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Subterranean estuaries the, subsurface mixing zones of terrestrial groundwater and
seawater, substantially influence solute fluxes to the oceans. Solutes brought by
groundwater from land and solutes brought from the sea can undergo biogeochemical
reactions. These are often mediated by microbes and controlled by reactions with coastal
sediments, and determine the composition of fluids discharging from STEs (i.e., submarine
groundwater discharge), which may have consequences showing in coastal ecosystems.
While at the local scale (meters), processes have been intensively studied, the impact of
subterranean estuary processes on solute fluxes to the coastal ocean remains poorly
constrained at the regional scale (kilometers). In the present communication, we review the
processes that occur in STEs, focusing mainly on fluid flow and biogeochemical
transformations of nitrogen, phosphorus, carbon, sulfur and trace metals. We highlight
the spatio-temporal dynamics and measurable manifestations of those processes. The
objective of this contribution is to provide a perspective on how tracer studies, geophysical
methods, remote sensing and hydrogeological modeling could exploit suchmanifestations
to estimate the regional-scale impact of processes in STEs on solute fluxes to the coastal
ocean.
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INTRODUCTION

Along global coastlines, meteoric groundwater discharges into
the ocean (Church, 1996; Taniguchi et al., 2002; Zhou et al., 2019;
Luijendijk et al., 2020). The subsurface zone where meteoric
groundwater mixes with saltwater was termed the
subterranean estuary (STE) by Moore (1999). This term was
defined as “a coastal aquifer where groundwater derived from
land drainage measurably dilutes saltwater that has invaded the
aquifer through a free connection to the sea” (Moore, 1999). The
relevance of STEs for matter cycling and coastal ecology is
increasingly recognized by the scientific community (Rocha
et al., 2021).

The term estuary originates from hydrology and is defined as
the area where fresh river water and saline seawater mix (Prandle,
2009). Riverine estuaries are biogeochemical reactors that,
amongst other processes, filter out about 20% of the dissolved
silicon through reverse weathering (Tréguer and De La Rocha,
2013) or degas substantial amounts of riverine transported
organic carbon as CO2 (Laruelle et al., 2010). By now, it is
accepted that riverine solute fluxes to the coastal realm cannot
be meaningfully quantified without considering transformations
in the mixing zone of river estuaries (e.g., Kipp et al., 2020). For
submarine groundwater discharge (SGD), the same should hold
for subterranean estuaries (Robinson et al., 2018).

STEs are characterized by waters with geochemical signatures
controlled by steep (physico-)chemical gradients of mixing
terrestrial groundwater and seawater (Moore, 1999). The
groundwater-seawater mixing zone embraces thematically
different scientific fields, sometimes leading to confusion in
terminologies. The term STE, for instance, is partly
overlapping with the term ‘coastal aquifers’, which describes a
groundwater system at the interface of land and sea in
hydrogeology (Duque et al., 2020; Jiao and Post, 2019). Mixing
of fresh and saline groundwater occurs differently in porous
sedimentary aquifers than in karst or volcanic aquifers since the
former have longer residence times and a higher reaction area
between solid and fluid phase. STEs of the latter type are termed
‘anchialine’ (Bishop et al., 2015). Other studies use the term STE
for karstic environments (e.g., Gonneea et al., 2014). In these
situations, hydrology plays a major role in biogeochemical
reactions (Brankovits et al., 2018), which is amplified by the
karst’s hydrogeological conditions. However, if karstic aquifers
discharge in submarine springs with sufficient discharge rates,
this can lead to freshwater mixing with seawater in the ocean itself
in the form of plume-like structures (e.g., Fleury et al., 2007),
whose nutrient fluxes can trigger algal blooms (Chen et al., 2020).
Karst areas cover large parts of the global coastline (Goldscheider
et al., 2020) and are essential groundwater-ocean interaction
areas. Nevertheless, since processes in these conduit-systems
differ sharply from those in porous sediments, we focus our
assessment on STEs composed of porous sediments (Figure 1).
Thus, we here use the term STE to describe the zone where fresh
and saline groundwater mix in porous coastal aquifers in the
subsurface, which is in line with the marine scientific literature
(Robinson et al., 2018; Duque et al., 2020).

While STEs share the name estuary and the freshwater-
saltwater mixing zone, they differ sharply from their riverine
counterparts. The term “estuary” itself is questionable for STEs,
since some definitions of estuaries also encompass the shape of
the water body, e.g., as “semi-enclosed”, basically referring to
rivers (Wolanski, 2007). One crucial difference is residence time,
which is in the order of days in riverine estuaries (Rasmussen and
Josefson, 2002) and can be decades in STEs (e.g., Grünenbaum
et al., 2020). The different residence time leads to different mixing
processes: while in rivers, mixing can be in turbulent flow driven
by wind, flow in STEs is generally linear and advection-dispersion
driven. While in river estuaries, water-solid interaction is mostly
limited to suspended or surface sediment as solid phase, STEs
provide a wide range of minerals and solids to interact due to a
lower water/rock ratio. In some STEs, anoxic conditions develop
along subsurface flow-paths or be promoted by the inflow of O2-
free groundwater, which changes the biogeochemical reactions
compared to STEs where oxic conditions prevail (Slomp and Van
Cappellen, 2004) or to oxic surface waters flowing through
riverine estuaries. Thus, despite river estuaries and STEs
sharing parts of their name, the processes involved can be
very different. Also, while rivers can be treated as point
sources of solutes and particulates to the coastal ocean, STEs
can occur along long stretches of coast, and their geochemistry
can vary substantially at the meter scale (e.g., Beck et al., 2016;
Ehlert et al., 2016; Beck et al., 2017; Waska et al., 2019b) and even
more at the regional scale.

In general, biogeochemical reactions alter the composition of
terrestrial groundwater and saltwater that flow through STEs.
Thus, the biogeochemical composition of the resulting SGD will
not represent a conservative mixing between the fresh and saline
waters entering the STE. In many STEs, the contribution of
marine water circulating through the sediment (“marine
SGD”) to the total water fluxes exceeds that of terrestrial
groundwater (e.g., Lopez et al., 2020). Groundwater of marine
origin in the seafloor sediment and STEs will here be called “saline
groundwater.” Flow and transport in STEs are highly dynamic
and locally variable. While discharge from unconfined shallow
aquifers occurs near the shoreline, discharge from confined
aquifers has been observed several kilometers offshore,
depending on the hydrogeological conditions (Burnett et al.,
2003; Gustafson et al., 2019). Mixing of fluids triggers
biogeochemical reactions that can change the discharge
composition compared to the original end-members (i.e., fresh
groundwater and saltwater). Understanding the coupling
between the physical and biogeochemical processes is the
prerequisite to understand the role of STEs in controlling the
geochemical composition of SGD (Robinson et al., 2018).
Processes in STEs can substantially influence the water quality
of the receiving water bodies and the biological processes in
coastal waters (e.g., productivity, food web structure) and the full
spectrum of the species inhabiting them, from bacteria (Adyasari
et al., 2019a), algae, through grazers, detritivores, to invertebrates
(Miller and Ullman, 2004), predatory fish (Pisternick et al., 2020),
and birds (Kotwicki et al., 2014; Lecher and Mackey, 2018). The
processes controlling the solute fluxes through STEs have been
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named among the main currently unsolved problems in
hydrology (Blöschl et al., 2019).

Groundwater salinity distribution in STEs is typically
characterized by a wedge of dense, saline groundwater that
thins from the ocean inland underneath a fresh water body at
the bottom of an aquifer (Figure 2). Along these water bodies’
interface, the fresh and saline groundwater mix and a zone of
intermediate salinities forms. Another saline recirculation cell,
where saltwater infiltrates into the sediment, the so-called ‘upper
saline plume’ (USP), can occur in settings with a sloping land
surface where tides and waves run up along the beach (e.g., Lebbe,
1981; Robinson et al., 2007). Between the USP and the saltwater
wedge, a ‘freshwater discharge tube’ evolves, focusing fresh SGD
along the low water line under an active SGD seepage zone. These
distinct water bodies have been described to shift, expand and
contract as a consequence of seasonal groundwater recharge
variations (Michael et al., 2005), spring-neap tidal cycles
(Abarca et al., 2013; Heiss and Michael, 2014) or intensified
wave conditions (Robinson et al., 2014). The shape of the STE is
controlled by a large number of factors, such as geological
heterogeneity (Geng et al., 2020), terrestrial groundwater
discharge (Heiss and Michael, 2014), tidal amplitude (Abarca
et al., 2013), sediment topography (Robinson et al., 2006; Waska
et al., 2019b; Grünenbaum et al., 2020), or even seawater
temperature (Kim et al., 2020).

STEs have been investigated from local, regional (Beck and
Brumsack, 2012; Jurasinski et al., 2018) to global perspective
(Beck et al., 2013; Rahman et al., 2019), and groundwater
dynamics and driving forces have been reviewed (Santos et al.,
2012; Robinson et al., 2018). For example, in Waquoit Bay, a
comprehensive suite of STE studies related to biogeochemistry
(Charette et al., 2005; Charette and Sholkovitz, 2006; Saenz et al.,
2012; Gonneea et al., 2014), hydrology (Michael et al., 2005;
Spiteri et al., 2008b), and tracer application (Dulaiova et al., 2008)
has been conducted. The coastline of the Gulf of Mexico has
provided a diverse geological background for local STE studies:
from sandy beaches and lagoon systems in Florida (Santos et al.,
2008; Roy et al., 2011; Pain et al., 2019), via an organic-rich STE in
the eastern part of Mobile Bay, Alabama (Montiel et al., 2019), to
developed karst system in Yucatan, Mexico (Gonneea et al., 2014;
Brankovits et al., 2017; Brankovits et al., 2018). Biogeochemical
STE studies in North America have also been conducted in the
eastern (Hays and Ullman, 2007; O’Connor et al., 2018;

Tamborski et al., 2017) and western (Santoro et al., 2008;
Boehm et al., 2014; Brown and Boehm, 2016) coastal areas of
the contiguous United States, as well as boreal parts of Alaska
(Lecher et al., 2016a) and Canada (Couturier et al., 2016; Sirois
et al., 2018).

