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Microbialites–layered, organosedimentary deposits–exist in the geologic record and
extend back in deep time, including all estimated times of inner core nucleation.
Microbialites may preserve magnetic field variations at high-resolution based on their
estimated growth rates. Previous studies have shown that microbialites can have a stable
magnetization. However, the timing and origin of microbialite magnetization were not well
determined, and no study has attempted to evaluate whether actively growing
microbialites record the geomagnetic field. Here, we present centimeter-scale
magnetization and magnetic property variations within the structure of modern
microbialites from Great Salt Lake (GSL), United States, and Laguna Bacalar, Mexico,
Pleistocene microbialites from GSL, and a Cambrian microbialite from Mongolia. All
samples record field directions close to the expected value. The dominant magnetic
carrier has a coercivity of 35–50mT and unblocking temperatures are consistent with
magnetite. A small proportion of additional high coercivity minerals such as hematite are
also present, but do not appear to appreciably contribute to the natural remanent
magnetization (NRM). Magnetization is broadly consistent along microbialite layers, and
directional variations correlate with the internal slope of the layers. These observations
suggest that the documented NRMmay be primarily detrital in origin and that the timing of
magnetization acquisition can be close to that of sediment deposition.
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INTRODUCTION

Recent work demonstrates the potential of speleothems as paleomagnetic recorders. These laminated
cave deposits form by precipitation of carbonate and include detrital or authigenic magnetic particles
that appear to document paleosecular variation (PSV) at high temporal resolution (e.g., Lascu and
Feinberg, 2011; Bourne et al., 2015; Chou et al., 2018; Trindade et al., 2018). Stromatolites are also
finely laminated carbonate materials, thought to have often formed by a microbially-mediated
balance between sedimentation and intermittent lithification (Reid et al., 2000). Compared to
speleothems, stromatolites are well represented in the geologic record, and the oldest examples go
back at least 3.5 billion years (e.g., Awramik, 1992; Riding, 2010; Baumgartner et al., 2019). This
spans all estimated times of inner core nucleation, which range from the late Archean to early
Proterozoic (2.4–2.5 Ga) (e.g., Tarduno et al., 2006; Valet et al., 2014), to Mesoproterozoic times
(∼1.2 Ga) (e.g., Biggin et al., 2015; Smirnov et al., 2016), to the Ediacaran period (∼570 Ma) (e.g.,
Bono et al., 2019). These materials may, therefore, hold promise as paleomagnetic recorders with
high temporal resolution, and this type of record in deep time could have potential for capturing
geomagnetic field behavior when the core may have been in different states.
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Modern stromatolites have widely varying estimated growth
rates ranging from 0.05 mm/yr to about 50 mm/yr (Paull et al.,
1992; Brady et al., 2009; Berelson et al., 2011; Petryshyn et al.,
2012). Laminations (when present), represent hiatal periods in
sediment accretion, are thought to form approximately every
4–10 years in some studied stromatolites (Paull et al., 1992;
Petryshyn et al., 2012), with one study finding yearly
laminations (Rasmussen et al., 1993). In modern stromatolites
(Reid et al., 2000), microbial filaments trap and bind sand and
carbonate grains during periods of rapid accretion. During hiatal
periods, a continuous exopolymer surface film develops, and
bacterial activity promotes formation of a thin micritic crust
which may be further modified into a thicker, fused carbonate
crust. These laminated crusts therefore represent a sequence of
lithified and preserved microbial mat surfaces. Laminations in
ancient (>1 billion year old) stromatolites have been interpreted
to represent day-night growth cycles (e.g., Vanyo and Awramik,
1982), although these interpretations have been increasingly
called into question in light of the work on modern
stromatolites mentioned above.

In this work, we look more broadly at microbialites, an
umbrella term that includes at least some stromatolites. Burne
and Moore (1987) define microbialites as organosedimentary
deposits accreted by a benthic microbial community via
trapping and binding detrital sediment and/or precipitation of
calcite (abiotic or biologically induced). Microbialites have a
relatively wide environmental distribution, found at the
sediment-water interface in marine, alkaline freshwater,
hypersaline lakes, evaporitic, and hydrothermal environments.
They can be classified by different internal structures as
stromatolite (laminated structure), thrombolite (clotted
structure lacking lamination), dendrolite (dendritic structure),
leolite (structureless), or some intergradational combination
(Riding, 2000; Riding, 2011). Stromatolite diversity abundance
increased from the late Archean (∼2.4 Ga), peaking around
∼1.25 Ga (Awramik and Sprinkle, 1999). Diversity declined up
to the Eradican (∼550 Ma) (Walter and Heys, 1985; Awramik and
Sprinkle, 1999), but resurged in the early Phanerozoic and late
Cambrian when thrombolites and dendrolites became the
predominant type of microbialite (Riding, 2000; Kiessling,
2002). Grazing and metazoan competition have been suggested
as a major factor contributing to the decline of stromatolite
diversity, but other factors such as seawater chemistry and
atmospheric composition could also affect their diversity
(Riding, 2006). There are some arguments that not all
Archean stromatolites are biogenic in origin (Lowe, 1994;
Brasier et al., 2004; McLoughlin et al., 2008) but this
interpretation remains controversial (Awramik and Graey,
2005; Allwood et al., 2006; Awramik, 2006; Schopf et al., 2007).

A primary magnetization in microbialites may arise from a
detrital remanent magnetization (DRM) or a biogenic
magnetization, or some combination of the two. Microbialites
may trap detrital ferromagnetic (sensu lactu) particles from
nearby sources within the microbialite matrix and carry a
DRM. Lund et al. (2010) examined coral reef cores and
observed detrital titanomagnetite bound within microbialites
that had filled the primary cavities of the coral framework.

These grains were determined to carry the natural remanent
magnetization (NRM) and appeared to accurately record
geomagnetic field variability. A DRM may also be biomediated
in that the sticky microbial mat may play a role in particle
retention and immobilization. Petryshyn et al. (2016) used
bulk magnetic susceptibility to differentiate between
stromatolites that are biogenic or abiogenic in origin and
demonstrated that a cyanobacterial mat traps and binds grains
more readily than abiogenic carbonate precipitates.

