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The unsaturated zone (UZ) extends across the Earth’s terrestrial surface and is central to
many problems related to land and water resource management. Flow of water through
the UZ is typically thought to be slow and diffusive, such that it could attenuate fluxes and
dampen variability between atmospheric inputs and underlying aquifer systems. This
would reduce water resource vulnerability to contaminants and water-related hazards.
Reducing or negating that effect, however, spatially concentrated and rapid flow and
transport through the unsaturated zone is surprisingly common and becoming more so
with the increasing frequency andmagnitude of extreme hydroclimatic events. Arising from
the wide range in the rates and complex modes of nonlinear flow processes, these effects
are among the most poorly characterized hydrologic phenomena. Issues of scale present
additional difficulties. Equations representing unsaturated processes have been
developed and tested on the basis of field and laboratory measurements typically
made at scales from pore size to plot size. In contrast, related problems of significant
interest to society, including floods, aquifer recharge, landslides, and groundwater
contamination, range from watershed to regional scales. The disparity between the
scale of our understanding and the scale of interest for societal problems has spurred
application of these model equations at increasingly coarse resolutions over larger areas
than can be justified by existing measurements or theory. This mismatch in scales requires
an assumption that spatially averaging slow diffusive flow and rapid preferential flow can
effectively represent the influence of both processes across vast areas. Given the currently
inadequate recognition and quantitative characterization of focused and rapid processes
in unsaturated flow, these phenomena are critically in need of expanded attention and
effort.
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INTRODUCTION

Rapid hydrologic responses in the unsaturated zone (UZ), the portion of the subsurface that extends
vertically from the land surface to the groundwater table, pose considerable monitoring and
modeling challenges. We use the term “rapid” here to denote hydrologic responses with
timescales substantially shorter than the timescale of days that is typically associated with storm/
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interstorm cycles (Blöschl and Sivapalan, 1995). Mounting
evidence for a future in which precipitation events are both
more intense (Groisman et al., 2005; Fischer and Knutti, 2016)
and more frequent (Myhre et al., 2019; Papalexiou and
Montanari, 2019) heightens the need for robust approaches to
assess and predict consequences of major hydrologic events on
water resources and hazards.

Flow within the UZ occurs in two principal modes: diffuse
flow through a succession of typically microscopic pores of the
bulk medium, and rapid preferential flow spatially concentrated
in fractures, wormholes, and other relatively direct
(i.e., preferential) paths that constitute a small volume fraction
of the porous media. Rapid UZ responses can significantly
influence the degree and timing of 1) runoff and infiltration,
2) stormflow response of streams, and 3) subsurface transmission
of water and solutes (Ebel and Loague, 2008; Gurdak et al., 2008;
Zheng et al., 2019). These processes can in turn determine the
extent and severity of flooding, landslides, and contamination
hazards as well as the magnitude of aquifer recharge (Luo et al.,

2018). Rapid recharge occurring mainly as preferential flow can
be beneficial in terms of water supply but also has the potential to
carry contaminants great distances with little opportunity for the
occurrence of processes that reduce contamination risk (Mirus
and Nimmo, 2013). In this perspective, we describe the
implications for applying small-scale UZ data and theoretical
constructs to large-scale rapid-response problems, in ways we
hope are useful to scientists and the broader communities of
concern.

ISSUES OF SCALE

Figure 1 illustrates the mismatch between typical measurements
and societal problems for the spatial scales associated with rapid
UZ hydrologic response. Most measurement methods capturing
rapid UZ response characterize areas at the small plot (1 m2) to
hillslope (10 m2) scale. Yet most societal problems, such as
aquifer recharge and landslide initiation, span from large

FIGURE 1 | Approximate (A) areal extents and (B) temporal scales of various elements of unsaturated zone science. The gray shaded regions indicate the
range of scales that are typically considered important for addressing hazards and water resource decisions. Red lines indicate the typical (A) extents and (B)
durations of various problems of interest. Blue lines show the typical capabilities of various measurement technologies to provide data that are: (A) representative of
a given area, and (B) collected over a given period with a given temporal resolution. Green text indicates spatial terms generally associated with corresponding
areal extent.
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hillslope (104 m2) to regional (1010 m2) scales. Demand for
defensible approaches to managing water resources at regional
scales, typically greater than 107 m2, to address integrated
environmental and socioeconomic issues has grown rapidly in
recent decades (National Research Council, 2000).
Contamination problems do not only occur at the local source
area where the pollutant is emitted but can spread regionally on
the land surface and within aquifers, and also within the UZ for
significant distances (Nimmo et al., 2002).