Many relevant field studies have been conducted outside
North America. The development of an upper saline plume
and the freshwater tube underneath was first demonstrated in
Belgium by Lebbe (1981). He developed the conceptual model for
the salinity distribution in unconfined aquifers influenced by
tides based on field measurements and mathematical modeling.
The Wadden Sea, located in the southern North Sea, is a well-
studied system where various geochemical (Beck et al., 2017;
Linkhorst et al., 2017; Reckhardt et al., 2017; Rullkötter, 2009;
Seidel et al., 2015;Waska et al., 2019b), hydrological (Moore et al.,
2011; Seibert et al., 2019), as well as microbiological and
biogeochemical (Musat et al., 2006; Al-Raei et al., 2009)
studies have been conducted. Here, STEs have been shown to
function as a coastal filter for material exchange and
transformation. They are characterized by a high input of
organic matter, intensive nutrient recycling, and organic
matter remineralization rates (Billerbeck et al., 2006; Al-Raei
et al., 2009). Other studied STEs in Europe are the Baltic Sea coast
(Szymczycha et al., 2012; Donis et al., 2017; Jurasinski et al., 2018;
Virtasalo et al., 2019) and the coast of France (Anschutz et al.,
2009; Charbonnier et al., 2013; Oehler et al., 2017). In Asia-
Pacific, STE studies were conducted in South Korea (Kim et al.,
2012; Lee et al., 2017) with particular attention paid to the
volcanic Jeju Island (Kim et al., 2011; Kim et al., 2013), China
(Liu et al., 2012; Wang et al., 2015; Yang et al., 2015; Jiang et al.,
2020), Japan (Uchiyama et al., 2000; Nakada et al., 2011),
Indonesia (Adyasari et al., 2019b), Cook Island (Erler et al.,
2014), and Australia (Robinson et al., 2006; Robinson et al.,
2007; Sanders et al., 2012).

The delivery of nutrients by terrestrial groundwater has been
plentifully addressed also at continental to global scales (e.g.,
Beusen et al., 2013; Sawyer et al., 2016; Luijendijk et al., 2020),
typically by multiplying the estimated water flux by the nutrient
concentration of the fresh groundwater to obtain the nutrient
mass flux. Such estimates do not consider the biogeochemical
reactions in the STE that modulate the actual inputs to the coastal
ocean. Local-scale studies have revealed the critical influence of
biogeochemical reactions in the STE on land-ocean solute fluxes

FIGURE 1 | Examples of beach settings in which active STEs developed. Left panel: Varkala Beach, India, where SGD seeps through the pore space below the
waterline (Oehler et al., 2019b) (Photograph: T. Oehler). Middle panel: Trou aux Biches, Mauritius, where SGD is seeping out of the beach face during low tide
(Photograph: J. Scholten). Right panel: SGD seeping along preferential flow-paths into the Wadden Sea near Cuxhaven, Germany (Photograph: Nils Moosdorf). Note
that an STE often is not directly visible from the surface.
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and coastal ecology, even though STEs only cover a narrow
stretch of the coast. This influence happens most certainly on
a local and regional scale and is likely to have a significant effect
on global scales. However, what remains unclear is how the
knowledge and process descriptions at the local scale can be
translated to the regional scale so that the impact of terrestrial
SGD on the marine environment can be better quantified. We
define the local scale as coastline lengths between 100–102 m and
the regional scale at 103–105 m. Here, we summarize local scale
knowledge about processes in STEs and outline perspectives
toward the representation and extrapolation of these processes
at the regional scale.

BIOGEOCHEMICAL CYCLING IN
SUBTERRANEAN ESTUARIES

Subterranean estuaries are biogeochemically active, characterized
by microbially mediated element release, fixation and
transformation reactions (Charette et al., 2005; Spiteri et al.,
2008a; McGrath et al., 2012; Beck et al., 2017; Duque et al.,
2020). Biogeochemical reactions within the STE and the export of
reaction products into coastal waters can have wide-reaching
consequences for ecologically detrimental coastal processes such
as eutrophication and associated oxygen depletion of bottom
waters (Slomp and Van Cappellen, 2004; Dybas, 2005),
modification of ocean derived substances (e.g., detrital matter
including POC and S species: Shum and Sundby, 1996), buffering
or enhancing ocean acidification (Wang et al., 2014; Santos et al.,
2015; Liu et al., 2017), and transport of contaminants from the
land to the sea (Brovelli et al., 2007;Wang et al., 2012). Depending
on redox conditions and water flux rates, this can be crucial in
determining element speciation and balances in coastal waters
with effects for phytoplankton productivity and potentially
eutrophication (Taniguchi et al., 2019). Increased primary
productivity can further intensify the transfer of nutrients and
possible contaminants from lower to higher trophic levels.

Organic carbon forms a primary electron donor in the coastal
subsurface, which interacts with various electron acceptors (e.g.,

O, N, S, Fe and Mn species) derived from the sea or transported
within the aquifer. Organic carbon stimulates a cascade of
biogeochemical reactions relevant for local to global element
turnover rates and budgets at the land-sea interface
(Goodridge and Melack, 2014; Couturier et al., 2017; Cho
et al., 2018; Seibert et al., 2019). Organic carbon quality,
i.e., the fitness of organic molecules for microbial use as an
electron donor (and sometimes acceptor), is dependent on its
molecular composition, which is usually a complex mixture of
terrestrial and marine-derived chemical moieties (Seidel et al.,
2015).

The steep physicochemical gradients and enhanced microbial
activity in STEs can also lead to mineralization processes of
organic matter and hydrocarbons (Akam et al., 2020) as well
as reoxidation reactions (Roy et al., 2013). These processes alter
the redox conditions and the proton activity and may lead to the
formation of authigenic solid phases, like carbonate, sulfide,
sulfate or phosphate minerals (O’Connor et al., 2018;
Riechelmann et al., 2020; Roy et al., 2013). Mineral formation
may limit the concentrations of dissolved trace elements like
metals being co-precipitated during iron sulfide formation (e.g.,
Huerta-Diaz and Morse, 1992). However, mineral formation also
adds to the STE function as a filtering barrier between the
terrestrial groundwater system and the sea for harmful
chemical compounds. A well-known example of this is the so-
called ‘iron curtain,’ an iron oxide rich zone that forms when oxic
seawater is cycled through the beach sediments and mixes with
anoxic or sub-oxic terrestrial groundwater (Chambers and
Odum, 1990; Charette and Sholkovitz, 2002; Spiteri et al.,
2006; Linkhorst et al., 2017; Sirois et al., 2018). The large
sorption capacity of these iron oxides can be responsible for
fixating aqueous pollutants, such as P and As species, before they
become entwined in coastal food webs (Chambers and Odum,
1990; Bone et al., 2006; Beck et al., 2010).

Biogeochemically active areas can be unevenly distributed
within the STE. This effect is amplified by the geological
heterogeneity of flow regimes (Geng et al., 2020). Typically,
certain conditions lead to the formation of biogeochemical
‘hot-spots’, areas of enhanced microbiological and chemical

FIGURE 2 | Cross-section of a coastline highlighting the different parts of a subterranean estuary (STE).
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activity that drive the modification and transformation of ions
and molecules in the subsurface (Santos et al., 2008). Microbial
activity and community changes with salinity (Adyasari et al.,
2019a). While the processes causing the observed spatial
distribution of hot-spots are still poorly understood, an
appropriate substrate (chemical and physical) is needed, as is
an active flux of reactive electron acceptors and donors to
maintain an energy flux for the microbial metabolism.

Thus, knowing the hydrogeology of a site (water origin, flow
paths, residence times, mixing processes, and aquifer properties)
is crucial for understanding the distribution of hot spots in STEs
(Goodridge and Melack, 2014). Modeling suggested that density-
driven flow can enhance mixing in an STE when dense saline
water from the upper saline plume or periodic flooding sinks into
the underlying freshwater lens due to ‘salt fingering’ (Greskowiak,
2014). Other studies show the importance of heterogeneity of
hydrogeological parameters in controlling an STE’s shape
(Weinstein et al., 2007) and the associated biogeochemical
reactions (Heiss et al., 2020).

The temporal equivalent of ‘hot-spot’ is often termed ‘hot
moment’. The recognition that high element turnover (reactivity)
areas are temporally dynamic is important (Liu et al., 2017;
Waska et al., 2019b). Hot moments imply that enhanced
biogeochemical activity areas are stationary neither in time
nor location and will fluctuate depending on hydrological and
chemical boundary conditions (Seidel et al., 2015). The
incorporation of hot moments into the framework of
biogeochemical activity in the subsurface has helped
understand the previously ambiguous distributions of elements
and molecules, e.g., in the framework of groundwater-river
interaction (Vidon et al., 2010). At the coast, storms may, for
instance, physically impact the freshwater input, the availability
of substrates, or the seafloor morphology, which would change
STE behavior. Due to storms, SGD rates can strongly change in a
matter of days (Cho et al., 2021). More generally, hot moments in
STE can be created through movements of the salinity gradient,
when, e.g., phosphorus can desorb from aquifer sediment with
increasing salinity and cause a spike of P fluxes to the ocean that is
not directly connected to terrestrial or marine inputs (Flower
et al., 2017). Hot moments can also result from shifts in
groundwater flow paths due to changed wave activity, which
have been hypothesized to trigger pulses of arsenic transport into
coastal waters due to instability of iron oxyhydroxides under
changing redox conditions (Rakhimbekova et al., 2018). Water
residence time is an essential factor influencing chemical reaction
kinetics in the STE. For instance, in Waquoit Bay, longer
residence times during winter caused attenuation of the
groundwater nutrient load within the STE, whereas during
periods of shorter residence time, SGD was nutrient-enriched
(Gonneea and Charette, 2014).