The other potential source of magnetic particles is biogenic
magnetite which can be produced by biologically controlled
mineralization (BCM) and biologically induced mineralization
(BIM). Magnetotactic bacteria can create single-domain magnetic
particles in chains by a matrix mediated BCM process. The
presence of biogenic magnetite has been inferred in ancient
(Chang et al., 1989) and modern (Stolz et al., 1989)
microbialite environments by using rock magnetic techniques
and transmission electron microscopy (TEM) to identify single
domain magnetite with the unique crystal structures typically
associated with magnetotactic bacteria. However, it has since
been demonstrated that similar crystal morphologies can also be
produced abiotically through reductive alteration of nanogoethite
(Till et al., 2017) or via thermal decomposition of siderite (Golden
et al., 2004). Maher and Taylor (1988) also observed similar fine-
grained magnetite in soils and suggested that it may have formed
via oxidation of Fe2+ solutions (Taylor et al., 1987). Biogenic
magnetite might also be produced extracellularly by iron-
reducing bacteria through BIM processes (Lovley, 1991;
Konhauser et al., 2011; Konhauser and Riding 2012). Maloof
et al. (2007) used TEM and ferromagnetic resonance to infer the
presence of superparamagnetic magnetite formed via
extracellular processes. Although superparamagnetic material
will not contribute to remanence, extracellular magnetite
typically has a wide grain size distribution including grains
that are large enough to have stable single domain behavior
(e.g., Egli, 2004).

Relatively little paleomagnetic work has intentionally focused
on microbialites. Vanyo and Awramik (1982) extracted a
paleomagnetic direction via alternating field demagnetization
from a single specimen of late Proterozoic stromatolite.
Thermal demagnetization of Jurassic stromatolites from
Poland have shown them to carry a stable magnetization,
including a polarity reversal (Muraszko, 2014) also observed in
middle-late Jurassic limestones, stromatolites, and radiolarites in
Poland (Kądziałko-Hofmokl and Kruczyk, 1987). As noted
above, microbialites found in a post Last-Glacial-Maximum
and late Pleistocene coral reef framework appear to accurately
record the field direction (Lund et al., 2010). Several studies have
sampled in or near ancient carbonate beds containing
microbialites. The Love’s Creek Member of the Bitter Springs
Formation contains stromatolite and microbialite facies and was
interpreted to be remagnetized through magnetite authigenesis
along with the remainder of the section (Swanson-Hysell et al.,
2012). However, the lower Ordovician Oneota dolomite which is
locally stromatolitic carries a direction interpreted to be
potentially primary (Jackson and Van der Voo, 1985), and
Neoproterozoic dolomites containing microbialite laminites are
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interpreted to carry primary DRM (Trindade et al., 2003; Font
et al., 2005). Maloof et al. (2007) sampled modern platform
carbonate muds in the Bahamas and proposed that early
cemented, laminated microbially-bound carbonates may
preserve syn-depositional paleomagnetic directions. Few of
these studies focus on the timing of magnetization with
respect to microbialite formation, and no studies have
attempted to evaluate whether actively growing microbialites
accurately record the known field.

This study is designed to further assess the feasibility of
microbialites as paleomagnetic recorders. We examined two
actively growing or recently lithified microbialites, as well as
one Cambrian microbialite. Variations in magnetization and
magnetic mineralogy were evaluated at the centimeter scale.
We also consider the timing of the magnetization with respect
to deposition or microbialite growth.

METHODS

Sampling and Settings
This study focuses on microbialites from three localities/
environments: 1) Great Salt Lake (GSL), Utah, United States
(hypersaline lake environment); 2) Laguna Bacalar (LB),
Quintana Roo, Mexico (freshwater alkaline environment); 3)
the Cambrian Bayan Gol (BG) formation, southwestern
Mongolia (marine environment) (Figure 1). Detailed

information about locations, sample types, and descriptions
are provided in Table 1.

At the Great Salt Lake, living and recently lithified modern
microbialites were sampled from shallow water on the shores of
Antelope Island in the southwestern part of the lake (GSL18).
Samples were taken from living, low-profile ring-shaped
structures and elongated, narrow ridge structures (Chidsey
et al., 2015; Berg, 2019), but we were unable to maintain
orientation, and the soft samples easily fell apart. These
samples were preserved in lake water during transportation
back to the laboratory. One oriented hand sample was
collected from the steep side of a lithified, dome-style
thrombolite structure that has been exposed by a lake level
drop over the past few decades. Pleistocene microbialites are
exposed along the western shoreline of the lake at Lakeside
(Newell et al., 2017), and oriented hand samples were
collected from two locations (GSL19).

Living deposits and lithified giant Holocene microbialites
(Gischler et al., 2008; Castro-Contreras et al., 2014) were
collected from shallow water at three sites at Laguna Bacalar.
Microbialites from Site 1 are unlithified layered domal structure
deposits with a stromatolitic structure at the bottom but
transitioning to a more thrombolitic fabric toward the top
(Figure 2C). The approximate thickness of the actively
growing greenish microbial mat was ∼2 cm from the surface.
Site 2 microbialites were lithified but porous. The Site 3 giant
microbialites had soft surfaces including living cyanobacteria

FIGURE 1 | (A) Global map of the locations of three microbialite samples: Great Salt Lake (GSL), Utah; Laguna Bacalar (LB), Quintana Roo, MX; Bayan Gol
formation (BG), Southwestern Mongolia. The figure was made with GeoMapApp (www.geomapapp.org) (Ryan et al., 2009). (B) Satellite image of the sampling locations
of microbialites at GSL (C)Close-up of GSL18 study localities at the Antelope Island and (D)GSL 19 sampling sites at Lakeside. (E) Satellite image of sampling locations
of microbialites at LB. (F) Close-up of LB19 study localities and three sampling sites. (G) Satellite image of sampling locations at BG. Imagery from July 2019 for
GSL, april 2018 for LB, and april 2019 for BG, ©2019 Google, Image Landsat/Copernicus.
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layers (∼2 cm) and lithified microbialites underneath. Living
microbial mats on the surface at Site 1 (LB19_0101) and 3
(LB19_0304) were easily penetrated and collected by pushing
standard 2 cm3 plastic cubes) into the mats. One hand sample
from Site 1 (LB19_0102) was subsampled with 2 cm3 plastic
cubes. Site 1 microbialites were additionally sampled with
5 cm diameter by 14 cm long (LB19_0103) and 7 cm diameter
by 30 cm long (LB19_0104) plastic cores by push coring. Lithified
samples were collected at Sites 2 and 3 using an electric drill with a
1 inch diamond coring bit. Soft samples collected by push core
and directly in cubes were frozen after sampling.

A lower Cambrian stromatolite limestone head was taken
from the middle of Unit 18 (Khomentovsky and Gibsher,
1996) of the Bayan Gol section within the Bayan Gol
Formation. The sample was only oriented with respect to
stratigraphic up, and with relatively high uncertainty as the
sample was not originally collected for paleomagnetic study.
The sample has parallel, but not horizontal, internal
laminations (Figure 2F), consistent with convex-upward
growth over a domal structure.

