slope unit Divide the territory into independent slopes by
ridge line and valley line

Has definite geological significance Poor automation

Topographic
unit

Dividing by the intersections of contours and
flow tube boundaries

Suitable for predicting shallow landslide under
the control of surface saturation and
topography

Not closely related to deep or complex landslides

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 9 | Article 5896302

Zhao et al. Landslide Susceptibility Mapping

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


STUDY AREA

Ningqiang County is located in the southwest corner of
Shaanxi Province, between 105°21°10″–106°35°18″ N and
32°37°06 ″–33°12°42″ E, with a total area of about 3246 km2

(Figure 1). It lies in the Qinba Mountains, with an elevation
from 520 m to 2103 m above sea level according to Digital
Elevation Model (DEM) data. This area has a subtropical
humid monsoon climate, with an annual average temperature
13.5°C and annual precipitation of 960–1600 mm. Two major
river systems, the Jialing River and the Han River, flow
through this district with a network density of 1.4 km/km2.
Geologically, the lithology in the study area included phyllite,
sandstone, shale and limestone. While, alluvium, eluvium,
slopewash and some clay materials (collectively referred to as
accumulations) are extensively distributed in the area.
Tectonically, the Kunlun-Qinling fold system and other

major faults may have a large influence on slope stability
in the study area. Due to these complex geological conditions,
Ningqiang County has become a well-studied area for
landslide susceptibility analysis in the Qinba Mountains.
There were 332 landslides (including landslides and
potential landslides) recorded in the landslide survey of
the region, which were largely affected by the surrounding
geological conditions, especially the fault lines, lithology,
rainfall and slope characteristics (Zhao et al., 2012).

METHODOLOGY

The objective of this work was to produce a more accurate
landslide susceptibility map for Ningqiang County by
comparative analysis of the certainty factor model (CF), the
support vector machine model (SVM), the random forest

FIGURE 1 | The location of Ningqiang County, Shaanxi Province and distribution of landslides.
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model (RF), the certainty factor-support vector machine model
(CF-SVM) and the certainty factor-random forest model (CF-RF)
based on slope units. A flowchart of the applied methodology is
shown in Figure 2, which shows the key steps undertaken in the
study, which include the landslide survey, preparation of the
landslide conditioning factors, model evaluation and map
generation, results comparison, model choice, and
determination of the final landslide susceptibility map.

DATA PREPARATION

Data Resources
The data sources used in this study included: 1) 30 m resolution
DEM; 2) Landsat-8 satellite remote sensing images; 3)
topographic and geological maps of 1: 50,000 scale; 4) real-
time monitoring data of rainfall; and 5) existing reports and
field survey data of landslides.

Slope Unit Production
Compared with traditional grid cells, slope units are able to better
reflect the actual environmental conditions that lead to landslide
development and have definite geological significance. In this
work, the hydrological analysis module of ArcGIS was used to
produce the slope units for the landslide susceptibility mapping
from DEM data. A total of 23,169 slope units were obtained, of
which the minimum area was 900 m2 and the maximum area was
1,690,200 m2 (Figure 3).

Landslide Inventory
A landslide inventory map defines the location and type of
existing landslides. It is very important to determine the
location of landslides during landslide susceptibility mapping.
In order to produce a detailed and reliable landslides inventory
map, a comprehensive field survey on the scale of 1:50,000 was
performed in the study area, in addition to the collection of
relevant reports and photos that were available.

A total of 332 landslides were identified and mapped
(Figure 1) (landslide location is indicated by the centroids on
the map). An analysis of the map showed a large proportion
(98%) of these landslides were shallow landslides, with slide body
thicknesses of less than 10 m. The smallest landslide was about
120 m2, the largest was about 5.0 × 105 m2 and the average was
about 2.5 × 104 m2. Centroids were used to represent the
corresponding landslide locations. There were 198 landslides
distributed on convex slopes, 84 on concave slopes, 150 on
30°–40° slopes and 166 on 10–60 m high slopes.

For training and testing the models, the same number of non-
landslides (332 non-landslides) were generated on ArcGIS and all
of the landslides and non-landslides were randomly divided into
two datasets: 70% (a total of 464 samples) for training the models
and 30% (a total of 200 samples) for validation.