The characterization of mineral authigenesis and its proxy
potential in the STE requires sediment core material from the
coastal and hinterland zone, best vertically resolved along
transects through the STE to gain regional information.
Whereas the physicochemical characterization of the aqueous
solutions may allow for the identification of the current situation,
the solid phases, when combined with appropriate age control,

provide information about past SGD (Böttcher and Dietzel, 2010)
as well as the movement of the geochemical mixing zone within
the STE in response to sea-level change (Roy et al., 2010; Hong
et al., 2018). The sea-level rise since the last glacial maximum
caused a landward movement of STEs. Isotopic composition of
authigenic minerals documents past changes in the land-sea
hydrological conductivity and the evolution of the
paleoenvironment.

In the following, the biogeochemical cycling of individual
compounds in STEs will be discussed.

Carbon
Subterranean estuaries receive carbon (C) from both terrestrial
and marine sources. Terrestrial dissolved inorganic carbon (DIC)
is principally derived from biological processes taking place in the
soil, and further influenced by biogeochemical processes in the
groundwater (Bog̈li, 1980; Clark and Fritz, 1997; Deines et al.,
1974). Terrestrial dissolved organic carbon (DOC) in STEs is
either transported from the soil zone of the surrounding
watersheds to the coast via groundwater or leached from
vascular-plant material buried in coastal aquifers, such as
paleosols (Sirois et al., 2018) or peat layers. Marine DOC is
supplied to STEs by infiltrating seawater and produced locally in
the STEs through remineralization of particulate organic matter
(POM), for example, from coastal phytoplankton and
macrobenthic beach wrack (Kim et al., 2019). DOC from both
sources is transformed in STEs by microbial activity into CO2

and CH4.
Generally, terrestrial groundwater contributions will enhance

the regional potential of coastal seawater to degas CO2 to the
atmosphere and contribute to primary productivity. However,
DIC from terrestrial groundwater may also induce intense
carbonate mineral dissolution (if terrestrial groundwater is
oversaturated in CO2) or lead to the precipitation of secondary
carbonates (Deines et al., 1974; Wigley et al., 1978). The
dissolution of carbonates in beach sands could be a substantial
pH-buffer preventing acidic groundwater from changing coastal
marine environments. Mixing between different water masses
may impact the saturation states of carbonate minerals in an
aqueous solution (Bog̈li, 1980; Hanshaw and Back, 1979), which
amplifies the STE effect on the carbon cycle. Carbonate
dissolution in the groundwater-seawater mixing zone can form
caves and caverneous structures (Mylroie and Carew, 1990). At
the regional scale, the total amount of carbonate dissolution
through saturation effects of mixing groundwater and seawater
was estimated on the Yucatan Peninsula (Hanshaw and Back,
1980). Therefore, carbonate dissolution structures may
potentially be used to derive information about STE activity at
regional scales or trace back STEs over geological time scales.
Precipitation or dissolution of authigenic carbonate minerals
could develop characteristic C and O isotope as well as trace
metal signatures that can be used to deduce the composition of
past solute gradients in an STE (Böttcher and Dietzel, 2010).

SGD can also be a source of methane (CH4) to coastal waters
(Lecher et al., 2016b; O’Reilly et al., 2015), and CH4 gradients
have been used to identify sites of SGD (e.g., Cable et al., 1996;
Böttcher et al., 2021). In the Baltic Sea, seepage of terrestrial
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groundwater associated with CH4 releases was observed
(Whiticar and Werner, 1981; Whiticar, 2002). STEs, both in
karstic and porous settings, can be hotspots for CH4 oxidation
that removes CH4 from groundwater before discharging into
surface waters (Schutte et al., 2016; Brankovits and Pohlman,
2020). High variability in temporal (seasonal) and spatial (among
geographically similar STEs) CO2 and CH4 concentrations and
fluxes have been observed (Pain et al., 2019; Pain et al., 2020),
complicating extrapolations to the regional scale.

Mineralization of DOM and CH4 in STEs changes ratios of
total alkalinity (TA) over DIC depending on the involved electron
acceptors and superimposing biogeochemical processes (Akam
et al., 2020). The mineralization can result in characteristic
carbon isotope signatures (Deines et al., 1974; Meister et al.,
2019). Sheltered, organic-rich STEs with sulfate reduction as a
dominant remineralization pathway may become enriched with
DOC and TA (e.g., Sippo et al., 2016). The mineralization of
organic carbon in STEs is often linked to several overlapping
mechanisms, which can vary over seasonal cycles, such as the
advective flow of terrestrial groundwater and saltwater and the
availability of organic carbon (Kim and Kim, 2017; Liu et al.,
2017; Kim et al., 2019). Marine-derived organic matter is assumed
to be more abundant and more labile than terrestrially derived
organic matter (Seidel et al., 2015) and is accompanied by an
injection of oxygen, which accelerates mineralization rates. This
“priming” by labile organic carbon and supply of oxygen may
impact remineralization of groundwater-imported terrestrial
DOC, but how and to which extent is weakly known. Since
seawater circulation volumes exceed terrestrial groundwater
throughputs in many STEs, marine DOC inputs could
primarily determine the activity of the STE microbial reactor.
Hence, most DOC released back into the coastal water column
could be recycled/transformed. However, the relative
contributions of terrestrial and marine organic carbon, as well
as the function of the STE as a net source or net sink of organic
carbon, are highly variable in space and time (Webb et al., 2019).

Carbon cycling in the STE on a local scale is best understood
based on parallel profiling on land and at the seaside of the
groundwater-seawater mixing zone since both terrestrial- and
marine processes can control DIC and DOC fluxes. Besides direct
tracking and benthic measurements of SGD leaving an STE
(Donis et al., 2017), stable C isotope compositions of DIC,
DOC and CH4 are useful variables in the characterization and
even quantification of internal processes and modulations in
STEs (e.g., Winde et al., 2014; Donis et al., 2017; Meister
et al., 2019; Pain et al., 2019; Pain et al., 2020). Also, DOM
molecular traits can elucidate organic carbon cycling in STEs
(Seidel et al., 2015). At the regional scale, the C cycle is
particularly complex to represent because of the considerable
heterogeneity of unconfined aquifers and the formation of
metabolically diverse ‘hot spots’. Therefore, an abundance of
information is necessary both from the land- and marine sides
of the STE.

Nitrogen
Subterranean estuaries may act as either a source or sink of
nitrogen (N). Microorganisms catalyze different reactions of

reactive N, which include nitrate (NO−
3 ), nitrite (NO−

2 ), and
ammonium (NH+

4 ). The core nitrogen cycle involves four
reductions [N fixation (N2 →NH+

4 ), denitrification
(NO−

3 →N2)], assimilatory nitrate reduction (NO−
3 →NH+

4 ),
and dissimilatory nitrate reduction to ammonium (DNRA,
NO−

3 →NH+
4 ) as well as two oxidation pathways [nitrification

(NH+
4 →NO−

3 )] and anaerobic ammonium oxidation (anammox,
NH+

4 →N2) (Kanehisa and Goto, 2000). The nitrogen cycle
further includes organic nitrogen mineralization, or
ammonification, which is the breakdown of organic N (Norg),
leading to the release of NH+

4 .
Nitrogen usually enters the system via N fixation (Fulweiler

et al., 2007; Rao and Charette, 2012), organic input from
terrestrial and marine sources, or terrestrial groundwater in
the form of nitrate (Weinstein et al., 2011). STEs were
classified as nutrient-contaminated STEs when they receive
elevated amounts of nitrate from terrestrial groundwater and
uncontaminated STEs when they produce nitrate internally from
the mineralization of organic matter (Santos et al., 2009b;
Loveless and Oldham, 2010; Robinson et al., 2018). In the
latter case, tidal pumping provides Norg to the STE, which
later is remineralized into NH+

4 or nitrified to create NO−
2 and

NO−
3 (Ullman et al., 2003; Santos et al., 2008; Charbonnier et al.,

2013). The nitrifying microorganisms are aerobic
chemoautotrophs; thus, nitrification generally occurs at the
oxic surface layer of STEs where the ammonification rate is
high, and Norg input and oxygen concentration are abundant
(Santoro et al., 2008).

It has been shown that nitrate may be removed in permeable
intertidal sediments from circulating seawater (Marchant et al.,
2016), in some locations by up to 70% (Wong et al., 2020).
Permanent biological removal of reactive N (NO−

3 and NH+
4 )

from the STE may be achieved through biological assimilation,
denitrification and anammox, provided that contact time
between the aqueous and solid phase of an STE is sufficient.
Denitrification is reportedly the primary biogeochemical process
responsible for N loss in coastal and marine systems (Canfield
et al., 2010) and performed by a wide range of bacteria and
archaea, mostly heterotrophic microorganisms. Particulate
organic carbon (POC) in the coastal aquifer was reported as a
major control on denitrification in STE (Kim et al., 2020). Under
conditions where NO−

3 inputs exceed the availability of carbon
substrate for denitrification, DNRA may occur (Tiedje, 1988;
Gardner et al., 2006), which, however, preserves N in the system
as NH+

4 . Anammox, another process of biological N removal
(Jetten et al., 1998), may occur in an anaerobic, NH+

4 -abundant,
low organic matter environment (Sáenz et al., 2012). The co-
occurrences of N transformation processes, such as simultaneous
nitrification-denitrification, has been found in the STE due to the
oxygen and organic matter stratification (Hays and Ullman, 2007;
Erler et al., 2014) or rapid mixing of different water masses,
creating both oxic and anoxic microzones (Uchiyama et al., 2000;
Kroeger and Charette, 2008).