In the laboratory, lithified hand samples were sliced
perpendicular to laminations or growth directions. Each slice
was further subdivided along a grid forming samples of
1–1.5 cm3. These specimens, as well as the unoriented living
GSL specimens, were immobilized in 2 cm3 plastic cubes using
nonmagnetic paddings. Push cores from LB were split
longitudinally while frozen and were then allowed to soften so
they could be subsampled vertically every 3.5 cm using 2 cm3

cubes. Four specimens from each vertical horizon were collected.
Electric drilled samples were cut into 2 cm long specimens. Types
of samples and the number of sub-sampled specimens are listed
in Table 2.

Magnetic Methods
NRM and magnetic susceptibility (χ) were measured on all
specimens with the exception of χ on LB drill core specimens.
Most specimens were stepwise alternating field (AF)
demagnetized to the point where a specimen lost 85–95% of
the initial magnetization intensity. LB push core specimens from
samples LB_0103, 0104 were not demagnetized because they
dried and orientation was lost following NRM measurement.
Frozen living LB samples LB_0101 and 0102 were demagnetized,
but specimens thawed during measurement, leading to

movement inside the cubes and noisy data that could not be
interpreted. Specimen orientation during demagnetization was
alternated between + X/+Y/+Z and -X/-Y/-Z directions to reduce
the effects of possible unwanted bias field inside the AF
demagnetizing device. Additional specimens (GSL19_0103 and
BG14_0101) were subjected to stepwise thermal demagnetization
to 700°C for comparison. A best-fit characteristic remanent
magnetization (ChRM) was calculated using principal
component analysis (Kirschvink, 1980) from the higher
coercivity or temperature fraction. To calculate sample-average
ChRM statistics (Fisher, 1953), we accepted AF-demagnetized
specimens with anchored maximum angular deviation (MAD) <
10°. Data interpretation and sample-level Fisher mean
calculations were performed using the PmagPy software
(Tauxe et al., 2016).

Following AF demagnetization, a single-step anhysteretic
remanent magnetization (ARM) was acquired in a 150 mT AF
with 0.05 mT bias field. An isothermal remanent magnetization
(IRM) was acquired in steps between 0 mT and 1,000 mT on fully
demagnetized specimens. Some specimens had already been
exposed to high fields, and in this case a stepwise IRM was
acquired starting from a backfield of -1,000 mT IRM. These two
methods are symbolized as IRM0mT for the first case and IRM-

1000mT for the second case. To calculate the S-ratio, fully AF-
demagnetized (to 200 mT) specimens were given an IRM at
300 mT after an exposure to a saturation field at a 1,000 mT
in the opposite direction. The S-ratio was calculated based on the
formula of Thompson and Oldfieid, 1986 as S-ratio �
−IRM300mT/IRM1000mT.

The first derivatives of IRM acquisition curves were unmixed
mathmatically to provide information on coercivity distributions
and magnetic mineral populations (e.g., Robertson and France,
1994). This was carried out using MaxUnmix (Maxbauer et al.,
2016) online software which fits a set of skew normal
distributions to the data. For each distribution, the mean
coercivity (MC), dispersion parameter (DP), relative
proportion, skewness, and standard deviations were obtained.

Finally, to better constrain magnetic mineralogy, selected
specimens were subjected to thermal demagnetization of a 3-
axis IRM (Lowrie, 1990). IRMs of 1,000, 300, and 100 mT were
applied in three orthogonal directions to separate the hard,
medium, and soft coercivity fractions, and specimens were
then thermally demagnetized to 700°C.

TABLE 1 | Microbialite sample locations and descriptions.

Location/ID Latitude Longitude Features Status/Age

GSL18/Site 1 (GSL18_01) 41.06054 −112.24909 Ring structure microbialite Living and recently lithified
GSL18/Site 2 (GSL18_02) 41.05709 −112.25351 Ring structure microbialite Living and recently lithified
GSL18/Site 3 (GSL18_03) 41.06014 −112.26168 Dome style thrombolite Recently lithified
GSL18/Site 4 (GSL18_04) 41.02802 −112.27246 Ridge structure and ring structure microbialite Living and recently lithified
GSL19/Site 1 (GSL19_01) 41.21402 −112.85211 Monk-head structure microbialite Pleistocene
GSL19/Site 2 (GSL19_02) 41.15964 −112.86058 Cauliflower structure microbialite Pleistocene
LB19/Site 1 (LB19_01) 18.64766 −88.39658 Thrombolitic stromatolites with cyanobacteria layer Living and unlithified sediments
LB19/Site 2 (LB19_02) 18.61383 −88.42595 Poorly lithified porous microbialite Holocene or recently lithified?
LB19/Site 3 (LB19_03) 18.55834 −88.43537 Poorly lithified porous microbialite with cyanobacteria layer Living and recently lithified
BG14/Site 1 (BG14_01) 46.4213 96.18608 Dome style laminated stromatolite Cambrian
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Remanence measurements were made using a 2G Enterprises
755SRMS Superconducting Rock Magnetometer inside a
magnetically shielded room. Magnetic susceptibilities were

acquired using an AGICO MFK1-FA Multifunction
Kappabridge susceptibility bridge. AF demagnetization and
ARM acquisition were undertaken with an ASC D-2000 AF

FIGURE 2 |NRM intensity and magnetic susceptibility maps of microbialites with cubic interpolation to produce contours. (A)NRM intensity map and (B)magnetic
susceptibility map of GSL19_0201A with approximate 1.5 cm spatial resolution. (C) Photo of split large push core (LB19_0104) from unlithified living microbialite with
stromatolitic structures laminations up to 18 cm and thrombolitic structures from 18 cm to the top. (D) NRM intensity map and (E) magnetic susceptibility map of
LB19_0104 with approximate 3.5 cm spatial resolution. (F) Photograph of BG14_0101 sample slice prior to sub-sampling, and (G) its NRM intensity map and (H)
magnetic susceptibility map with approximate 1 cm spatial resolution. Color contours are on a linear scale but labeled gray contour lines show order of magnitude
variations. Black or white dots are sample positions and the color bars represent NRM intensity (Am2/kg) and magnetic susceptibility (m3/kg) values in the color range.
Gray squares illustrate approximate specimen sizes on sample maps. Solid (up) red arrow indicates up in the field and is similar to the sample growth direction. White
dashed lines roughly represent locations of distinct laminations. The red arrow represents the up direction in the field, which is close to the growth direction.
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demagnetizer. Stepwise thermal demagnetization was undertaken
by an ASC Thermal Demagnetizer, and IRM was imparted with
an ASC Impulse Magnetizer. These measurements were all
conducted at the Paleomagnetism Laboratory at the University
of Wisconsin- Milwaukee. Additionally, magnetization vs.
applied field (up to 1 T) measurements were conducted on a
Princeton Measurements vibrating sample magnetometer at the
Institute for Rock Magnetism, University of Minnesota. The
samples were all weakly magnetic and had a high diamagnetic:
ferrimagnetic or paramagnetic:ferrimagnetic ratio, and hysteresis
parameters could not be accurately calculated. We instead report
the high-field behavior of the samples.