Conditioning Factor Preparation
From the data available and the characteristics of the surveyed
landslides, this study selected 10 factors of landslide susceptibility:
slope-angle, altitude, slope aspect, degree of relief, lithology,
distance to rivers, distance to faults, distance to roads, average
annual rainfall and the normalized difference vegetation index
(NDVI).

When a map of slope units is formed, thematic layers for each
landslide conditioning factor are produced. As some conditioning
factors were extracted from grid data sources, such as altitude data
fromDEM, these layers had to be converted into slope units. This was
done using the regional analysis function of ArcGIS (Figure 4).

(1) Digital Elevation Model and Derivatives
The DEM of the study area was used to extract different
conditioning factors such as slope-angle, altitude, slope-aspect,
degree of relief, etc. Slope-angle is the degree of steepness of the
surface unit, which is often expressed by the ratio of the vertical
height of the slope to the horizontal distance. The size of the
slope-angle has an impact on the stability of the slope, which
affects the occurrence of landslides. From the DEM data of
Ningqiang County, the slope information in the study area
was extracted using ArcGIS terrain analysis and divided into
the following four categories: 0–15°, 15–20°, 20–25°and >25°
(Figure 4A; Table 2). The altitude information was extracted
and divided into the following five categories: < 800m,
800m–1000m, 1000m–1200m, 1200m–1400m, 1400m–1600 m
and >1600 m (Figure 4B; Table 2).

The slope aspect information was divided into the following nine
categories: plane, north, northeast, east, southeast, south, southwest,
west and northwest (Figure 4C; Table 2). The degree of relief was
divided into three categories: 0–50m, 50–100m and >150m
(Figure 4D; Table 2).

FIGURE 2 | Flow chart of the study.
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(2)Lithology
Lithology describes the source material that the landslide is formed
from, and different types of lithology have different influences on
landslides. Based on the 1:50,000 geological map of Ningqiang
County, the lithology in the study area can be divided into the
following seven categories: sandstone, shale, limestone, tuff, granite,
keratophyre and schist (Figure 4E; Table 2).

(3)Distance to Faults, Rivers and Roads
Due to the effect of stress, many cracks can be produced in rock and
soil around fault zones, providing channels for infiltration and
recharge of groundwater. This can enhance erosion of river banks,
reducing the rock strength of slopes. Engineering activities during road
construction can also affect the stability of slopes and induce
landslides. Based on buffer analysis, the distance to faults was
divided into five categories: 0–500m, 500–1000m, 1000–1500m,
1500–2000mand>2000m (Figure 4F;Table 2); the distance to rivers
was divided into five categories: 0–150m,150–300m,300–450m,
450–600m and >600m (Figure 4G; Table 2); and the distance to
roads was divided into five categories: 0–500m, 500–1000m,
1000–1500m, 1500–2000m and >2000m (Figure 4H; Table 2).

(4)Rainfall
Rainfall is one of the main factors that induces landslides, as it can
increase the weight of the sliding body and decrease the strength of
rock and soil on the slope. Based on data collected from
meteorological stations in the study area the annual average
rainfall was divided into the following nine categories: <950mm,
950–1000mm, 1000–1050mm, 1050–1100mm, 1100–1150mm,
1150–1200mm, 1200–1250mm, 1250–1300mm and >1300mm
(Figure 4I; Table 2).

(5)Normalized Difference Vegetation Index (NDVI)
Normalized difference vegetation index (NDVI) is an indicator of
vegetation growth and spatial distribution, which characterizes the

surface vegetation cover. Based on the Landsat-8 satellite remote
sensing images in the study area, the NDVI was divided into five
categories: < 0.40, 0.40–0.45, 0.45–0.50, 0.50–0.55 and >0.55
(Figure 4J; Table 2).

Multi-Collinearity Diagnostics
All the training data and test data were imported into SPSS
software for multi-collinear diagnostic analysis, and the
diagnostic results were shown in Table 3. It can be seen
from the table that among the 10 landslide condition factors
selected this time, the slope has the largest VIF and the
smallest TOL (VIF � 3.665,TOL � 0.273), which is still in
the normal range (when VIF value <10 or Tol value >0.1, it
indicates that there is no serious collinearity problem).
Therefore, it can be proved that the 10 landslide condition
factors involved in this study are reasonable and can be used
in the study of landslide susceptibility assessment.