The N transformation processes are controlled mainly by
groundwater residence time (Santos et al., 2008; Gonneea and
Charette, 2014), redox condition (Slomp and Van Cappellen,
2004), availability of electron donors (Santoro, 2010), and mixing
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rate of freshwater and saltwater (Kroeger and Charette, 2008).
They have been detected and measured by geochemistry or
molecular biology approaches. Stable isotopes (δ15N) and
concentrations of reactive N help understand N behavior in
STEs (Kroeger and Charette, 2008) and can also be
manipulated as a tracer (Erler et al., 2014). Denitrification
rates can also be calculated from STE sediment cores
(DeSimone and Howes, 1996; Nowicki et al., 1999). Microbial
N transformation can be determined by molecular detection,
which involves extracting the microbial DNA from water or
sediment samples (Santoro et al., 2006; Rogers and Casciotti,
2010; Hong et al., 2018; Adyasari et al., 2020).

Reactions in the nitrogen cycle in STEs are controlled
primarily by microbiology. While at the local scale
geochemistry or molecular biology assessment methods exist,
regional scale tracers for these processes have yet to be identified.
They could be indirectly inferred from STE physical properties
(e.g., organic matter content and quality in host sediment,
residence time, redox conditions) that control reaction rates
and types. One example is the use of hyperspectral imaging to
identify phytoplankton and CDOM concentration or total
suspended solids (e.g., Brando and Dekker, 2003) and benthic
information (e.g., Vahtmäe et al., 2020) in coastal waters if the
signal is strong and clear enough given possible depth and
turbidity. Lastly, if substantial quantities of gaseous N2 are
produced by denitrification, it could be detected by
geophysical methods under favorable conditions.

Phosphorus
Phosphorous (P) inputs into terrestrial groundwater are mainly
derived from fertilizers, waste and sewage (Slomp and Van
Cappellen, 2004), to a minor extent from the mineralization of
organic matter (Froelich et al., 1979) or released from minerals as
geogenic sources (Kazmierczak et al., 2020; Tao et al., 2020).
Geogenic P sources are mostly of local importance and depend on
the aquifer mineralogy. In saline groundwater, P is usually
derived from the mineralization of organic matter (Froelich
et al., 1979). In karstic STEs, where groundwater can reach
surface waters via rapid conduit flow pulse, inputs of P are
associated with high-intensity rainfall events. In such a system
in southern Java (Indonesia), elevated P concentrations were
linked to events with high groundwater discharge rates,
leading to exceptionally high P inputs into coastal waters
(Oehler et al., 2018).

Dissolved P has a high affinity to adsorb at mineral surfaces of
carbonates (Gaudette and Lyons, 1980; Burton andWalter, 1990)
and iron oxyhydroxides (Einsele, 1936; van der Grift et al., 2014).
These minerals can precipitate in STEs, which thereby would
reduce the amount of P that is transported via SGD (Pain et al.,
2020). In Waquoit Bay, P concentrations are 5–7 times higher in
iron oxide rich sands than in the overlying surface sands,
indicating how effectively processes in STEs can bind P
(Charette and Sholkovitz, 2002).

Phosphorus concentrations along the salinity gradient of STEs
usually behave non-conservatively. Elevated P concentrations are
often associated with elevated groundwater salinity (Gaudette
and Lyons, 1980), e.g., due to desorption from particles

(Suzumura et al., 2000), Fe reduction associated with organic
matter mineralization, direct P liberation (Froelich et al., 1979),
or the release of colloid-bound nutrients (Prouty et al., 2017a).
Sporadic P release can also follow occasional saltwater intrusions.
Thus, to understand the temporal P transport behavior in an STE,
the mobility of the groundwater-seawater mixing zone needs to
be known. Depending on the distance to the sediment surface and
the SGD flow regime, particulate and dissolved P may be
transported to coastal waters (e.g., Lipka et al., 2018).
Therefore, the mobility and final release of P to surface waters
indirectly depend on redox conditions and the specific
composition of the aquifer (Gaudette and Lyons, 1980;
Lewandowski et al., 2015).

Phosphorous cycling in the STE is on a local scale best
investigated based on the analysis of pore waters and
sediments along transects across the terrestrial groundwater
end-member through the mixing zone. Porewater analyses
should be combined with continuous monitoring of the
composition in the pelagic system and complemented by
element budgeting. Care has to be taken in separating P in
porewater derived from the groundwater against that derived
from processes within an STE (Suzumura et al., 2000; Price et al.,
2010; Prouty et al., 2017b). Redox conditions in the terrestrial
groundwater, as well as the abundance of iron oxyhydroxides and
carbonate minerals in the STE sediment need to be known or
approximated to estimate the regional scale effect of STEs on P
transport and release to the coastal ecosystem.

Sulfur
Subterranean estuaries gain most sulfur (S) from seawater, of
which sulfate (SO2−

4 ) is a major constituent. In brackish-marine
sediments, microbial dissimilatory SO2−

4 reduction is the primary
anaerobic process responsible for the mineralization of organic
matter (Jørgensen, 1982), leading to the formation of dissolved
sulfide. Sulfate reduction is also responsible for the oxidative
conversion of methane into dissolved carbon dioxide (Boetius
et al., 2000). Nevertheless, STEs also receive S from terrestrial
groundwater, where dissolved SO2−

4 may originate from the
dissolution of aquifer minerals like gypsum or oxidation of
iron sulfides, like pyrite (Zhang et al., 2012). In young water
bodies, anthropogenic sources, like acid rain, acid mine drainage
and fertilizers, may further enhance SO2−

4 loads (Clark and Fritz,
1997; Alorda-Kleinglass et al., 2019).

In STEs containing sufficient electron donors, SO2−
4 reduction

might be enhanced and can outcompete methanogenesis (Slomp
and Van Cappellen, 2004). These systems can differ substantially
in their biogeochemical processes and thereby in their release of
climate-relevant gas emissions (Böttcher et al., 2021). Hydrogen
sulfide may furthermore be re-oxidized by solid and aqueous
species or be precipitated as iron sulfides (Luther et al., 1991;
Rickard, 1997), thus acting as a sink for other dissolved metals
(Huerta-Diaz and Morse, 1992). Overall, the dissolved SO2−

4
availability controls the biogeochemical element cycling in the
groundwater-seawater mixing zone and specifically the coupled
sulfur-carbon-metal cycle. In particular, the coupled stable sulfur
and oxygen isotope composition of dissolved SO2−

4 in the STE
pore waters provides information about sources, sinks and
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cycling of sulfur (Fritz et al., 1989; Zhang et al., 2012) that may
even be traced in an impacted shallow water column. Using sulfur
isotopes as a tracer will be difficult at the regional scale due to the
many involved controls and high sampling effort necessary.

Metals
Dissolved metal concentrations in pore waters of STEs (e.g., Ba,
Cd, Cu, Fe, Mn, Mo, Pb, Zn) depend strongly on the mineralogy
of the aquifer and may be enriched by anthropogenic
contamination (Bone et al., 2007; Knee and Paytan, 2011).
Many of the trace metals have particular ecological relevance
as (micro)nutrients or toxins (Salt et al., 1995; Beck et al., 2010),
and their signatures may be recognizable in near-shore STE
sediments (Knee and Paytan, 2011). Submarine groundwater
discharge is relevant for marine alkaline earth metal
composition (Mayfield et al., 2021), a significant source of rare
earth elements to the ocean and could be the missing link in the
global distribution of Neodynium (Nd), a key proxy for oceanic
water-mass mixing (Johannesson and Burdige, 2007; Chevis et al.,
2015; Paffrath et al., 2020). Formation of complexes and colloids,
sorption on the surface of particles, ion exchange, and changes in
speciation are some of the relevant processes that control metal
mobility, reactivity and toxicity (Charette and Sholkovitz, 2006;
Waska et al., 2019a). The interactions between solutes and aquifer
particles exert a firm control on trace metal transport in STEs and
are strongly influenced by redox and pH conditions, salinity, and
ligand availability (Knee and Paytan, 2011).

One of the quantitatively most abundant metals in STEs is iron
(Fe). Its mobility is highly sensitive to changes in redoxmilieu and
pH (Spiteri et al., 2006). Upon precipitation, iron-oxyhydroxides
(FeOOH) and iron sulfides (FeS) provide a substrate for sorption
and incorporation of metals, Si, As, DOM, and especially P
(Huerta-Diaz and Morse, 1992; van der Grift et al., 2014).
Furthermore, a substantial impact of FeOOH precipitation on
the fractionation of different DOM fractions was described
(Linkhorst et al., 2017). Iron mineral formation in the STE
may remove selected trace metals from the aqueous solution
(Charette and Sholkovitz, 2002; Charette and Sholkovitz, 2006;
Böttcher and Dietzel, 2010) and release them later, when the
reactive front may have shifted. Karst systems, in particular, can
be efficient pathways for the exfiltration of metal-enriched waters
through an STE into the coastal zone due to short aquifer
residence times, enhanced flow rates, and a low mineral
surfaces to groundwater volume ratio (Knee and Paytan, 2011;
Pain et al., 2020).

The use of trace metals to identify SGD in the coastal waters
depends on their reactivity in redox and pH gradients. Mn, for
instance, remains mobile for some time even under oxic
conditions (Kowalski et al., 2012; Winde et al., 2014), whereas
Fe is efficiently fixed in the STE. This stability difference leads to
fractionation of these metals (Balzer, 1982) and the trace metals
that sorb on them. On a regional scale, selected trace metals like
Mn or Ba in the water column may help to detect and even
quantify SGD in tidal areas (Kowalski et al., 2012; Winde et al.,
2014).

APPROACHES TO ASSESSING STE
PROCESSES AT THE REGIONAL SCALE

Geochemical Tracers
Geochemical tracers can help to identify locations of STEs as well
as processes within them. In general, tracers are characterized by
distinct differences in concentrations or isotopic compositions
between groundwater and seawater. Salinity or conductivity is a
ubiquitous tracer since freshening of coastal ocean waters without
a nearby surficial terrestrial source is an indicator of STE
influence. However, traces of freshening diminish quickly due
to mixing with seawater, and interpretations can be ambiguous
due to other potential freshwater sources, such as rain.