RESULTS

Magnetization Intensity and Susceptibility
Variations
With the exception of LB samples, all samples possess an average
NRM intensity 1.00E-07 Am2/kg. Table 2 displays average
magnetic susceptibility, NRM, ARM and IRM1000mT with
standard deviations of each sample. The NRM intensity
measurements for all samples (>1.00E-11 Am2) were not
limited by the sensitivity of the cryogenic SQUID
magnetometer (∼1.00E-12 Am2 moment sensitivity limit).
However, specimens with NRM intensity less than 1.00E-10
Am2 approach the magnetization of sample container (1.00E-
13 to 1.00E-11 Am2). χ measurements are limited by the
sensitivity of the MFK1 Kappabridge susceptibility bridge
(∼2.00E-08 SI or ∼2.00E-13 m3).

To assess internal spatial variations in magnetization and
distribution of magnetic minerals, mass-normalized magnetic
susceptibility and NRM intensity of four GSL hand samples, two
LB push core samples, and one BG hand sample were contoured by
cubic interpolation (Figure 2). Spatial variations in magnetization
within these microbialite structures were compared to their internal
laminations with the aim of understandingmagnetization processes
and assessing NRM reliability.

Samples GSL19_0103, GSL19_0201, and GSL19_0202 have a
spatial correlation between NRM intensity and magnetic
susceptibility. GSL19 microbialite NRM and susceptibility vary
along the growth directions and are consistent along internal
laminations (Figures 2A,B, Supplementary Figure S1). With the
exception of a high NRM intensity spot at the bottom right,
LB19_0104 has roughly consistent NRM intensity distribution
along internal structures (Figure 2D). The magnetic susceptibility
mapping shows high values around 18 cm depth, the transition level
where stromatolitic laminations changed to a thrombolytic structure
(Figure 2E). BG14_0101 has roughly constant NRM intensity
(Figure 2G) and magnetic susceptibilities (Figure 2H) along
laminations, with a low value in middle layers compared to outer
and bottom layers. Magnetic susceptibility and NRM of GSL18_0301
and LB19_0103 (not shown), which have a width less than 10 cm,
have similar magnetic susceptibility and NRM intensity trends.
However, no obvious correlations with laminations are observed
within these small samples.

Magnetic Mineralogy
Results from all samples are consistent with magnetite as a
dominant magnetic carrier. This component has a mean

TABLE 2 | Sample types and magnetic properties.

Sample Id Type O X (n) X. σ NRM (n) NRM. σ ARM (n) ARM. σ IRM (n) IRM. σ S-ratio
(n)

S. σ

GSL18_0101 HS U 2.05E-07 (2) 3.86E-07 4.79E-07 (2) 3.36E-07 9.42E-07 (2) 6.57E-07 6.01E-05 (2) 3.63E-06
GSL18_0102 HS U 1.67E-07 (1) 2.52E-07 (1) 4.38E-07 (1)
GSL18_0104 HS U −7.63E-08 (1) 2.50E-07 (1) 2.42E-07 (1)
GSL18_0201 HS U 5.97E-07 (1) 4.84E-07 (1) 7.42E-07 (1)
GSL18_0202 HS U 9.63E-07 (4) 6.66E-07 3.34E-06 (4) 4.60E-06 8.15E-07 (4) 1.93E-07
GSL18_0301 HS F 9.90E-07 (55) 5.07E-07 4.42E-07 (55) 4.42E-07 6.58E-07 (55) 2.92E-07 9.05E-05 (19) 5.87E-05 0.96 (19) 0.03
GSL18_0401 HS U 9.80E-08 (2) 1.34E-07 1.47E-06 (2) 7.10E-07 7.94E-07 (2) 8.35E-08
GSL18_0402 HS U 9.91E-07 (4) 3.81E-07 7.07E-07 (4) 5.98E-07 9.88E-07 (4) 3.72E-07
GSL19_0103 HS F 3.12E-07 (45) 1.03E-06 9.76E-07 (45) 8.96E-07 0.92 (35) 0.01
GSL19_0201 HS F 8.26E-07 (42) 6.16E-07 5.08E-07 (42) 4.64E-07 0.92 (42) 0.02
GSL19_0202 HS F 9.05E-07 (22) 4.57E-07 4.69E-07 (22) 3.41E-07 1.01E-06 (22) 3.46E-07 7.65E-05 (6) 2.72E-05 0.92 (16) 0.02
LB19_0101 BS F −5.99E-07 (8) 2.56E-08 2.08E-08 (8) 9.14E-09 8.92E-08 (8) 8.58E-09
LB19_0102 BS F −5.66E-07 (9) 2.09E-08 4.49E-08 (9) 3.68E-08 1.02E-07 (2) 2.18E-08 5.17E-06 (1)
LB19_0103 PS P −4.71E-09 (8) 4.76E-10 3.84E-08 (8) 2.61E-08
LB19_0104 PS P −5.47E-09 (36) 7.53E-09 2.17E-08 (36) 2.69E-08
LB19_0201 DC P 4.87E-08 (3) 1.62E-08
LB19_0301 DC P 5.12E-08 (5) 7.24E-09 1.03E-07 (5) 3.80E-08 3.46E-06 (5) 3.01E-06 1.02 (5) 0.02
LB19_0302 DC P 1.34E-07 (6) 1.16E-07
LB19_0304 BS F −5.90E-07 (6) 6.48E-08 1.87E-07 (6) 4.13E-07 1.08E-07 (2) 8.07E-09 7.14E-06 (2) 3.34E-06
BG14_0101 HS P 3.49E-09 (71) 1.98E-09 3.33E-07 (71) 5.54E-07 9.53E-07 (28) 4.73E-07 2.79E-05 (35) 1.55E-05 0.76 (35) 0.14