Models that quantify rapid UZ responses are commonly
applied at scales far exceeding those of the available
measurements and the reliability of UZ hydrologic theory. For
example, a modeling approach that effectively averages fast and
slow flow paths cannot meaningfully capture the conditions that
lead to initial arrival of a contaminant from a source. Likewise, a
hydrologic model that uses daily time-steps cannot meaningfully
capture the abrupt runoff-generation processes that lead to
deadly and destructive post-fire debris flows and flash floods
triggered by rapid runoff during short-duration, high-intensity
rainfall (e.g., Moody and Martin, 2001; Kean et al., 2019). Early
warning systems (e.g., Alias et al., 2020) would benefit from more
realistic models.

MEASUREMENTS AND DATA

Multiple difficulties arise from differences in spatial scale between
measurements and societal problems. For example, they
complicate the use of measurements for data-based early
warning systems of flooding and landslide initiation because

measurements represent only a minuscule fraction of the area
at risk. While large-scale geophysical or satellite-based
observations obviate the spatial coverage issue (e.g., Zhang
et al., 2019), their scale of areal characterization and coarse
spatial resolution is incompatible with the theory developed to
understand and predict rapid UZ hydrologic response. Beyond
the areal discrepancies shown in Figure 1A, the depth dimension
of measurements also is typically covered inadequately by large-
scale integrated measurements because it is either too shallow
(e.g., for satellites, a 0.05-m surficial skin), or averaged over such a
range of depths as to blur and essentially mask small-scale
heterogeneities that are critical controls on rapid-response
processes.

The temporal scale and resolution of UZ measurements also
are commonly mismatched to those of societal problems
(Figure 1B). Large-scale measurements typically lack the
temporal resolution required for rapid processes. Satellite soil
moisture products, for example, can provide unprecedented
global coverage (https://smap.jpl.nasa.gov/), but limited
temporal resolution precludes their use for capturing rapid
spikes in pore-water pressure that drive landslide initiation, or
even for accurately representing seasonal trends in hillslope
drainage over complex terrain (Thomas et al., 2019). Small-
scale measurements, such as those gathered via in-situ sensors,
often have adequate resolution of an hour or less, but are seldom
available over sufficient durations to characterize the range of
normal system behavior and capture a spectrum of
hydrometeorological drivers (Tetzlaff et al., 2017). The lack of
these measurements, and the associated inadequate
quantification of rapid hydrogeologic responses to extreme
hydrometeorological events, stifles development of new theory
andmodels that describe and predict rapid-response phenomena.
Advances in environmental tracers show good potential in
characterizing unsaturated zone travel-time distributions (e.g.,
Green et al., 2018). Figure 2 shows how tracer first-arrival times,
which mostly fall within the very-short portion of Figure 1B time
range, have demonstrated a comparable range of preferential
travel speeds in rock and soil over a great range of scales.
Challenges remain, however, concerning the amount and type
of analyses required, and high uncertainty.

THEORY AND MODELS

The dominant theory of unsaturated flow, underlying essentially
all widely used predictive models of this field, is the diffusive-flow
theory embodied in Richards (1931) equation, formalized in
terms of surface-tension viscous-flow principles (Miller and
Miller, 1956). Quantitative implementation of this theory is
not simple, as unsaturated flow is characterized by severe
nonlinearities and multiple-order-of-magnitude variations in
properties.

Diffusive-flow models for unsaturated media were developed
on the basis of measurements from experiments utilizing small
samples of homogenous porous material. Richards (1931), for
example, did his experiments with small (6 × 10–4 m3) samples
of repacked soil. The driving motivation was problems of