Thus, other geochemical tracers with higher sensitivity,
i.e., large concentration differences between groundwater and
seawater, are applied. These are e.g. the natural radionuclides of
radon (222Rn; t½ � 3.8 days; Rn in following) and radium (224Ra;
t1/2 � 3.7 days; 223Ra; t1/2 � 11.4 days; 228Ra; t1/2 � 5.75 years;
226Ra; t1/2 � 1,600 years, Ra in the following), which are generally
enriched in STE groundwater compared to surface waters. They
can provide qualitative and quantitative information on sources
and types of water sources to the STE, estimates of seawater
residence times in the STE, as well as an overall quantification of
the water flux out of the STE (i.e., SGD) into the coastal sea and
open ocean (Taniguchi et al., 2019), while the results often
include large uncertainties (Rodellas et al., 2021).

In addition to imports by sea- and groundwater, a fraction of
the Ra and Rn in STEs pore waters is produced locally in sediment
mineral grains by the decay of the radioactive parents Thorium
(Th) and 226Ra, respectively. In pore waters with low chloride
content Ra is typically immobilized by sorption to clay and Fe and
Mn oxide surfaces whereas, at salinities > ∼3 practical salinity
units (PSU), it behaves conservatively and can be used to trace
water flow paths and fluxes (Webster et al., 1994). As an inert
noble gas, Rn is not affected by the chemical composition of pore
waters and geochemical reactions within the STE. The Ra and Rn
pore water concentration will depend on the thorium/radium
content of aquifer sediments, the recoiled efficiency, the residence
time (i.e., the time elapsed since the water entered the STE) as well
as Mn and Fe redox cycling. As seawater Ra and Rn
concentrations usually are low, enrichment of these isotopes in
coastal waters can be used to locate water fluxes out of the STE
and quantify them in a mass balance approach assuming a known
groundwater endmember (e.g., Garcia-Solsona et al., 2008).

A sampling of radionuclides can be done by boat at regional
scales (Moore, 2000; Schubert et al., 2019; Stieglitz et al., 2010)
(Figure 3). Time series measurements provide information on
the temporal component of Ra and Rn fluxes and thus can be used
to understand the dynamics of SGD in response to changing
boundary conditions such as tides or storm events (Burnett and
Dulaiova, 2003; Santos et al., 2009a). However, identifying STEs
and associated terrestrial groundwater flux remains very
challenging due to overlapping groundwater circulation
processes and pathways, which are difficult to differentiate
based on Rn and Ra only.
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The quantification of SGD using Rn and Ra is based on solving
a mass balance of these radionuclides, considering all their major
sources and sinks. It is usually done on sub-regional scales of up
to 100s of meters, with notable exceptions for the Atlantic Ocean
(Moore et al., 2008), the Mediterranean Sea (Rodellas et al., 2015)
and the global oceans (Kwon et al., 2014). The quantification can
be done either assuming a steady-state or using a non-steady-
state approach when influxes from the STE are transient (Burnett
et al., 2003; Moore, 2003; Hwang et al., 2005; Burnett et al., 2006).
The steady-state assumption needs to be critically appraised when
analyzing field data used in the mass-balance calculation,
especially when using Rn. Turbulent conditions caused by
wind and wave action can lead to excessive degassing before
and during field campaigns so that the assumption of steady state
between source and loss terms is not met. Indeed, it can be
difficult to measure any Rn in surface waters following rough
conditions. The ‘memory’ effect of variable degassing for the Rn
balance tends to be around 5 days, but depends on factors such as
water depth. In general, a non-steady state mass-balance together
with continuous Rn measurements is better suited to dynamic
conditions in the coastal zone (e.g., Santos et al., 2009c; Gilfedder
et al., 2015).

The concentrations of tracers in SGD, i.e., the end-member
concentrations of Ra and Rn, must be known to translate a mass
flux into a water flux. Constraining these end-member
concentrations is one of the most critical and uncertain steps
of mass balance approaches. Groundwater concentrations may
have substantial temporal and spatial variations caused by the
heterogeneity of parent isotopes, different groundwater
circulation pathways, hydrological and marine forcing, changes
of geochemical processes within the STE as well as variability in
terrestrial sources (Gonneea et al., 2013; Cho and Kim, 2016;
Rocha et al., 2016; Cerda-Domenech et al., 2017). To overcome
this problem, averaging a large number of end-member
concentration measurements or taking the maximum and
minimum end-member concentration to provide an envelope
of possible SGD flux rates are common approaches (Moore, 1996;
Beck et al., 2007). Nevertheless, the variability in the end-member
concentrations remains the primary challenge for reliable
quantification of SGD since shortcomings in accounting for
the heterogeneity of end-members at local- and regional scales
remain unsolved.

On a local scale, seepage meter measurements, as well as water
balances, allow independent verifications of radionuclide-based

FIGURE 3 | Example of a regional scale Rn survey in Queensland, Australia (Stieglitz et al., 2010). Permission for reprint was provided by the copyright-holder.

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6012939

Moosdorf et al. Subterranean Estuaries at the Regional Scale

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


SGD rates (Povinec et al., 2012). However, on regional scales,
verifications are still lacking or show systematic differences
between tracer and model approaches (Prieto and Destouni,
2011). Nevertheless, Ra and Rn isotopes can be applied to
map spatial and temporal changes in SGD, which under
certain conditions would be a first indicator for the potential
presence of an STE. Ra and Rn isotopes were used in regional
scale SGD estimates.

Another isotopic tracer that can be applied for STE studies is
the stable isotope composition of water (2H/1H, 18O/16O, here
shortly called “water isotopes”), which is a well-established tracer
in hydro (geo)logical studies for the quantification of mixing
processes and the deduction of water mass sources. Terrestrial
groundwater is substantially more depleted in the heavier
isotopes than seawater (Gat, 1996; Hoefs, 2018) and contains
further information about the integrated meteorological
conditions in the recharge area. Therefore, water isotopes are
widely used in studies of SGD or STE (e.g., Burnett et al., 2006;
Povinec et al., 2011; Rocha et al., 2016; Oehler et al., 2017; Duque
et al., 2019). Time series can reveal the variability of terrestrial
groundwater inputs on different time scales, particularly in
dynamic karst STEs. Although still in its infancy, the
extension of stable isotope characterization toward a triple
isotope approach considering 17O (resp. 17O excess Sharp
et al., 2018) may allow freshwater sourcing on the scale of
regional STEs. Minerals formed in the mixing zone may
record the parent solution’s isotopic signature, providing
opportunities for studies of past STE conditions.

Besides the stable isotopes of water, groundwater formed after
the early 1960s may contain tritium (3H), which has been used for
dating purposes (Begemann and Libby, 1957; Bethke and
Johnson, 2008). Meanwhile, the anthropogenic component, the
atmospheric contamination of the water cycle by surface nuclear
tests, has reached a natural background level. However, combined
with its daughter isotope 3He and Ne (Tolstikhin and Kamenskii,
1969; Sültenfuss et al., 2009), tritium still can be used for regional
age estimation of the freshwater component in STEs (Röper et al.,
2012; Post et al., 2019; Grünenbaum et al., 2020). The
accumulation of 4He is furthermore used in older groundwater
dating (Bethke and Johnson, 2008). Other noble gas isotopes
useful in the hydrogeology of STEs are 39Ar and 85Kr (e.g.,
Sánchez-Úbeda et al., 2018).

Local-scale geochemical investigation of STEs ideally includes
vertical transects through the STE, a detailed physicochemical
analysis, and solid-phase profiles from core material for a further
microanalysis to identify precipitated authigenic solid phases.
Measuring transects along the beach face enables mapping the
spatial distribution of the biogeochemical environment, reactions
and residence times over distances from tens to hundreds of
meters. Larger scale mapping is challenging due to labor-
intensive field sampling and increasing heterogeneity of the
subsurface at larger scales meaning that extrapolation between
transects is difficult.

Different circulation pathways in the STE can also be
examined by exploiting the different half-lives of Ra isotopes,
ranging from tidal to seasonal time scales. Assuming a steady-
state hydrological situation, residence times can be estimated

applying a general advective transport model in which the
concentration of Ra and Rn in pore waters is a function of the
supply of the radionuclides and their loss by decay and advection
(Bokuniewicz et al., 2015; Tamborski et al., 2017). One of the
main uncertainties in this approach is the lithological
composition (mineral content, grain size, porosity) of the STE,
which is assumed to be homogenous in space and in time
throughout the STE. In reality, however, the heterogeneity in
the STE causes a wide range of radionuclide supply rates (Beck
and Cochran, 2013). Furthermore, temporally and spatially
variable geochemical cycling of Fe and Mn and associated
oxides profoundly influence the Ra pore water release
(Gonneea et al., 2008). Since Ra is conservative in saline
waters only, Ra-based residence times are only meaningful
when seawater dominates the circulation through the STE. In
contrast, Rn can be applied in both the fresh and brackish parts
of the STE but is sensitive to 226Ra distributions in the sediments
as the parent isotope. Short term hydrological forcing like tides,
wave set-up and induced circulation may also cause non-steady-
state situations resulting in biases in residence times estimates.
Finally, mixing of waters with different ages can lead to errors in
the residence time estimates (which is similar to the real mean
age of a water parcel) (Post et al., 2013; Gilfedder et al., 2019). As
mixing is a linear process while radioactive decay and
radioactive ingrowth are exponential (Bethke and Johnson,
2002), a systematic underestimation of the real mean age can
occur if waters of different ages mix. One approach to
circumvent this problem is the use of isotope ratios like, e.g.,
224Ra/223Ra. This method is very accurate if one water mixes
with another one having zero activity (e.g., negligible Ra in
freshwater) but does not work if the age difference between the
water masses is large.

Residence time measurements tend to be point measurements
at specific times. Verification of residence times based on
radioisotopes is complicated to obtain. Comparing Ra- and
Rn-based residence times may be one approach (Tamborski
et al., 2017). Alternatively, pore water residence times may be
compared to those derived by the ratio of water volume in the
STE and the water flux out of the STE (Colbert et al., 2008).