MODEL FORMULATION AND
APPLICATION

CF Model
Principle
The certainty factor (CF) method is a probability function which
analyses the sensitivity of various factors that affect an event and
it has been widely used in the evaluation of landslide
susceptibility. This method was first proposed by Shortliffe
and Buchanan (1975) and then gradually improved by
subsequent researchers. The principle of the CF model is
expressed as follows:

CF �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pa − Ps

Pa (1 − Ps) Pa ≥ Ps

Pa − Ps

Ps (1 − Pa) Pa < Ps

(1)

FIGURE 3 | Slope unit division of the map.
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FIGURE 4 | Conditioning factor maps based on slope units. (A) slope-angle, (B) altitude, (C) slope-aspect, (D) degree of relief, (E) lithology, (F) distance to faults,
(G) distance to rivers, (H) distance to roads, (I) annual average rainfall, (J) Normalized difference vegetation index (NDVI).
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where Pa is the conditional probability of a landslide event of
category a (e.g., this category could refer to slopes in the
range of 20°–30°). In practical applications, this parameter
can be represented by the ratio of the landslide area to the
total land area in category a. Ps is the prior probability of the
total number of landslide events in the study area, expressed
by the ratio of the total landslide area to the total land area. It
can be seen that the CF value is in the range of [- 1,1]. The
closer the CF value is to 1, the greater the probability of
landslide occurrence is; and the closer the CF value is to -1,
the smaller the probability of landslide occurrence is. When
the CF value is 0, the possibility of landslide occurrence is
equal to that of non-occurrence. For each slope unit, the CF
values of the corresponding 10 conditioning factors were
unique, so the sum of the CF values for each slope unit was
calculated to express the landslide sensitivity index (LSI) as

LSI � ∑10
i�1

CFi (2)

Application
The classification information and the corresponding CF values of the
10 conditioning factors selected in this paper were calculated
(Table 4).

The distance to faults, distance to roads, distance to rivers,
rainfall and lithology were the main conditioning factors of
landslide susceptibility in Ningqiang County, as shown in

Table 4, which is consistent with the conclusions obtained
by Zhao et al., 2012 using an information quantity model.

SVM Model
Principle
Support Vector Machine (SVM) is a supervised learning
method based on statistical learning theory. Its core
premise involves constructing an optimal hyperplane to
distinguish different samples by maximizing the interval
between them, which is often used to solve binary
classification problems. For the purposes of classification,
support vector machines can be used to divide data that is
linearly separable or linearly inseparable according to what
best distinguishes the samples.

Suppose there is a linearly separable training sample,
{xi, yi }, i � 1, 2/n; yi ∈ {+1,−1},the support vector machine
tries to find a hyperplane that can maximize the
distinction between two sets of samples and maximize the
distance between the two nearest samples of these sets. The
original support vector machine problem of support vector
machine is stated such that:

min
1
2

����w����2
s.t.yi(w · xi + b)≥ 1, i � 1, 2, 3, . . . n

(3)

In the formula, ||w|| is the 2-norm of w, b is the offset, and n is
the total number of training samples. It is difficult to differentiate
landslide data linearly for landslide susceptibility assessment, so
an SVM for linearly inseparable has to be used. The expression of
the original linearly inseparable problem is as follows:

min
1
2

����w2
���� + C∑n

i�1
ξｉ

s.t.yi(w · xi + b)≥ 1 − ξｉ, i � 1, 2, 3, . . . n

(4)

In the formula, the relaxation variable ξｉ is introduced, which is
used to describe the classification interval error. C is the penalty
factor, which adjusts the limits for misclassification of a certain
factor. This is a convex quadratic programming problem with
inequality constraints, for which the dual problem can be
obtained by using the Lagrange multiplier method, expressed as：

TABLE 2 | Conditioning factor categories.