FIGURE 2 |Graph of velocity of tracer first arrival in days for different flow
path lengths in soil and rock and box and whiskers plots of velocity of tracer
first arrival in days in soil and rock. The bottom and top of the box are the first
and third quartiles, respectively. The whiskers extend 1.5 times the
interquartile range beyond the first and third quartiles. The term “outliers”
denotes points that extend beyond the whiskers, without implying any
insignificance. Median velocity of tracer first arrival (red line in the box plots)
was 3.5 m/d in soil and 20 m/d in rock. Data were harvested from the peer-
reviewed literature listed in Supplementary Table S1.
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agricultural practice, such as evaluating irrigation needs of a
field plot. Successful application was facilitated by the limited
extent of plots under consideration, and frequently by artificial
homogenization of the soil by tillage. This diffusive flow theory
has been extended with minimal modification to hydrologic
problems of large scale, tremendous heterogeneity, topographic
variability, and other complexities far beyond the problems for
which the theory was conceived. Despite these shortcomings,
diffusive-flow approaches applied at coarse scales over large
areas have revealed some important process interactions and
data gaps. Regional and continental-scale modeling, for
example, have shown the importance of 1) critical
groundwater-atmospheric interactions through transpiration
(Maxwell and Condon, 2016), 2) small-scale processes in
cold regions (Hayashi, 2014; Walvoord and Kurylyk, 2016)
that impact large-scale water resource assessments (Chen
et al., 2020), and 3) natural soil structures that can control
the global water and energy balance (Fatichi et al., 2020). While
acknowledging these successes, our critique emphasizes the
inadequacy of the underlying diffusive flow theory for
capturing crucial rapid UZ responses.

The intrinsic heterogeneity of soil and rock poses a major
problem. Strictly speaking, applying Richards’ equation must be
done in terms of discrete volumes of material that can be
considered internally homogeneous. The complex whole is to
be treated as the set of individual volumes, each with its own set of
hydraulic properties, interacting with appropriate boundary
conditions. Some applications of Richards’ equation do
separately represent certain separate volumes, such as soil
horizons, with different property values, but never come close
to representing the full heterogeneity of natural Earth materials
(McDonnell et al., 2007).

A further problem with traditional approaches is that
preferential flow fundamentally involves nonequilibrium
processes, in that rapid flow through preferential pathways
begins and usually ends long before there has been adequate
time for equilibrium to be established in directions perpendicular
to the direction of flow (Jarvis, 2007; Jarvis et al., 2016). Various
studies, for example by Hasan et al. (2020), have demonstrated
this characteristic. Thus the process is not a diffusive one in which
the state of water in each individual pore is determined by
conditions in the adjacent pores.

More recent alternative theoretical developments based on
concepts such as films, waves, particle-tracking, or transfer
functions (e.g., Jury, 1982; Dragila and Wheatcraft, 2001;
Tsutsumi et al., 2005; Hincapié and Germann, 2009; Davies
et al., 2013; Nimmo and Mitchell, 2013; Scaini et al., 2019),
have been motivated by the incompatibility of diffusive-flow
concepts with preferential flow. Many of these incorporate
promising innovations, but none is yet in widespread use.
Dual-domain Richards-based formulations, on the other hand,
are widely used to concurrently represent both of the major flow
modes, even though they cannot capture the unique and
fundamentally distinct processes and characteristics of
preferential flow.

The common practice of neglecting heterogeneity and
misrepresenting flow processes produces results that are

divorced from a physical basis in what is claimed to be the
underlying theory. Diffusive flow models with grid cell volumes
exceeding 106 m3, which have become somewhat common,
clearly are enormous extrapolations beyond the ∼10–4 m3 scale
at which the theory was originally developed. Previous studies
such as Blöschl and Sivapalan (1995) and Beven (1989) have
pointed out this incommensurability between measurement
scales and model grid scales. Does this disconnect matter? A
parameterized and calibrated model without an appropriate
physical basis can fit data and generate predictions, but
outcomes can be inadequate in several ways (Hsieh et al.,
2001: p. 31), including:

• Wrong or misleading results are a greater possibility.
• With application to contentious issues in the public arena,

results not soundly backed by scientific theory are more
vulnerable to challenge.

• Perhaps most important, results are unreliable when
conditions differ from those of model calibration.
Increasingly, today’s predictive needs are for conditions
of unprecedented climatic and land-use change, where
sound physical principles are necessary to underpin
results in ways that past behavior cannot.

DISCUSSION AND CONCLUSION

Developing theory, measurements, and models that represent
regional-scale problems without losing the link to local-scale
processes is a fundamental UZ challenge (Harter and
Hopmans, 2004; Or, 2020). The incommensurability of
measurements and models increases uncertainty in calibration
and assessment of adequacy that is challenging to quantify or
reduce (Hopmans, 2002). Large-scale characterizations by
satellites or geophysical means do not directly measure the
status of water, but rather other, indirectly related quantities
such as reflectance or electrical resistivity. Before comparison
with field measurements or model parameters, these large-scale
measurements require interpretation or inversion for
transformation into hydrologic variables of interest.