Ra and Rn isotopes can be combined with other tracers, such
as temperature (Cranswick et al., 2014), salinity (Example in
Figure 3), or dissolved silicon (DSi) (Waska and Kim, 2011;
Oehler et al., 2019b). Since DSi behaves rather conservatively
during transport through the STE, it can be used to trace
processes that change other solutes in groundwater in STE,
such as N or P (Oehler et al., 2019b). Another example is the
combination of CO2 measurements and Rn measurements (e.g.,
Cyronak et al., 2014; Santos et al., 2015; Macklin et al., 2019).
While this ties CO2 concentrations to SGD intensity, it does not
yet differentiate if the CO2 is a product of STE processes or if the
coastal groundwater just has elevated CO2 concentrations that
originated from the terrestrial groundwater. Similarly, CH4 was
combined with Rn as a tracer of SGD (Cable et al., 1996; Dulaiova
et al., 2010) but could also be used for tracing processes in STE
that generate CH4. Using C stable isotopes as a tracer (Winde
et al., 2014; Donis et al., 2017) and considering elemental mass
balances (Deines et al., 1974) may be a successful approach.
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The measurement of chemical tracers of STE processes at
larger scales is associated with the problem to observe and
measure the parameters with sufficient temporal and spatial
resolution to resolve the underlying processes. Because tracer
concentrations are modified upon emerging from the subsurface,
sensors near the sea bottom are best suited to detect STE
processes. The metabolites of typical benthic biogeochemical
anaerobic OM degradation processes, like Mn2+ and NH+

4 ,
may, after benthic-pelagic coupling, survive the oxidation
within the oxic water column for some time (Kowalski et al.,
2012; Winde et al., 2014). Since some liberated trace elements will
be reoxidized and sorbed to suspended particles, regional
investigations will have to consider both the dissolved and the
solid phases (Kowalski et al., 2012). Whereas the dissolved
substances may be detected using discrete or continuous
sampling techniques (Petersen et al., 2011; Kowalski et al.,
2012), solid-phase sampling for geochemical analysis is limited
to discrete sampling. Measurements can also be performed by
autonomous underwater vehicles, which could automatically
trace signals, like temperature, conductivity or Rn-isotopes, of
groundwater discharge and scout for STEs (Tholen et al., 2019).

New combinations of sensors would help to detect STEs.
Optical spectrometers in the UV-visible range of the light
spectrum can be used to determine the concentration of
nitrate, nitrite, HS−, humic acids or DOC rapidly and without
the use of reagents. It is to be expected that the optical absorption
spectra will allow identifying water influenced by STEs.
Sensors for the oxidation-reduction-potential (or, when
referenced to the potential of a Standard Hydrogen Electrode,
Eh) have been used for the estimation of concentrations of redox-
sensitive elements in the redoxcline of the Baltic Sea (Meyer
et al., 2014) or detecting hydrothermal plumes in the deep
ocean (e.g., Baker et al., 2005). Combining several sensor types
should allow the detection of STE signals in waters close to the
bottom.

Geochemical tracers can help to regionally assess the amounts
of SGD and point to the presence of STEs. They can also be
applied at the local scale to draw quantitative conclusions about
residence times in STEs and thus infer information about their
reaction kinetics. At the regional scale, discrete and continuous
measurements can be done. Still, these measurements will consist
of discrete sampling points, and the feasibility of sampling will
limit their resolution and coverage, which needs to be scaled
according to the variability of the processes and tracers
considered.

Ecological Tracers
Biodiversity in terrestrial groundwater recently received
increased scientific attention (e.g., Hancock et al., 2005;
Humphreys, 2008). Environmental gradients affect marine
organisms in coastal waters. N and P are growth-limiting
nutrients for most phytoplankton and macrophytes species
that form the primary producers of the marine food web.
Externally added nutrients alter the cycles of energy-flow
between the pelagic and benthic zones, changing the
community structure and population dynamics of both pelagic
and benthic systems (Johannes, 1980; Sugimoto et al., 2017;

Grzelak et al., 2018). A similar adaption to an increase in the
concentration of nutrients can also be observed in the case of
changes in other physical or chemical parameters of the
environment: salinity, amount of light in the water column,
amount of C species, heavy metals, O2 concentration, the
presence of hydrogen sulfide, or changes in pH. For example,
observed changes in the chemical composition of bioavailable C
in the Yucatan coastal waters result in lower coral cover, smaller
size and reduced species richness (Crook et al., 2012). Benthic
meio- and macrofaunal organisms may react to changes in the
environment. Differences in benthic microbiology were observed
in STE compared to purely saline beach waters, but little is known
about microbial communities in STE (Santoro et al., 2006;
Santoro et al., 2008; Santoro, 2010; Adyasari et al., 2019a;
Adyasari et al., 2020). Thus, depending on location or
environmental factors, STE may change species richness and
diversity of meiofauna (Kotwicki et al., 2014; Encarnação et al.,
2015; Welti et al., 2015; Grzelak et al., 2018). Similarly,
macrofaunal communities can respond; their biodiversity can
increase due to food supply (Waska and Kim, 2010; Pisternick
et al., 2020) or may be reduced due to salinity stress or changes in
pH (Zipperle and Reise, 2005; Migné et al., 2011; Utsunomiya
et al., 2017). However, while the named ecological responses can
highlight an STE presence, they will be hard to interpret as tracers
of processes within that STE.

Since the impact of microbially mediated biogeochemical
processes in the physicochemical gradients of STEs can be
diverse (e.g., Beck et al., 2011), it is useful to apply the
established methods to study the communities of organisms
and associated biogeochemical processes occurring in the
entire ecosystem. Methods of assessing abundance, activity,
biomass and diversity include taxonomic phytoplankton
analyses in water samples, fauna and microbial activity
analyses in sediment cores, or fish assessment in the water.
For ecological studies on the impacts of processes in STEs,
these methods are combined with thermal infrared cameras or
Ra/Rn tracing (Sugimoto et al., 2017; Grzelak et al., 2018).
Simultaneous measurements of 222Rn with other biological
parameters allow assessing the reaction of biota activity on
products of STEs (Taniguchi et al., 2019). Stable isotopes of N
and C can also be used to trace STE products in the food web.
Several studies have traced the behavior and fate of
groundwater DIN using the isotope δ15N of seagrass and
macroalgae (Winde et al., 2017; Andrisoa et al., 2019) and
gradients in the stable carbon isotope ratio between fresh and
marine end-members (Gramling et al., 2003; Winde et al.,
2017).

Consistent integration of hydrographic and biogeochemical
research with bio-monitoring, elementary approaches and stable
isotope analyses while considering higher trophic levels like fish
and trophic flows in coastal ecosystems would enable the
estimation of the direct impact of processes in STEs on
ecosystems. While not yet done, specific species may have the
potential to indicate STE processes in specific environments.
Research in this direction is emerging (Lecher and Mackey,
2018), but additional knowledge is required before ecology can
be used as a tracer for STE processes.
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Geophysical Methods
From a geophysical perspective, the changes of physical and
geochemical conditions under the seafloor associated with the
presence of STEs are detectable by measuring properties such as
electrical conductivity (EC), acoustic impedance (AI), or
temperature. STEs can affect 1) the seafloor itself, e.g., its
morphology, 2) the sediment or rock below it and 3) the
properties of the water column, e.g., turbidity or sea-surface
temperature.

At the local scale, geophysical methods can delineate the shape
of an STE in detail. The EC difference between the terrestrial
groundwater and saltwater is the most prominent parameter for
local scale geophysical STE observation. The EC of freshwater
varies depending on the total amount of dissolved ions, and
literature puts it below 300 μS/cm (Kirsch, 2006), 1,000 μS/cm
(Jiao and Post, 2019), or 2000 μS/cm (Langguth and Voigt, 2004).
The EC of surficial seawater is orders of magnitude higher, >
40,000 μS/cm, depending on the temperature and thus latitude
(Tyler et al., 2017). However, mineral grains, clay aggregates and
organic matter in the STE also affect EC and need to be
considered. Particularly sediment porosity and clay content
strongly influence the overall EC of the bulk (rocks plus
groundwater) volume (Archie, 1942). The high EC of clay
leads to the general challenge of distinguishing freshwater
saturated clays from brackish water saturated sands that may
have very similar EC values. Gamma radiation of potassium,
thorium and uranium at the surface helps to distinguish between
clayey and sandy sediments (Siemon et al., 2020), as does an
acoustic impedance contrast that seismic methods can show.

Many approaches that use electromagnetic fields (EM) emitted
and detected by coils are available to represent subsurface
properties (frequency-domain EM, time-domain-EM and
slingram/ground-conductivity meter: Kirsch, 2006). Frequency-
domain (sinusoidal transmitter currents) and time-domain EM
(on/off transmitter currents) are typically used to obtain depth
resolution at a single measurement point or along transects
(Auken et al., 2003). Moving ground-conductivity meters are
used for fast lateral mapping of EC but with limited depth
resolution (e.g., De Smedt et al., 2013). Locating freshwater
and thus STEs, at the regional scale can be realized using
airborne or ship-based EC measuring methods.

Airborne methods use helicopters or fixed-wing aircraft to carry
the geophysical systems at about 20–100 m above ground, covering
100–200 km of profiles or typically 10–50 km2 per hour (Figure 4).
In airborne EM, frequency-domain systems focus on near-surface
(1–100 m) investigation of the spatial bulk EC (Siemon et al., 2015;
Siemon et al., 2019; Siemon et al., 2020), whereas time-domain
systems enable some deeper (5–500 m) investigation (Siemon et al.,
2009; Steuer et al., 2009), depending on the conductivity
distribution of the subsurface. Apart from electrical conductivity
or resistivity, airborne radiometry maps the gamma radiation of
the upper few decimeters of the surface (Wilford et al., 1997; IAEA,
2003). This technique has not yet been applied toward Ra/Rn
concentrations in seawater but might be a pathway forward tomap
those isotopes with broader spatial coverage. Besides, semi-
airborne methods using a ground-based transmitter and a
helicopter-borne receiver have been developed recently to

increase the penetration. While deep penetration is less
important for STE investigation, UAV-based concepts can
supplement the helicopter by a drone carrying the EM sensor
in the future and hopefully enable cheaper investigations at the
several kilometer scale. Finally, ship-based EMmeasurements have
been applied to detect SGD (Müller, 2010; Müller et al., 2011).