O, orientation, n, number of measured specimens, χ , mean magnetic susceptibility (m3/kg), χ. σ, standard deviation of magnetic susceptibility (m3/kg), NRM, mean natural remanent
magnetization intensity (Am2/kg), NRM. σ, standard deviation of NRM (Am2/kg), ARM, mean anhysteretic remanent magnetization (Am2/kg), ARM. σ, standard deviation of ARM (Am2/kg),
IRM, mean 1000 mT isothermal remanent magnetization (Am2/kg), IRM. σ, standard deviation of IRM (Am2/kg), S-ratio, mean value of -IRM300mT/IRM1000mT, S. σ, standard deviation of
S-ratio. HS, hand sample, BS, block sample directly collected from surface, PC, push piston core samples, DC, drilled core samples by portable electric drill, U, unoriented, F, fully oriented,
P, partially oriented.
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coercivity of ∼29–57 mT (Supplementary Table S1), consistent
with single domain (SD) to ‘pseudo-single-domain’ (PSD)
minerals that have non-uniform spin behavior. Modern
samples (e.g., GSL, LB) are dominated by this component and
have large negative high-field diamagnetic slopes. The Cambrian
BG sample, however, has a mixture of low- and high-coercivity
minerals with positive high-field paramagnetic slopes
(Supplementary Figure S2).

GSL18: The S-ratio range of 19 lithified GSL18_0301
specimens is 0.92–1.06, with an average of 0.96, indicating that
low coercivity ferrimagnetic minerals such as magnetite are
dominant. Based on IRM unmixing results, the dominant
magnetic components of the GSL18 living and GSL18_0301
lithified specimens have a mean coercivity of ∼56 mT for four
IRM0mT unmixing results and ∼38 mT for four IRM-1000mT

unmixing results, with similar DPs of 2.7 mT. Coercivity
spectra derived from IRM acquisition data for all specimens
are shown in Figure 3. There is little variability between living
and lithified specimens from the same site. The three-component
IRM demagnetization experiment shows a gradual decrease of the
soft (71–78%) and medium (17–23%) coercivity fractions to
575°C and flattening after 620°C (Figure 4A). This gradual
unblocking is consistent unblocking of domain walls, but may

also represent some compositional variability. A high-coercivity
fraction contributes <7% to the total IRM, and measurement
noise made it difficult to evaluate a maximum unblocking
temperature.

GSL19: The average S-ratio value of 93 GSL19 specimens is
slightly lower than GSL18, with an average of 0.92 and a range of
0.87–0.96 (Table 2). All three GSL19 samples have a spatially
correlated NRM intensity and S-ratio. High NRM correlates with
high S-ratio (Supplementary Figures S1, S3). Only a single
magnetic component can be confidently identified in six
specimens of the Pleistocene GSL19_0202 based on IRM-

1000mT unmixing. This dominant component has a mean
coercivity of 38 mT with a DP of 3.1 mT, again consistent
with SD to ‘PSD’-like magnetite. The soft (68–73%) and
medium (22–26%) coercivity fractions flatten out at ∼580°C in
the three-component IRM test (Figure 4B). Although a higher-
coercivity component was not identified in the relatively noisy
IRM unmixing data, hard minerals comprise a small fraction
(5–8%) of the three-component IRM and gradually decrease to
675°C, consistent with hematite.

LB19: LB results are similar to those observed in GSL18
specimens. The S-ratio range of five LB19_0301 specimens is
0.99–1.05 with a mean value of 1.02, again consistent with low-

FIGURE 3 | IRM acquisition results. (A) IRM acquisition starting from the AF-demagnetized state. For comparison, IRM acquisition curves for two remagnetized
carbonates are shown (Jackson and Swanson-Hysell, 2012). (B)Derivative of IRM acquisition, normalized to peak value to better compare spectra. Data from (A) shown
in thin black lines. For comparison, data from Jackson and Swanson-Hysell (2012) in thick gray line. Surface carbonate platform muds in thick yellow lines (Maloof et al.,
2007). Biogenic hard (BH), biogenic soft (BS), and detrital + extracellular (D/EX) shown in shaded brown from Egli (2004). Maloof et al. (2007) and Egli (2004)
distributions derived from AF demagnetization of a 300–350 mT IRM and are therefore not strictly analagous to data from this study. (C) Backfield IRM acquisition and
(D) derivative.
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coercivity minerals like magnetite. LB19_0102, 0301, and 0304
were subjected to IRM unmixing experiments and all LB
microbialites have a consistent dominant component with a
mean coercivity of 28–50 mT with a DP of 2.2–2.9. No major
differences are observed between living microbial sediments and
lithified microbialite samples in terms of component numbers,
major MC, or DP. In the three-component IRM experiment, the
low-coercivity fraction accounted for the highest proportion
(75–81%) of IRM for 4 specimens of LB19_0301. This
component gradually decreased and flattened out after
575°C–600°C, indicating magnetite (Figure 4C). With the
exception of LB19_0301_C, the medium coercivity (17–22%)
components have maximum unblocking temperatures of

550°C, and there is no significant hard coercivity fraction
(<5%) (Supplementary Figure S4).

BG14: Unlike the GSL and LB samples, the BG stromatolite
has variable magnetic mineralogy with a large S-ratio range from
0.42 to 0.95 (Figure 5). Low coercivity minerals are present in
higher concentrations in inner layers and high coercivity minerals
occur in outermost layers except two points at the left top. This is
also shown in IRM acquisition (Figure 3C) and unmixing curves
(Figures 3D, 5) where outer layers have a significant high
coercivity component (purple lines in Figure 5). Based on the
three-component IRM results (Figure 4D), the soft fraction is the
largest (51–69%) and gradually unblocks up to ∼575°C, again
consistent with magnetite. The medium fraction (20–25%)

FIGURE 4 | Three-component IRM technique thermal demagnetization results for microbialite samples (A) GSL18 (B) GSL19 (C) LB19, and (D) BG14. Three-
component IRM (Am2/kg) produced with applied field of 100 mT (soft), 300 mT (intermediate), and 1,000 mT (hard). Soft, medium, and hard fractions are shown as blue
circle, orange triangle, and green square, respectively. Additional plots are included in Supplementary Figure S4.
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decreases to ∼300–350°C for low S-ratio specimens (e.g.,
BG14_0101_A05 and 12), consistent with titanomagnetite and/
or pyrrhotite. The medium fraction in high S-ratio specimens
additionally decreases to ∼650°C (e.g., BG14_0101_A12 and 70),
consistent with (titano)hematite and/or thermally stable
maghemite (Supplementary Figure S4). The hard fraction of
low S-ratio and high S-ratio specimens accounts for 20–30% and
<12% of the IRM, respectively. This fraction decreases to about
625°C–675°C, consistent with the presence of hematite.