Alongside the problem of mismatched scales is the inadequacy
of existing theory. Considerable efforts are being made to
incrementally improve parameterization of Richards’ equation,
resulting in increased complexity but without consideration of
circumstances in which diffuse-flow theory cannot explain all
observed phenomena. Thus, there is a danger that increasingly
complex Richards-type formulations of unsaturated flow, and the
associated computational challenges, are being used as a
substitute for model veracity. In this situation the
overparameterization in effect is tacitly and mistakenly
considered to compensate for misrepresentation of process.

Neglect of process creates further difficulties. Even if there
were enough data to fully support a global application of
Richards’ equation, such an effort would not fully succeed
because quantitative representations of rapid preferential flow
processes could not be incorporated. The signals of focused, rapid
UZ responses and nonequilibrium processes are overwhelmed
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when lumped together with diffusive processes. Brief rapid
responses, often treated as insignificant outliers and either
ignored or averaged out by the formulas employed, are in fact
critical to many problems of societal interest. Attention to these
deviations from the norm is crucial for characterizing flow
responses that at first appear anomalous, in particular when
considering predicted general increases in the number and
severity of extreme hydroclimatic events.

We suggest multiple avenues for improving measurements,
theory, and models of rapid UZ flow. Some of the simpler
modeling approaches based on alternative conceptualizations
of unsaturated flow (e.g., Hincapié and Germann, 2009;
Nimmo and Mitchell, 2013; Orozco-López et al., 2018) may be
adaptable to provide a useful path forward. Other promising
options for improving large-scale modeling include machine
learning and state-space modeling (e.g., Bidwell, 1998;
Berendrecht et al., 2006; Kratzert et al., 2019; Orland et al.,
2020), which can incorporate a variety of data streams and
empirical equations to integrate fast and slow processes at
scales where the direct process-based approaches have fallen
short. At the same time, further efforts are needed to study
small-scale rapid responses and understand how their behavior
aggregates over a substantial area. Recognizing some of these
scale issues and addressing them using watershed-scale networks
of unsaturated zone sensors is one encouraging approach (e.g.,
Demand et al., 2019).

Implementations of new advances are held back by the
considerable value placed on the continued use of modeling
approaches that have been widely applied in the past, despite
notable flaws and limitations. As a result, while land surface
models are a recent and cutting-edge development in
quantitative hydrology, the diffusive flow theory that
underpins their soil water flow components is nearly
100 years old (i.e., Richards, 1931) and has not been updated
to account for new observations or developments in
understanding, even where the newer science contradicts
significant elements of the old. Appropriately revised models
of land-surface processes that incorporate the influence of rapid
and large-scale unsaturated flow will require considerable time,
effort, and iterative development. Toward that goal, near- and
intermediate-term efforts could be guided by such measures as
the following:

• Acknowledge the vast and fundamental differences between
diffusive processes and rapid preferential flow through
unsaturated soil and rock, which are best represented
with different physics-based equations;

• Optimize strategies for hydrologic monitoring that not only
capture how spatial patterns evolve across landscapes, but
also include high-frequency point measurements to capture
dynamics more accurately;

• Develop new or modified measurement techniques to better
detect rapid-response signals at both large and small scales;

• Develop theory and robust models that capture extreme
behavior as well as average responses;

• Promote collaboration among hydrologists working across
scales to integrate theories, models, and field observations
(Burt and McDonnell, 2015).

The scale of rapid UZ flow processes may be small, but the
problems are too big to ignore. These processes control
connections between the atmosphere, groundwater, and
streamflow, and are therefore vital in addressing concerns of
serious consequence to human, economic, and environmental
health. Theoretical advances in UZ hydrology, however, were
developed mostly several decades ago, at much smaller spatial
and temporal scales than most modern applications demand.
Recent development of unsaturated zone science has
shortchanged important processes such as preferential flow,
causing certain crucial interactions of Earth, air, and water to be
inadequately understood. We need to pursue measurement
techniques that can capture focused flow paths and rapid
transport of solutes, and to develop new modeling
approaches that can better explain observed phenomena
such as non-monotonic wetting of soils, rapid pore-water
pressure responses at depth, and unexpected early arrival of
contaminants. These problems cannot be solved with faster
computers or finer subsurface characterization—they require
investment and focus on developing the scientific components
that are currently lacking.
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