Condition factors Categories

Slope angle (°) (1) 0–15; (2) 15–20; (3) 20–25; (4) 25–90
Altitude (m) (1) 500–800; (2) 800–1000; (3) 1000–1200; (4) 1200–1400; (5) 1400–1600; (6) 1600–2110
Slope aspect (1) plane; (2) north; (3) northeast; (4) east; (5) southeast; (6) south; (7) southwest; (8) west; (9) northwest
Degree of relief (m) (1) 0–50; (2) 50–100; (3) >150
Lithology (1) sandstone; (2) shale; (3) limestone; (4) tuff; (5) granite; (6) keratophyre; (7) schist
Distance to faults(m) (1) 0–500; (2) 500–1000; (3) 1000–1500 m; (4) 1500–2000; (5) > 2000
Distance to rivers(m) (1) 0–150; (2) 150–300; (3) 300–450; (4) 450–600; (5)>600
Distance to roads(m) (1) 0–500; (2) 500–1000; (3) 1000–1500; (4) 1500–2000; (5) >2000
Average annual rainfall (mm) (1) 950; (2) 950–1000; (3) 1000–1050; (4) 1050–1100; (5) 1100–1150; (6) 1150–1200; (7) 1200–1250; (8) 1250–1300; (9)

>1300
NDVI (1) < 0.40; (2) 0.40–0.45; (3) 0.45–0.50; (4) 0.50–0.55; (5) >0.55

TABLE 3 | Multi-collinerity diagnostics of factors.

Factor Coollinearity statistics Tolerance
(TOL)

VIF

Slope angle 0.273 3.665
Degree of relief 0.320 3.125
NDVI 0.374 2.677
Lithology 0.738 1.355
Average annual rainfall 0.534 1.872
Distance to rivers 0.760 1.316
Distance to faults 0.812 1.231
Distance to roads 0.730 1.369
Elevation 0.367 2.724
Slope aspect 0.852 1.173
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TABLE 4 | CF values of the conditioning factors.

Factor Category Landslide number Landslide units
area (km2)

Category area
(km2)

CF value

Elevation (m) 435-800 56 17.432 499.887 0.280
800-1000 77 28.824 988.751 0.134
1000-1200 46 16.259 786.662 -0.188
1200-1400 36 13.082 497.527 0.037
1400-1600 14 5.536 308.591 -0.298
>1600 3 1.175 165.996 -0.726

Slope angle (°) 0-15 49 14.001 480.662 0.133
15-20 52 16.377 940.092 -0.318
20-25 72 29.178 1187.468 -0.031
>25 59 22.752 639.192 0.295

Slope aspect Flat 0 / 0.0684 -1
North 0 / 1.254 -1

Northwest 5 1.361 84.3282 -0.369
East 33 9.792 363.132 0.062

Southeast 50 20.886 670.973 0.191
South 72 25.414 919.909 0.085

Southwest 42 16.335 679.461 -0.053
West 24 6.302 436.418 -0.437

Northwest 6 2.219 91.871 -0.048

Degree of relief (m) 0-50 31 7.395 383.039 -0.243
50-100 125 46.336 1961.102 -0.069
>100 76 28.577 903.273 0.204

Lithology Sandstone 17 5.404 163.519 0.239
Limestone 1 0.525 107.785 -0.812

Shale 91 29.637 1159.976 0.008
Tuff rock 56 20.966 1064.140 -0.227
Granite 42 15.944 460.944 0.274

Keratophyre 11 3.119 104.793 0.152
Schist 14 6.715 186.260 0.305

Distance to faults (m) 0-500 88 36.421 859.526 0.412
500-1000 44 14.751 578.886 0.005
1000-1500 21 5.790 414.981 -0.456
1500-2000 23 8.026 302.865 0.045
>2000 56 17.321 1091.156 -0.380

Distance to rivers (m) 0-150 58 17.715 458.951 0.352
150-300 70 23.517 798.199 0.143
300-450 40 19.125 554.857 0.272
450-600 23 7.154 410.354 -0.318
>600 41 14.798 1025.052 -0.437

Distance to roads (m) 0–500 84 27.814 671.775 0.398
500–1000 43 17.789 538.812 0.238
1000–1500 27 8.670 458.871 −0.259
1500–2000 24 7.567 401.929 −0.262

>2000 54 20.468 1176.026 −0.319

Average annual rainfall (m) <950 22 8.699 306.461 0.11
950–1000 67 24.606 1008.492 −0.038
1000–1050 47 18.000 466.418 0.352
1050–1100 21 7.554 317.343 −0.062
1100–1150 21 6.484 272.800 −0.064
1150–1200 20 5.160 293.612 −0.312
1200–1250 21 6.540 199.248 0.234
1250–1300 9 3.941 188.910 −0.181