Directional Analysis
GSL: Fifteen measured (unoriented) actively growing
cyanobacteria layers are fully demagnetized by around
40–100 mT, and a stable paleomagnetic direction is isolated up
to 60 mT (Figure 6A). A small overprint is typically removed by
∼7.5 mT. Of the lithified (oriented) samples GSL18_0301,
GSL19_0103, and GSL19_0202, 47% (26/55), 100% (10/10)
and 35% (8/23) respectively have stable AF demagnetization
behavior (Figure 6C), and 80% (8/10) of GSL19_0103
specimens have stable thermal demagnetization behavior
(Figure 6D). Sample-level Fisher mean declinations
(Figure 7A) of all samples are close to that predicted for a
geocentric axial dipole (GAD) or to models of paleosecular

variation for the past 10 kyr (CALS10k.2; Constable et al.,
2016). However, GSL18_0301 (43.9°) and GSL19_0103 (36.7°)
have anomalously shallow inclinations.

LB: Living sediments (e.g., LB19_0101, 0102, 0304) and lithified
microbialites (e.g., LB19_0301) were fully demagnetized by
25–60mT and 60–70 mT, respectively. Five specimens of
lithified microbialite LB19_0301 have stable AF-demagnetization,
and magnetic directions are isolated between 12.5 mT and 60mT
(Figure 6B). Most of the LB sites were located in moving water,
which may complicate interpretation of DRM directions. LB19 Site
1 was in a stagnant environment, so only specimens from this site
were used for directional analysis. These samples were not
demagnetized (see Magnetic Methods), we report only NRM
directions for this site. The Fisher (1953) mean direction
(Table 3) of LB19_0101 (N � 8) and LB_0102 (N � 8) overlap
the CALS10k.2 or GAD, although they have high α95 values.
LB19_0104 (N � 36) has a large declination dispersion
consistent with rotation of the core during sampling. The
inclination-only (McFadden and Reid, 1982) Fisher mean of
LB19_0104 is 36.8° ± 7.15, which overlaps the GAD value of
33.9° (Figure 7B; Table 3).

BG: BG14_0,101 was only oriented with respect to up, but
specimens in the structure were mutually oriented. AF

FIGURE 5 | IRM unmixing curve and S-ratio distribution for sample BG14_0101. IRM results were plotted through the MaxUnmix online software (Maxbauer et al.,
2016) on a log scale. Gray dots represent actual data, and yellow lines represent total IRM best-fit based on real data. Colored lines (blue and purple) represent different
coercivity components. The shadings represent 95% confidence intervals calculated using a resampling algorithm with N � 300. An asterisk next to a specimen name
indicates that the specimen went through the -1000mT IRM process.
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demagnetization was more effective in extracting stable
magnetizations (59.4%), and an overprint is typically removed
by ∼30 mT. None of the thermally processed specimens (N � 10)
had a coherent demagnetization pattern (Figures 6E,F). Pilot
thermomagnetic data, c(T), show the production of magnetite at
temperatures > ∼400°C (Supplementary Figure S5), consistent
with the thermal decomposition of siderite (e.g., Pan et al., 2000).
ChRM Fisher mean inclinations for 22 out of 37 AF-

demagnetized specimens (−66.3° ± 3.7°) overlap with the
inclination (−62 ± 4°) obtained from siliclastic sediments with
calcareous interbeds in the Bayan Gol formation (Evans et al.,
1996) (Figure 7C). There are inclination variations, however,
associated with bedding/lamination slopes of the microbialite.
While inclinations from one side with respect to the vertical have
inclinations of −75.0° to −65.0°, those from the other side are
−65.0° to −55.0° (Figure 8).

FIGURE 6 | Vector endpoint diagrams for representative microbialite specimens. (A) AF demagnetization pattern for living Antelope Island GSL microbialite
specimen GSL18_0202_01 (B) AF demagnetization pattern for living lithified LB Site 3 microbialite specimen LB19_0301_A (C) AF demagnetization pattern for
specimen Lakeside lithified GSL microbialite GSL19_0103_15 (D) thermal demagnetization of specimen GSL19_0103_04 (E) AF demagnetization for BG stromatolite
specimen BG14_0101_48; and (F) thermal demagnetization for specimen BG14_0101_06.

FIGURE 7 | Equal area stereographic projection of magnetization components observed from (A) GSL (B) LB, and (C) BG samples. The mean declination and
inclination with α95 ellipses of NRM or ChRM. Where declination was not available (LB19_0104) mean inclination is shown as a circle around the center with α95. Open
and closed symbols represent directions in the upper and lower hemisphere, respectively. A gray star in (A) GSL (B) LB panel represents GAD value of each site. The
black line on GSL and LB stereographic projections represent the CALSk10.2 model based on the latitude and longitude of GSL sampling site from 10 ka to
present (Constable et al., 2016). The gray shading annulus on the BG panel (inclination: −62 ± 4°) represents the expected directions derived from sedimentary beds in
the same formation (Evans et al., 1996).
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DISCUSSION

Magnetic Minerology
While S-ratio values for all modern microbialites (i.e., GSL18,
LB19) are high (i.e., magnetite), ancient samples (i.e., GSL19,
BG14) have lower values that indicate the presence of additional
high coercivity materials. IRM unmixing results and three-
component IRM tests show that all modern samples are
dominated by a component with a mean coercivity of 37 mT
for IRM-1000mT and 48 mT for IRM0mT, with the DP of 2.7,
consistent with magnetite. The BGmicrobialite has a high relative
proportion of high coercivity and high unblocking-temperature
(up to 675°C)minerals consistent with hematite. A signature from

high coercivity fractions is observed in IRM unmixing results for
weakly magnetic living GSL18 and LB19 cyanobacteria layer
samples. This might represent a small proportion of high
coercivity material, but experimental noise means this
component is poorly constrained. While three-component
IRM results contain a hint of hard fractions (<7%), we infer
that these signatures are experimental noise based on S-ratio
results.

This difference in magnetic mineralogy between young and
old microbialite samples may be attributed to different
depositional material in the original environment. It is also
possible that the high-coercivity minerals formed during
diagenesis, leading to concerns of a partial or complete
overprint in the ancient samples. However, these high-
coercivity minerals do not appear to contribute to the NRM,
which is fully AF-demagnetized at < 200 mT and is held entirely
by low-coercivity minerals.

The coercivity distribution for nearly all GSL and LB
specimens is remarkably similar, although GSL specimens
have slightly higher coercivity (Figure 3). These distributions
are similar to IRM acquisition for some remagnetized Devonian
carbonates (Jackson and Swanson-Hysell, 2012). That study
interpreted the magnetic signature to arise at least partially
from authigenic formation of SD magnetite, an interpretation
favored by many other studies of carbonate rocks (e.g., Jackson
1990; McCabe and Channell, 1994; Suk and Halgedahl, 1996;
Swanson-Hysell et al., 2012). Diagenesis seems an unlikely
explanation for the GSL and LB samples, where we see no
difference between living and lithified specimens.