Another ECmethod is electrical resistivity tomography (ERT),
which, on land, uses steel electrodes pinned to the ground
measuring the resistivity (the reciprocal of electrical
conductivity) of the sediment by injecting a direct current
(Stieglitz, 2005; Swarzenski et al., 2006). ERT has been used to
observe the saltwater recirculation zone (Morrow et al., 2010) and
its temporal changes (e.g., Johnson et al., 2015; Sutter and
Ingham, 2017). ERT also can detect induced polarization
effects caused by iron oxides (Mansoor and Slater, 2007).
While this has not yet been applied to STEs, it could analyze
Fe-cycling in the mixing zone. Measurements of magnetic-
resonance also provide information on iron oxides and their
concentrations (Keating and Knight, 2007; Costabel et al., 2018)
and provide subsurface porosity and hydraulic conductivity (e.g.,
Müller-Petke and Yaramanci, 2015).

Marine ship-based measurements of ERT tow floating or
submerged streamers behind a boat (Manheim et al., 2004;
Day-Lewis et al., 2006; Hermans and Paepen, 2020). A profile
of 5 km length can be measured in 1 h, but the conductive
seawater limits penetration depth and therefore, streamer
lengths of several hundred meters are needed to achieve
sufficient penetration depth.

Seafloor morphological SGD proxies, such as pockmarks (e.g.,
Hoffmann et al., 2020), submarine terraces (Jakobsson et al.,
2020), and depressions in carbonate rocks (Oehler et al., 2019a),
are visible in the bathymetry. There are several techniques
available to map the seafloor. Sidescan sonar data can reveal
the location of pockmarks (e.g., Schlüter et al., 2004; Virtasalo
et al., 2019), and echo sounders generally can also be applied for
this task (Feldens et al., 2018; Papenmeier et al., 2020). Multibeam
echo sounders provide high lateral coverage across-track on the
seafloor, which is several times the water depth, enabling a fast
mapping of larger scales.

Obtaining information on the geological structures by using
high-resolution seismic profiling can be relevant for delineating
the geometry of STEs (Mosher and Simpkin, 1999). The resulting
image shows the reflection amplitudes and times (or depths)
resulting from material interfaces with an impedance contrast,
where the acoustic impedance is the product of bulk density and
compressional velocity. Seismic profiles can be measured
simultaneously with geoelectric streamers providing the same
estimated profile length of 5 km per hour.

Geophysical methods also allow analyzing biogeochemical
processes that occur within STEs, since some products can be
identified. Shallow free gas accumulations (e.g., CH4, N2) can be
mapped on larger scales using multibeam echo sounders. Gas is
visible as acoustic blanking, bright spots, acoustic turbidity, or gas
chimneys in seismic data (Hovland and Judd, 1988; Judd and
Hovland, 1992). Free gas can have multiple origins in the ocean,
so SGD does not necessarily cause its occurrence. However, gas-
related features along the Belgian coast (Missiaen et al., 2002), in
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Brazil, Argentina and South Africa (Weschenfelder et al., 2016)
and the North Yellow Sea (Wang et al., 2018) were linked to
localized groundwater discharge.

Finding transfer functions linking discrete biogeochemical data
and continuous geophysical methods is a promising methodology to
extrapolate STE processes to the regional scale. In particular,
methods going beyond the “classical” mapping of resistivity
(Figure 4), which would allow to spot offshore freshening of
pore water and thus STEs, have only rarely been applied to
characterizing biogeochemical processes in STEs but show a
substantial potential. A critical challenge is integrating local
information into regional mapping by connecting different scales
(point-like measurements, ground-based spatial information,
airborne and satellite). Recent developments allow to include
point-like or drilling information into ground-based geophysics
using different concepts (e.g., Wunderlich et al., 2018) and
coupling ground-based geophysics with airborne data (Dickson
et al., 2014), providing perspectives for regional-scale assessments
that are unviable based on ground-based measurements alone.

Remote Sensing
Remote sensing provides spatially continuous information on a
scale from 101 to 109 m2 (Böttcher et al., 2021), depending on the
platform (ground-based application, remotely operated vehicle,

uncrewed erial vehicle (UAV), kite gyrocopter, airplane, satellite).
The chosen scale constrains the ground resolution (ground
sampling distance), which may vary between 100 to 102 m. Scale
and ground resolution intrinsically determine which STE indicator
may be observed (Böttcher et al., 2021). Diffuse discharging
groundwater is unlikely to be observed using satellite-based
remote sensing, but can be observed with close-range
applications or UAVs. However, the effort to cover regional
scales is unequally larger for UAVs than for airplane- or
satellite-based applications. Given the negligible depth
penetration of remote sensing earth observation techniques in
most situations, remote sensing can only investigate STE
processes indirectly through its surface expressions. Remote
sensing can detect terrestrial SGD, map seafloor and coastline
morphology to find potential STEs, indicate hydrogeological STE
characteristics, and identify STE processes by, e.g., classifying
submerged aquatic vegetation that may be influenced by STEs.

Available sensors cover a wide range of the electromagnetic
spectrum and can detect/differentiate surface properties that may
act as indicators for STE processes or characteristics. The most
commonly applied sensor in STE investigations is the thermal
infrared (TIR) sensor, which can exploit temperature differences
between seawater and terrestrial groundwater at the sea-surface
(Figure 5). TIR detects groundwater inflow locations by

FIGURE 4 | Resistivities at 20 m below sea level derived from HEM inversion models indicating sandy and clayey areas, freshwater lenses on the islands of
Langeoog and Spiekeroog and groundwater flow (dashed arrows) towards the Wadden Sea. The sea dyke is indicated by a dotted black line (data from BGR, 2017,
background topographic map: BKG, 2012).
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identifying a thermal anomaly based on mono-temporal
investigations (Fischer et al., 1964; Mejias et al., 2012; Wilson
and Rocha, 2012; Kelly et al., 2013; Mallast et al., 2014; Xing et al.,
2016), or multi-temporal investigations (Schubert et al., 2014;
Oehler et al., 2018), and can be used to quantify freshwater fluxes
given in-situ reference data of currents and bathymetry (Roseen,
2002; Johnson et al., 2008; Danielescu et al., 2009; Tamborski
et al., 2015). The extent and shape of sea-surface temperature
anomalies can indicate specific STE processes and characteristics
(Chen, 1991; Jirka, 2004). Elongated anomalies oriented
perpendicular to the coastline (Shaban et al., 2005) or extensive
areas of thermal anomalies (Kelly et al., 2013) point to focused
groundwater discharge at a high rate, suggesting a low residence
time in STEs. Areas with smaller anomalies close to the coastline
distributed over tens of meters alongshore (Tamborski et al., 2015)
suggest diffuse discharge. The former is typical for karst or volcanic
aquifers from which groundwater discharges along conduits, whereas
the latter is commonly associated with sedimentary aquifers. Since
higher temperature differences and distinct anomalies are easier to
measure by TIR sensors, focused, high-volume discharge is more
easily detected than slow, diffuse discharge.

Besides thermally identifying terrestrial groundwater
discharge, remote sensing can classify benthic microbiology
(e.g., Kazemipour et al., 2012) and submerged aquatic
vegetation, which has been found to allow inferences about
STEs (e.g., Leitão et al., 2015; Welti et al., 2015). While these
observations are connected to local scale in-situ investigations,
optical remote sensing using multi- and hyperspectral sensors
(Klemas, 2016) has successfully been applied in shallow waters
but not yet linked to potential terrestrial groundwater influence.

The relationship between STE characteristics indicated by
seabed morphology and even operationally provided seafloor

maps over regional scales using air- and satellite-borne
platforms is similarly unexploited (Siermann et al., 2014;
Eugenio et al., 2015). Remotely sensed bathymetry would
allow a first-order approximation of potential pockmark sites.
Since one of the forces that can produce pockmarks is fluid flow
(Hovland et al., 2002), which can be an STE defining process,
pockmarks can be seen as hinting toward the potential existence
of STEs. Coastline morphology can be shaped by the same
processes and may represent a similar indicator (Johannes, 1980).

A drawback of remote sensing methods is that it is challenging
to link discrete, in-situmeasurements to remote sensing data that
integrate a multitude of effects other than those caused by an STE
presence (e.g., ocean currents, chlorophyll presences). This
weakness calls for a multi-scale approach (Lausch et al., 2013)
in which an identified STE location is observed synchronously
and over long periods with an appropriate in-situ sensor array
and various airborne to satellite platforms covering different
spatial scales. Such long-term sites could be associated with
coastal observatories (Schofield et al., 2003) equipped with
sensors to measure, e.g., turbidity, EC, pH, oxygen level, and
thus be investigated through interdisciplinary approaches
(Mollenhauer et al., 2018).

Second, since the temporal variability of the STE-associated
processes is high, an interesting approach would be to have a TIR
remote sensing approach that enables a multi-temporal
observation possibility. The recent advance of UAVs do
provide such a possibility, as shown in Mallast and Siebert
(2019), but cannot cover a regional scale simultaneously. The
revisiting times will be reduced for Landsat with the launch of
Landsat-9 in spring 2021 and the Indian-French THRISHNA
mission, whose launch is planned for 2024 (Lagouarde et al.,
2018). Nano-to mini-satellites can even revisit individual

FIGURE 5 | TIRmap displaying an area of cool diffuse seepage of terrestrial SGD that indicates an STE (Tamborski et al., 2015). Permission for reprint was provided
by the copyright-holder.
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locations several times per day (Van Ryswyk, 2020). If these
vehicles would also carry a TIR sensor and resemble a similarly
very high ground resolution of <3 m, a regional to global scale
localization of SGD sites and thus STE locations could become
possible.

