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The discrete element method (DEM) is becoming widely accepted as an effective method
for addressing tectonic problems in granular materials. It is capable of reproducing
structures observed in the analog model (AM). However, the previous experiments also
pointed to variability among DEM models and AMs in the number of fault zones, their dip
angle and spacing, and the evolution of the surface slope of a thrust wedge. The accuracy
of the DEM depends on the input parameter values, so the calibration of the discrete
element method is very important. Microscopic properties of particles and macroscopic
properties of loose quartz sandwere calibrated through a series of repose angle and biaxial
tests. Furthermore, an AMwas constructed to simulate the evolution of the thrust wedge to
compare with DEM results. DEM and AM results indicate an encouraging overall
agreement in model evolution. Based on a new automated wedge quantification
method, DEM results were systematically compared with AM results on the number of
fault zones, their dip angle and spacing, the evolution of the surface slope of a thrust
wedge, and other parameters. Our study provides a necessary comparison between
commonly applied modeling approaches, which is important for more confidently applying
these methods to understand real fold and thrust belt systems.
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INTRODUCTION

Fold and thrust belts are a series of mountainous foothills adjacent to an orogenic belt, which forms
due to contractional tectonics. As the total shortening increases in a fold and thrust belt, the belt
propagates into its foreland. The frontal parts of these fold and thrust belt systems have commonly
been interpreted to be critically tapered Coulomb wedges (Chapple, 1978), which were quantified by
Davis et al. (1983), Dahlen (1990), and others. The modeling experiments, such as an analog model
(Suppe, 2007; Wu et al., 2010; Wu and McClay, 2011; Schreurs et al., 2016; Sun et al., 2016) and
discrete element method (Buiter, 2012; Morgan, 2015; Buiter et al., 2016; Li, 2019), are widely used
for quantitative comparison with natural examples of fold and thrust belt systems.

The discrete element method (DEM) is a non-continuum method and is capable of reproducing
structures observed in the analog model (AM) and has been applied to the study of geological
problems (Saltzer and Pollard, 1992; Hardy and Finch, 2006; Hardy, 2008; Hardy et al., 2009; Yin
et al., 2009; Buiter, 2012; Dean et al., 2013; Morgan, 2015; Botter et al., 2016; Morgan and Bangs,
2017; Smart and Ferrill, 2018; Meng and Hodgetts, 2019). Buiter et al. (2016) presented the
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quantitative results from three brittle thrust wedge
experiments of eleven numerical codes, which use finite
element, finite difference, boundary element, and distinct
element techniques. The continuum methods, e.g., finite
element model, finite difference model, and boundary
element model, can simulate discontinuities to an extent
either replacing the discontinuities with the material of a
different rheology or through special treatments of the
discontinuity nodes. However, they are not suitable for
studying emergent behavior and probe the evolution of
fracture systems, which is a consequence of microscopic
processes (Gray et al., 2014; Mora et al., 2015). Particularly,
the results of Buiter et al. (2016) showed the SDEM, named the
stress-based discrete element method, is capable of
reproducing structures observed in the analog sandbox
experiments without the need for the ad hoc calibration
routines normally associated with the conventional DEM. In
contrast to the conventional DEM, the friction properties of an
SDEM particle system are in agreement with the
Mohr–Coulomb constitutive model with friction angles
specified on a particle level (Egholm et al., 2007). However,
the experiments also pointed to variability among models in
the number of shear zones, their dip angle and spacing, and
the evolution of the surface slope of thrust wedges. And they
lacked quantitative comparison between the SDEM and
corresponding AM results. Hardy et al. (2009) presented
that a series of numerical simulations at the km scale based
on the DEM replicated the similar deformation seen in the AM
at the cm scale. The accuracy of the DEM largely depends on
the input parameter values, so the calibration of the discrete
element method is very important (Coetzee, 2016; Coetzee,
2017). Generally, the particle properties and the emergent
bulk material properties are typically assessed through the
repose angle tests and biaxial tests (Botter et al., 2014; Morgan,
2015), so that particle aggregates can produce a realistic fault
geometry and finite strain field.