In Figure 3B, we also compare our coercivity spectra derived
from the IRM0mT with spectra derived from AF demagnetization
of a 300 mT (Egli, 2004) or 350 mT (Maloof et al., 2007) IRM.
Spectra are all normalized to their peak value for better
comparison. While the methods are not strictly analogous, our
spectra show a lower mean coercivity but similar dispersion (in
log space) to two spectra measured on surface carbonate platform
muds in the Bahamas (Maloof et al., 2007). Based on these and
other data, Maloof et al. (2007) interpret the magnetic remanence
in their samples to arise largely from magnetotactic bacteria. The
component spectra from Egli (2004) are derived from IRM
unmixing of lake sediment data. Two narrow spectra with
peaks at ∼45 mT (‘biogenic soft’) and ∼75 mT (‘biogenic hard’)
are interpreted to result from the presence of magnetotactic
bacteria, while a much broader distribution with a peak at
∼25 mT is thought to be a mixture of detrital magnetite and
extracellular biogenic magnetite, which have overlapping
distributions. Our spectra most closely resemble this detrital/
extracellular component. We interpret the GSL and LB samples to
be dominated by a similar component, although we cannot
exclude some contribution from lower-coercivity
magnetotactic bacteria.

The BG samples have a similar component consistent with
detrital and/or extracellular magnetite, in addition to the high
coercivity component. Due to the age of the sample, we cannot
exclude the additional possibility of authigenic magnetite (e.g.,
Jackson and Swanson-Hysell, 2012), although there is some
evidence the magnetization may be detrital in origin (Origin

FIGURE 8 | (A) Inclination mapping of the BG14_0101 sample slice with
contouring by cubic interpolation. The black arrow and dashed lines represent
up directions and laminations. (B) Equal area stereographic projection of
reoriented magnetization components of the sample BG14_0101 by
rotating total mean declination to the magnetic north. Specimen declinations
and inclinations from the left and right sides with respect to the stratigraphic up
direction (black arrow) are symbolized as red and blue circles, respectively.
The mean direction of each group is marked as a square symbol with α95
ellipses. The gray shading annulus on the BG panel (inclination: −62 ± 4°)
represents the expected directions derived from sedimentary beds in the
same formation (Evans et al., 1996).
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and Timing of Magnetization). Authigenic magnetite is common
in many carbonates (e.g., Jackson, 1990; McCabe and Channell,
1994; Suk and Halgedahl, 1996; Jackson and Swanson-Hysell,
2012; Swanson-Hysell et al., 2012). Early reductive diagenesis can
dissolve primary magnetite and produce iron sulfides such as
pyrite, which may then later oxidize to magnetite (e.g., Suk et al.,
1990a; Suk et al., 1990b; Weil and Van der Voo, 2002; Kodama,
2012; Roberts, 2015). Nevertheless, it has been proposed that the
early lithification and cementation associated with some
microbialites may lead to an increased probability of
preserving the primary magnetic mineralogy (Maloof et al.,
2007).

Origin and Timing of Magnetization
Directional information from microbialites with moments
<1.00E-10 Am2 is apparently less reliable, likely due to a small
but significant contribution from the chosen sample containers
(1.00E-13 to 1.00E-11 Am2). As these samples demagnetize, they
also approach the stated sensitivity of the magnetometer (∼1.00E-
12 Am2). These effects could be reduced in future studies in part
by careful choice of sample holders.

Our results for microbialite ChRMs with sufficiently high
magnetization appear to record directions close to the
expected field direction, with some caveats. The Laguna
Bacalar NRM directions are consistent with the expected field
direction but have large uncertainties. We interpret these
uncertainties to arise from the relatively small number of
specimens measured and the lack of AF cleaning which would
remove any overprints. While the inclination recorded by the
Bayan Gol formation stromatolite is consistent with that reported
by Evans et al. (1996) in sediments from the same formation,
those authors could not preclude the possibility of a
remagnetization. Even though the ChRM was determined to
pre-date folding, the entire measured section was of a single
polarity, leading the authors to question a primary remanence.

Despite these limitations, an attraction of using ancient
microbialites is to potentially recover high temporal resolution
variations of geomagnetic field, and it is therefore important to
assess the timing and origin of the acquired magnetization. Is the
magnetization detrital, locked in soon after deposition and
incorporated into the microbialite matrix? Or is it a chemical
remanence (biomediated or otherwise) acquired soon after
deposition? Or is it related to later diagenesis?

The observed relatively homogenous magnetization along
microbialite laminations and variations across laminations
suggests a magnetic mineral concentration and magnetization
distribution associated with deposition. All studied microbialites
seem to preserve this magnetization pattern.

The observed deviation of paleomagnetic directions away
from expected values (declination ±10°, inclination ±20°) may
be caused by deposition on sloping beds. King (1955) and
Kodama (2012) proposed that when a bed dips (shallowly) in
the same direction as the magnetic field, the magnetization vector
would be steeper by the degree of dip gradient. If the bedding
slope is opposite to the Earth’s magnetic field, the inclination can
be shallower. Many microbialites have domal internal structures,
hence, magnetic directions recorded by different parts of the

structure might be disturbed by the effect of deposition on a
sloping bed, although there are some obvious differences between
normal sedimentary deposition and incorporation into a
filamentous microbial matrix. Sample GSL18_0301 was from
the (very) steep side of the columnar mound structure, with a
slope opposite to the magnetic field. The sample Fisher mean
inclination of 43.9° is 16.1° shallower than the geocentric axial
dipole (GAD) inclination, and the magnetic vectors may have
experienced a bedding-related shallowing. Data from partially
oriented sample BG14_0101 were rotated (Figure 8B) so that the
mean declination corresponds to geographic south (expected
declination for reverse polarity). In this orientation, the left
side of the stromatolite (Figure 8A) dips down toward
geographic south, opposite to the field direction which is up
(negative inclination) and has an inclination shallower than total
mean of −66.3° (Figure 8B). By contrast, the right side on
Figure 8A dips down to geographic north, roughly parallel to
the field, and has a steeper inclination. Inclinations from right
side of the structure are −75.0° to −65.0° (Fisher mean � −69.0° ±
3.3°), while the specimens from left side are −65.0° to −55.0°
(Fisher mean � −63.1° ± 8.3°), which might support the bedding
slope effect. However, Watson’s F-test (Watson, 1956) and
Vw-test (Watson, 1983) both show that these means are not
statistically distinct at the 95% confidence level. In contrast to
these two samples which show inclination deviations, all GSL 19
samples are small structures (<40 cm diameter), and specimens
from throughout the structure were used and averaged out. The
push core sample LB19_0104 was from the middle of the
structure with nearly horizontal layering, and here the Fisher
mean inclination of 36.8° ± 7.2° is close to the expected GAD
inclination of 33.94°. While not conclusive, these inclination
variations associated with the slope of the microbialite layering
are intriguing and point to preservation of a primary DRM.