Hydrogeological Modeling
Another way to investigate STEs is through reactive transport
models (RTMs), which remains underutilized in STE research
(Robinson et al., 2017). Published modeling studies analyzed
STEs as a high reactivity zones for, e.g., organic contaminants,
nitrate and sulfate (Robinson et al., 2009; Anwar et al., 2014; Kim
et al., 2017). The extent to which reactions proceeded was
dependent on the degree of dispersive mixing and residence
time in the STE, which was controlled by hydrological
boundary conditions, such as terrestrial groundwater flux,
beach slope and tidal amplitude. Another modeling study also
showed the importance of dispersive mixing in STE on organic
contaminant removal from groundwater (Nick et al., 2013).

The RTMs mentioned above provided process understanding
but lacked confirmation by field data. There are only two field
sites where RTMs and observations were integrated. The studies
at Waquoit Bay by Spiteri et al. (2008a), Spiteri et al. (2008b), and
Spiteri et al. (2008c), formed the earliest applications of RTMs of
the STE and showed that the pH change at the interface between
terrestrial groundwater and the lower saltwater wedge is an
essential factor that controls the oxidation of Fe2+ and
subsequent adsorption of land derived phosphorus (Spiteri
et al., 2008a). Further, model results suggested that enhanced
nutrient turnover occurs close to the SGD exit point due to high
transverse dispersive mixing of oxic and anaerobic groundwater,
resulting from converging groundwater flow toward the sea
(Spiteri et al., 2008b; Spiteri et al., 2008c). The other site
where model simulations were used to support field data
interpretation is at Cape Henlopen, Delaware, USA (Kim
et al., 2017). At this site, the field data showed that aerobic
respiration led to a depletion of oxygen within the upper saline
plume and that nitrate concentrations were lowest where
ammonium and particulate organic carbon were highest. Even
though their numerical model was able to simulate the general
spatial O2 and N2 concentration trends, discrepancies remained
evident, which the authors attributed to uncaptured
heterogeneity and transient processes, as well as the omission
of iron and sulfate reduction processes in the model. Thus, this is
an example of the difficulties to model STEs due to their high
spatial complexity. Modeling can also be applied in combination
with isotopic data to elucidate reliable dating information on the
STE water age (Bethke and Johnson, 2008; Post et al., 2019),
which could provide information for reaction rates.

It is unlikely that numerical, reactive transport models of
biogeochemical reactions in STEs can be applied with any
reasonable expectation of success at the regional scale. The
first reason is that the computational resources required will
remain prohibitive in the foreseeable future. The second and
perhaps foremost reason is that the input data requirements are
unattainable at the regional scale due to the high spatial and
temporal variability of STEs. Therefore, regional-scale models of

STE nutrient transformations will have to rely on simplified
process representations that can be parametrized with input
data obtainable at a reasonable effort and cost. There are
several essential questions to consider, including: What is an
appropriate spatial level of heterogeneity for capturing regional
scale processes that could be similar to the representative
elementary volume (REV) concept for groundwater flow (cf.
Freeze, 1975)? How can processes be integrated along the
vertical dimension? How to account for local-scale variability?
What is the temporal variability at the intra- and inter-annual
scale? Can coastal landscape units be classified according to their
geochemical reactivity?

Concerning the last question, one feasible approach to upscale
modeling of STE processes might be to identify distinctive zones
where controlling factors on the reactions are relatively uniform
and then use small-scale model information to extrapolate to a
regional-scale area. Working with distinctive uniform zones
would imply a classification (e.g., Bokuniewicz et al., 2003).
However, levels of homogeneity representative for larger areas
are not yet adequately defined, as is the answer to whether and
how small-scale temporal variations extrapolate into a larger
scale. The terrestrial component of SGD was already modeled
at the regional scale (Jarsjö et al., 2008; Befus et al., 2017; Hajati
et al., 2019) and global scale (Zhou et al., 2019; Luijendijk et al.,
2020) using similar approaches. These models produce spatially
explicit estimates of terrestrial SGD that is a necessary
prerequisite for STEs. Local scale RTMs highlight the
importance of understanding mixing (hydrodynamic
dispersion) and sediment organic carbon content, so it would
seem reasonable to expect that these at least will have to be
accounted for at the regional scale as well. Both are linked to
sediment heterogeneity (regarding hydraulic properties and
geochemistry) and the variability of hydraulic gradients so that
the starting point would be a deterministic understanding of the
longshore geological variability and a mechanistic description of
the driving forces.

Data products of sufficient quality that represent controls of
STE processes are required to model STE processes on the
regional scale. The amount of data available at a global scale
and high resolution is quickly increasing, but many aspects are
not yet adequately covered. Foremost, since STEs occur along the
coast, a high-resolution coastline is necessary and available (Sayre
et al., 2018). STE sediment properties can be represented by
recent datasets focusing on coastal sediment heterogeneity (de
Graaf et al., 2017; Zamrsky et al., 2020). Other datasets focusing
on the terrestrial aquifer (Gleeson et al., 2014) or marine sediment
thickness (Straume et al., 2019) and its properties (Dutkiewicz
et al., 2016) are hardly useable at the coast due to their global
focus and low spatial resolution. Additional hydrogeological
background knowledge would be, e.g., tectonic activity or
stress maps, where areas of high tectonic activity would
contain more faults and thus more potential pathways for
groundwater.

Mixing intensity and processes in STEs will also be controlled
by the amount of freshwater discharging (Luijendijk et al., 2020)
or the amount of seawater recirculating (Mayfield et al., 2021).
Water quality of the incoming freshwater is not known at a global

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 60129315

Moosdorf et al. Subterranean Estuaries at the Regional Scale

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


scale, but, as a first crude guess, could be inferred by proxy, e.g.,
from land-cover (e.g., Arino et al., 2007) or soil (FAOIIASA,
ISRIC et al., 2009) datasets. Another option would be to
extrapolate from datasets of multiple local groundwater quality
measurements (e.g., NAWQA from USGS). In any case,
groundwater quality is far less constrained than aquifer
properties at large scales. Synthesized data sets of geological
and geochemical properties of the subsurface below the
seafloor on a regional scale are virtually absent.

Any of the large-scale datasets available have problems
resolving the spatial heterogeneity of coasts, so the resulting
estimates will not be applicable at the local scale (Geng et al.,
2020) but provide first-order estimates for larger scales. This
problem is not unique to the coast (e.g., Moosdorf et al., 2010) but
amplified by the steep gradients in that setting. Given that the
uncertainty of any model-based estimate is going to be very large,
rather than focusing on the accuracy of the absolute numbers, it
would be preferable to develop approaches that reveal the lateral
differences. Such an approach would allow the ranking of
different areas in terms of their effect on the coastal systems,
highlighting hotspots to be targeted by more detailed
investigations or specific measures.

CONCLUSIONS AND PERSPECTIVE

This review of biogeochemical processes in subterranean estuaries
highlighted the spatial and temporal variability of these systems.
Their reactions and corresponding rates depend on the hydrology
of the STEs and the chemical composition of sediments and source
waters (terrestrial groundwater and seawater). These controls have
to be constrained to budget the processes within STEs and estimate
the regional scale effects of STEs.

Characterizing STEs at the regional scale can be achieved
through their products (Figure 6). The first step of estimating
STE activity at a regional scale is to identify locations, amount,
and the general extent of STEs. Locations can be identified
through continuous measurements of geochemical tracers,
e.g., electrical conductivity or Ra/Rn isotopes in the ocean.

Biological indicators can point to the existence of STEs. Geophysical
methods can provide information about freshened pore water and
gas occurrences below the seafloor. Hydrogeological modeling can
also estimate the flow behavior, but the necessary data are usually
not available to represent larger areas in numerical 3D models
realistically. Remote sensing information, for example, TIR images,
can additionally show thermal signatures of freshwater influx.
Combining observational methods from different disciplinary
backgrounds, paired with modeling and hydrogeological data, is
most promising for a regional scale effort to locate STEs.

Products of biogeochemical processes can be used to trace
processes occurring in STEs (Figure 6). These products can be
specific chemicals, like, e.g., CO2, N2 gas or Mn2+, but also
isotopic tracers like δ13C in DIC, δ18O and δ15 N in nitrate,
as well as δ2D and δ18O in water. With geophysical methods,
gaseous products of STEs can be identified, as well as iron oxides
in the sediment, which are an essential control on the
biogeochemistry of STEs. Remote sensing allows tracing
changes in sea bottom that could indicate properties of the
STEs in some cases. Nevertheless, since processes in STEs are
spatially and temporally highly variable, discrete in-situ
observations of specific STE products (e.g., CO2, N2, or Mn2+)
need to be combined with temporally and spatially continuous
and temporally higher resolved data (e.g., remote sensing) using
transfer functions.

Reactive transport models (RTM) can act as temporal and
spatial link between discrete local scale in-situ measurements and
spatially continuous regional scale data to extrapolate STE
processes onto larger scales. To account for the high variability,
quantitative local scale measurements will have to be combined
with the concept of representative elementary volume (REV) based
on regional-scale data sets such as from geophysical measurements
or maps containing hydrogeological information. An RTM would
represent each REV to quantify fluxes at scales relevant to the
coastal zone and coastal zone management. On that basis, it would
be even possible to sort STEs in classes when discussing their
regional impact. Particularly, STEs with diffuse porous flow need to
be distinguished from STEs in conduits, e.g., in karstic or volcanic
settings.

FIGURE 6 | Consequences of hydro (geo)logical and biogeochemical processes in STEs that can be used for extrapolation to the regional scale.
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A combination of methods from the presented disciplines
promises a pathway toward regional scale estimates of processes in
STEs and their impact on land-ocean matter fluxes. That impact
may be substantial since local scale studies strongly hint toward
their relevance. The processes are known; the products are known;
the methods are available. Now is the time to combine methods
across disciplines and understand these critical processes.
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