>1300 4 1.324 194.130 −0.736

NDVI <0.4 29 6.549 289.111 −0.109
0.4–0.45 70 23.777 782.019 0.171
0.45–0.5 80 34.117 1208.967 0.116
0.5–0.55 48 16.982 859.745 −0.225
>0.55 5 0.884 107.572 −0.681
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(xi, yj) � ∅(xi) ·∅(xj)
max Q(a) � ∑n

1

ai − 1
2

∑n
i�1

aiyi � 0, 0≤ ai ≤C

∑n
i�1

∑n
j�1

aiajyiyjk(xi, xj) (5)

Where a is the Lagrange multiplier and k(xi, yj) is a kernel
function that needs to be operated in high-dimensional
feature space. Commonly used kernel functions include the
linear function, the polynomial kernel function, the Gaussian
radial basis kernel function and the sigmoid kernel function.
The Gaussian radial basis kernel function, which is widely
used to optimize the model parameters (including the penalty
factor C and the relaxation variable c) and has good
performance for both large and small samples, is expressed
as in Eq. 6. The final decision function can be obtained by
solving Eq. 7.

k(xi, yj) � exp( − c
�����xi − yj

�����2) (6)

f (x) � sgn⎡⎣∑n
i�1

aiyik(xpi · x) + bp⎤⎦ (7)

Application
By using the grid search algorithm, C � 1.3195 and c � 1.8661
were found to be the optimal values. The SVM model was
constructed and tested with 200 test samples. Among them,
142 samples were successfully predicted, with a prediction
success rate of 71.0% (Figure 5A). This shows that the
established SVM model had good predictive performance.

RF Model
Principle
Random forest (RF) is an ensemble learning technique based on
decision trees (Youssef et al., 2016; Chu et al., 2019), which was
first proposed by Breiman (2001). This method decides which
category each sample belongs to by using multiple classification
regression trees generated from a large number of sample data
sets. Each decision tree represents a classifier, so the classification
and predictive ability of an RF model is better than that of a single
decision tree based on traditional classification and regression.

In the RF model, the bootstrap resampling method is used to
extract n samples (generally 2/3 of the original sample set) from the
original sample set T to generate a new training sample set. A
corresponding decision tree is generated for each independent
training sample, and n decision trees were generated from the
new training sample set to constitute the forest. The remaining

FIGURE 5 | The test results from the: (A) SVM model, (B) RF model, (C) CF-SVM model and (D) CF-RF model.
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samples (generally 1/3 of the original sample set) are called Out of
Bag (OOB) samples, which constitute the test sample set and are
used to verify the performance of the model. All of the decision tree
categories in the forest are counted, and the class for which the
sample receives the largest number of votes is denoted as its category.
Further details of the RF model can be found in Breiman (2001).

Application
In this paper, the attribute values of each landslide conditioning
factor were extracted from the original 464 training sample to
construct the new training sample data set. The number of
decision trees and the number of variables selected at random
were set to 500 and 3, respectively. The RF model was constructed
and then tested with the set of 200 test samples. Among them, 156
samples were successfully predicted, with a prediction success
rate of 78.0% (Figure 5B). This shows that the established RF
model also had good predictive performance.

CF-SVM and CF-RF Models
Principle
In order to explore the effects of hybrid statistical and machine
learning methods for landslide susceptibility analysis in
Ningqiang County, the CF values of all of the training

samples (including landslide samples and non-landslide
samples) calculated by the CF model were taken as a new
sample dataset. On this basis, SVM and RF were applied to
construct an ensemble CF-SVM model and CF-RF model,
respectively.

Application
In this study, the CF values of the conditioning factors were
extracted from the 464 original training samples (232 landslide
samples and 232 non-landslide samples) to construct a new set of
training data. The CF values of the conditioning factors were also
extracted from the 200 original test samples (100 landslide samples
and 100 non-landslide samples) to construct a new set of test data.
For the CF-SVM model, the optimal value for C was found to be
1.4142 and c was 2.2974, and the number of decision trees and the
number of variables selected at random were set to 500 and 3,
respectively. The test results were as follows: there were 155
landslides were successfully predicted in the CF-SVM model (a
prediction success rate of 77.5%, Figure 5C) and 162 landslides
were successfully predicted in the CF-RF model (a prediction
success rate of 81.0%, Figure 5D). These results imply that both
the CF-RF and the CF-SVMmodel performed well, but the CF-RF
model performed slightly better than the CF-SVM model.