DRM is a relatively inefficient magnetization process, so the
DRM/ARM ratio should be relatively low. While not definitive, a
ratio of NRM/ARM <1 is consistent with a DRM. Clastic
sediments have a wide NRM/ARM range from ∼0.1 to 0.8
(e.g., Levi and Banerjee, 1976; King et al., 1983; Constable,
1985). The NRM/ARM of biogenic magnetite is comparatively
low (<0.05) in marine sediments (Roberts et al., 2012; Rodelli
et al., 2019), but much higher values (0.4–1.4) have been
documented in varved lake sediments dominated by biogenic
magnetite (Snowball and Sandgrena, 2002). The low values in
marine sediments are attributed to the SD state of the biogenic
material which results in very efficient ARM acquisition (Egli and
Lowrie, 2002) compared to larger particles. The elevated values in
the varved sediments may be partially due to more efficient DRM
acquisition in fresh water (Katari and Tauxe, 2000; Mitra and
Tauxe, 2009); a higher concentration of particles leading to
magnetic interaction effects on ARM acquisition (Egli and
Lowrie, 2002); and/or reduced bioturbation (Egli and Zhao,
2015; Zhao et al., 2016). Chemical remanent magnetization
(CRM) acquired by magnetite growth through the blocking
volume has a CRM/ARM ratio of ∼0.5 (Pick and Tauxe,
1991), which may be similar to extracellular magnetite
produced in situ by bacteria within the microbialite matrix. It
may or may not be similar to a CRM acquired during oxidation of
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pyrite to magnetite, the processes possibly responsible for
magnetite in remagnetized carbonates.

Figure 9 shows NRM vs ARM intensity data for this study,
along with NRM/ARM bounds for clastic sediments (0.1–0.8)
and marine biogenic magnetite (<0.05). The geometric mean of
the NRM/ARM of GSL18 living microbialites, GSL18_0301, and
GSL19_0202, are 0.98, 0.57, and 0.37, respectively. LB19 living
microbialites and LB19_0301 have a geometric mean of 0.41 and
0.52, respectively. BG14_0101 has a geometric mean NRM/ARM
ratio of 0.19, the lowest value among all microbialites. Most
specimens are within the clastic detrital range with only one
BG14_0101 specimen less than 0.05. These data are fully
consistent with a predominantly clastic detrital origin, but
some uncertainty in ratio for a biogenic contribution(s) and/or
a CRM leaves room for other interpretations. While more work
needs to be done to examine the magnetization process and the
possible effects of diagenesis, the internal distribution of
magnetization with respect to microbialite layering, NRM/
ARM ratios, and the inclination variations correlated with
bedding slopes suggest that the timing of sediment deposition

and acquisition of magnetization samples are close and may be
consistent with a primary DRM.

CONCLUSION

We investigated the potential of modern and ancient
microbialites as paleomagnetic recorders. Microbialites with
NRM >1.00E-10 Am2 record recoverable, stable magnetic
directions. All microbialites appear to record average
directions close to the expected field direction. The dominant
NRM carrier in all samples is 35–50 mT SD to ‘PSD’ magnetite.
The Cambrian BG sample also has a contribution from high
coercivity minerals, which do not contribute to the NRM.

We interpret the NRM to be at least partially detrital in origin. This
interpretation is based on the magnetization distribution in the
structure, the NRM/ARM ratios consistent with detrital sediments,
and inclination variations that correlate with changes in bedding
slopes. In some cases, the NRM to ARM ratio is higher, suggesting
another magnetization process. This may be due to biomineralization
of magnetic minerals and/or diagenesis soon after deposition.

To reduce inclination variations resulting from sloping beds,
samples from large domal structures should be collected avoiding
steep sides or by sampling all sides. For smaller scale hand
samples (<50 cm), the sample slice should be cut parallel to
the expected direction of the magnetic declination. Then,
specimens from different lamination angles should be collected
to average out the deviations generated by sloping beds.
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FIGURE 9 | NRM intensity (x-axis) vs. ARM intensity (y-axis) of
microbialites on log scales. The sample group of GSL18_living (GSL18 living
microbialites with cyanobacteria layer collected from Antelope Island Site 1, 2
and 4), GSL18_0301 (lithified microbialite from Antelope Island Site 3),
GSL19_0202 (lithified modern microbialite from Lakeside Site 2), LB19_living
(surface living microbialite samples collected from LB19 Site 1 and 3),
LB19_0301 (lithified porous microbialite sample from LB19 Site 3),
BG14_0101 (Cambrian Bayan Gol formation stromatolite) are shown with red,
orange, yellow, green, blue, and purple circles, and their geometric means are
symbolized with stars. The black solid line represents NRM to ARM ratio of
1 (x � y), and measurements plotted on the left side of this line (ARM >> NRM)
is consistent with a DRM origin. The gray shading shows the NRM/ARM range
of clastic sediments (0.1–0.8) (e.g., Levi and Banerjee, 1976; Constable,
1985), and the gray dashed line represents the maximum constraint for
biogenic magnetite (0.05) (e.g., Roberts et al., 2012; Rodelli et al., 2019).

TABLE 3 | Sample-average Fisher statistics.

D I N* N R k α95

GSL18_0301 (ChRM) 356.8 43.9 26 55 24.5 16.9 7.1
GSL19_0103 (ChRM) 3.76 36.7 18 20 17.6 44.8 5.2
GSL19_0202 (ChRM) 350.2 62.9 8 23 7.9 67.0 6.8
LB19_0101 (NRM) 346.6 43.6 8 6 3.5 34.9
LB19_0102 (NRM) 40.4 36.6 8 6.5 4.5 29.3
LB19_0104 (NRM) 36.8 36 31.5 7.8 7.15
BG14_0101 (ChRM) 18.5 −66.3 22 37 21.7 70.2 3.7

D, mean declination; I, mean inclination; N*, number of MAD <10 specimens; N, number
of total specimens; R, the length of the resultant vector; k, the precision parameter; α95;
the circle of 95% confidence angle about the mean.
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