TABLE 5 | Classification of LSI for the different models.

Models LSI range LSI classification

Very low Low Moderate High Very high

CF model −4.734–2.849 −4.734∼ −1.889 −1.889∼ −0.856 −0.856∼ −0.048 −0.048–0.766 0.766–2.849
SVM model −2.398–2.010 −2.398∼−0.987 −0.987∼−0.380 −0.380–0.206 0.206–0.793 0.793–2.010
RF model 0.012–0.988 0.012–0.244 0.244–0.420 0.420–0.590 0.590–0.746 0.746–0.988
CF-SVM model −1.798–1.802 −1.798∼−0.833 −0.833∼−0.283 −0.283–0.311 0.311–0.872 0.872–1.802
CF-RF model 0.01–0.992 0.01–0.218 0.218–0.402 0.402–0.582 0.582–0.760 0.760–0.992

FIGURE 6 | Landslide susceptibility maps produced from: (A) the CF model, (B) the SVM model, (C) the RF model, (D) the CF-SVM model and (E) the CF-
RF model.
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FIGURE 7 | Analysis of the ROC curves of the five models: (A) success rate curves. (B) prediction rate curves.

FIGURE 8 | Landslide susceptibility classes and the percentages of landslides as determined by the: (A) CF model, (B) SVM model, (C) RF model, (D) CF-SVM
model and (E) CF-RF model.
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RESULTS AND DISCUSSION

Results
Landslide Susceptibility Maps
After implementing the models, LSI values for all of the 23,169
slope units were calculated based on the five different models and
these were reclassified by the natural break classification scheme
in ArcGIS; the results are shown in Table 5.

Based on the CF model, the LSI values of all 23,169 slope units
were in the range of -4.734∼2.849. According to the natural break
classification scheme, these were divided into five grades from low
to high (-4.734, -1.889), (-1.889, -0.856), (-0.856, -0.048), (-0.048,
0.766) and (0.766, 2.849), which represent the very low
susceptibility, low susceptibility, moderate susceptibility, high
susceptibility and very high susceptibility classes respectively.
A landslide susceptibility map was derived from the LSI values
of the CF model (Figure 6A).

Based on the SVM model, the LSI values of all of the slopes
were in the range of -2.398–2.010, and these were again divided
into five grades representing very low to very high susceptibility
(-2.398,-0.987), (-0.987, -0.380), (-0.380,0.206), (0.206,0.793) and
(0.793, 2.010). The landslide susceptibility map based on the SVM
model is shown in Figure 6B.

The LSI values of all of the slopes based on the RF model were
in the range of 0.012–0.988, and these were divided into the
following five sections (0.012, 0.244), (0.244, 0.420),
(0.420,0.590), (0.590,0.746) and (0.746, 0.988) (Figure 6C).

The LSI values of all 23,169 slope units for the CF-SVMmodel
were in the range of -1.798–1.802, and were divided into the
following five grades from very low susceptibility to very high
susceptibility (-1.798,-0.833), (-0.833,-0.283), (-0.283, 0.311),
(0.311, 0.872) and (0.872, 1.802). The landslide susceptibility
map is shown in Figure 6D.

For the CF-RF model, the LSI values of all of the slopes were in
the range of 0.01–0.992, and were divided into the following five
sections (0.01, 0.218), (0.218, 0.402), (0.402,0.582), (0.582,0.760)
and (0.760, 0.992). The landslide susceptibility map is shown in
Figure 6E.

ROC Curves
The receiver operator curve (ROC) and the area under the curve
(AUC) are generally utilized for evaluating the accuracy of the
landslide susceptibility analysis model. In this study, ROC was
represented by the success-rate and prediction-rate curves
separately, which were generated from the corresponding
training and test datasets. The cumulative percentage area of
the ordered index values in descending order was categorized into
100 classes with 1% cumulative intervals as the horizontal axis,
and the cumulative percentage of landslides corresponding to the
range of the LSI values as the vertical axis. In this way, the success-
rate and prediction-rate curves were obtained from the
intersecting values and were displayed as continuous lines.
The AUC was obtained for both the training data and the
validation data (Figure 7).

TABLE 6 | Comparison of the results of the different models.

Model Susceptibility
level

Susceptibility
area (km2)

Area
percentage (%)

Landslide
quantity

Landslide
percentage (%)

Landslide Density
(/100 km2)

Landslide
frequency ratio

CF Very low 255.153 7.86 5 1.50 1.96 0.191
Low 710.025 21.86 40 12.05 5.63 0.551
Moderate 898.499 27.67 64 19.28 7.12 0.697
High 869.427 26.77 98 29.52 11.27 1.103
Very high 514.310 15.84 125 37.65 24.30 2.377

SVM Very low 494.922 15.24 9 2.71 1.82 0.178
Low 726.215 22.36 37 11.14 5.09 0.498
Moderate 775.341 23.88 66 19.88 8.51 0.833
High 740.369 22.80 116 34.94 15.67 1.533
Very high 510.567 15.72 104 31.33 20.37 1.992

RF Very low 622.717 19.18 3 0.90 0.48 0.047
Low 619.177 19.07 9 2.71 1.45 0.142
Moderate 687.136 21.16 23 6.93 3.35 0.327
High 758.989 23.37 64 19.28 8.43 0.825
Very high 559.396 17.23 233 70.18 41.65 4.074

CF-
SVM

Very low 838.049 25.81 18 5.42 2.15 0.210
Low 642.029 19.77 32 9.64 4.98 0.488
Moderate 512.512 15.78 36 10.84 7.02 0.687
High 586.517 18.07 50 15.06 8.52 0.833
Very high 667.901 20.57 196 59.04 29.35 2.870

CF-RF Very low 625.905 19.27 4 1.20 0.64 0.063
Low 684.059 21.06 10 3.01 1.46 0.143
Moderate 626.743 19.30 17 5.12 2.71 0.265
High 704.076 21.68 72 21.69 10.23 1.000
Very high 606.632 18.6 229 68.98 37.75 3.692
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DISCUSSION

Landslide Susceptibility Map Rationality
The rationality of the landslide susceptibility maps was evaluated
by looking at correlating in landslide locations via overlay analysis.
Detailed information of each zonation in themaps produced by the
different models can be obtained from Figure 8 and Table 6.

The moderate class of the CF model covered the largest area by
percentage (27.67%), followed by the high (26.77%), low (21.86%),
very high (15.84%) and very low (7.86%) classes, respectively.
Moreover, the largest number of landslides was observed in the
very high class (37.65%), followed by the high (29.52%), moderate
(19.28%), low (12.05%) and very low (1.50%) classes, respectively.
In the SVM model, the percentage area of land that belonged to
each susceptibility class followed the same sequence as for CF.
However, the largest number of landslides was obtained in the high
susceptibility class (34.94%), and then the very high (31.33%),
moderate (19.88%), low (11.14%), and very low (2.71%) classes. In
terms of the RFmodel, the high class was found to cover the largest
area (23.37%), followed by the moderate (21.16%), very low
(19.18%), low (19.07%) and very high (17.23) classes,
respectively. However, contrary to these results, the largest
number of landslides was observed in the very high class

(70.18%), this was then followed by the high (19.28%),
moderate 6.93%), low (2.71%) and very low (0.90%) classes,
respectively. In the CF-SVM model, 25.81% of the land area
was assigned to the very low class, followed by the very high
(20.57%), low (19.77%), high (18.07%) and moderate (15.78%)
classes. Moreover, 59.04% of landslides were assigned to the very
high susceptibility class. This was followed by the high (15.06%),
moderate (10.84%), low (9.64%) and very low (5.42%) classes,
respectively. For the CF-FR model, the high-susceptibility class
covered the largest area (21.68%), followed by the low (21.06%),
moderate (19.30%), very low (19.27%) and very high (18.6%)
classes. The percentage of landslides in these areas were as
follows: very high (68.98%), high (21.69%), moderate (5.12%),
low (3.01%) and very low (1.20%). These analyses show that the
landslide susceptibility maps produced by most of the above
models were reasonable, and the percentage of landslides
progressively increased from the very low susceptibility class to
the very high susceptibility class. However, the map produced by
the RFmodel overall seemed the most reasonable in comparison to
the other models.

Landslide density (LD, number of landslides per 100 km2)
and landslide frequency ratio (FR, FR � the percentage of
landslides/the percentage of area per susceptibility class)

FIGURE 9 | Comparison of the LD of the susceptibility maps from the five models.

FIGURE 10 | Comparison of the FR of the susceptibility maps from five models.
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were another two important indexes used to evaluate the
rationality of the mapping results. The larger the LD or FR
value, the higher the landslide susceptibility. The LD and FR
of each model are summarized in Table 6 and shown in
Figure 9 and Figure 10. The results show that both the LD
and FR values were greatest in the very high susceptibility
class > high susceptibility > moderate susceptibility > low
susceptibility > very low susceptibility, for all of the five
models. This further indicates that the five models selected
in this study were reasonable. However, from the prediction
results of each model, in the very high susceptibility class, the
RF model predicted the largest LD and FR (41.65 and 4.074,
respectively), followed by the CF-RF model (37.75 and 3.692),
the CF-SVM model (29.35 and 2.87), the CF model (24.3 and
2.377) and the SVMmodel (20.37 and 1.992). For the very low
susceptibility class, the LD and FR generated from the RF
model were the lowest (0.48 and 0.047, respectively), followed
by the CF-RF model (0.64 and 0.063), the SVM model (1.82
and 0.178), the CF model (1.96 and 0.191) and the CF-SVM
model (2.15 and 0.21), respectively. Therefore, in terms of the
LD and FR, the RF model was the most reasonable, followed
by the CF-RF model, the SVM model, the CF model and the
CF-SVM model. This shows that the use of the ensemble
approach in the form of CF-RF and CF-SVM reduced the
reliability compared to these models on their own.

Landslide Susceptibility Map Accuracy
As shown in Figure 7A, the highest AUC value for the success rate
curve was obtained for the RFmodel (0.919), followed by the CF-RF
model (0.894), the CF-SVMmodel (0.751), the SVMmodel (0.676)
and the CF model (0.675). The prediction rate curve is shown in
Figure 7B. It can be seen that the CF-RF model had the highest
prediction rate (0.714). Prediction rates of 0.698, 0.682, 0.680 and
0.661 were obtained for the RF, CF-SVM, SVM and CF models,
respectively. Therefore, both the success rates and the prediction
rates showed that the RF model based on slope units had a better
degree of fit to the data than the other models.

Overall, based on the above comparisons and analyses, the
susceptibility map produced from the RF model had the highest
rationality and accuracy, followed by the CF-RF model. This is
consistent with the conclusions of previous studies that found that
tree-based models achieve excellent results compared to other
models (Merghadi et al., 2020; Hong et al., 2020). Unfortunately,
the two hybrid models (the CF-SVMmodel and the CF-RF model)
did notmeet our expectations. That is to say, the combination of the
weaker learner model (he CF model here) to the stronger learner
model (the SVM and RF models here) impacted the applicability of
the stronger model on its own, which has been a concern of
researchers (Dou et al., 2019). Though, in most cases, the hybrid
model is better than the single model (Hong et al., 2017; Pradhan

et al., 2017; Mallick et al., 2018; Xiao et al., 2019; Fang et al., 2020;
Napoli et al., 2020; Saha and Saha, 2020).

CONCLUSION

Landslides are a highly dangerous and hugely destructive hazard that
occurs all around the world. For this reason, landslide susceptibility
analysis is very important for local government agencies. In the
mapping of landslide susceptibility based on GIS, scientists have
put forward many models and used many different types of
mapping units. However, until now, there has been no model that
could incorporate any type of landslide conditions for susceptibility
mapping. Additionally, this arge-scale susceptibility analysis using
detailed data has shown that slope units have better mapping
properties than other units. In this paper, taking slope units as the
basic analysis units, landslide susceptibility mapping of Ningqiang
Countywas carried out using aCFmodel, SVMmodel, RFmodel, CF-
SVM model and CF-RF model. The results found that the RF model
performed better than the other. In addition, this paper provides
valuable information for local government agencies for landslide risk
evaluation and land utilization planning in the study area and other
similar areas in the Qinba Mountains. It also shows the value of using
slope units for landslide susceptibility mapping.
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