In Discrete Element Method, the basic methodology of
DEM is outlined. In Calibrating the Microscopic Parameters
of Particles, the microscopic properties of particles and
macroscopic properties of loose quartz sand are calibrated
through a series of repose angle tests and biaxial tests. The
experimental setup, the model construction technique, and
the material properties are described in Shortening Experiment.
Furthermore, an AM using loose quartz sand was constructed
to simulate the evolution of the thrust wedge in order to
compare with the results of the DEM at the same scales. In
Comparisons With Analog Model and Discrete Element
Method, an accurate method for measuring the surface slope,
width, and height of the thrust wedge is proposed based on
the mesh. The results of discrete element simulations were
compared with scaled analog (sandbox) models through the
determination of their qualitative (visual) and quantitative
(e.g., measurements of the surface slope and dip angle of
faults) similarities and differences, which is beneficial to the
Earth Sciences community.

DISCRETE ELEMENT METHOD

The DEM has been applied to the study of geological problems in
recent decades. In standard DEM simulations, the perfect discoid
or spherical shape of the particles grossly exaggerates rolling
when compared to, e.g., nonspherical and rough quartz sand
grains. To compensate for this effect, it is important to
incorporate rolling resistivity. This approach also leads to a
higher efficient computation. Furthermore, the geometries that
occur in the DEM will be characterized by forward thrust
propagation and by back thrusting incorporating rolling
resistivity. It is similar to what we observe in a typical analog
model experiment. The DEM described here is a variant of the
lattice solid model, which was developed to provide a basis to
study the physics of rocks and the nonlinear dynamics of
earthquakes at the beginning (Mora and Place, 1993; Mora
and Place, 1994; Mora and Place, 1998; Mora and Place, 1999;
Place et al., 2002). Generally, the lattice solid model does not
include particle resistance to rolling, i.e., the particle spins are
initially set to zero and fixed in the whole simulation, which can
enhance interlocking force between particles. The particle shapes
of the loose quartz sand are various, and the occlusion between
them is strong. Although the discoid particles, i.e., two-
dimensional disks, are used in our simulation, the particle
spins are fixed in order to enhance interlocking force between
particles. Furthermore, the fault-fold structures shown in the
simulation based on the lattice solid model are similar to those
observed in the AM (Hardy et al., 2009). The geologic body is
simplified into an assemblage of discoid elements, which obey
Newton’s equations of motion and can move under the action of
forces that are generated by interacting with pairs of elastic
springs. A full, detailed description of the theory behind this
modeling approach and its application to geological problems are
given by Place et al. (2002) and Hardy et al. (2009).

In the simulations presented here, inter-particle bonding is not
used, i.e., all springs are not tensile. A full detailed description of
the bond is given by Hardy et al. (2009). The behavior of the
elements assumes that the particles interact through a repulsive
force in which the magnitude of the normal force, Fn, is given by

Fn � Kn Un (1)

where Kn is the normal stiffness of the contact and Un is the
normal relative displacement.

In addition to treating the normal force between particles, we
also calculate the shear force, Fs, as a result of displacement
perpendicular to the vector connecting the particles’ centroids,
Us. The magnitude of the shear force is limited to be less than or
equal to the maximum shear force, μFn, allowed by Coulomb
friction,

Fs � min(KsUs, μFn) (2)

whereKs is the shear stiffness of the contact, Fn is the normal force
at a contact, and μ is the inter-particle friction coefficient. If
a contact is “lost” between two touching elements (i.e., they
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separate), then all the forces between the elements are set to zero.
The value of normal stiffness of the contact is set to be equal to the
shear stiffness of the contact, and they were not distinguished in
the following discussion, i.e., k � Kn �Ks.

An artificial viscosity (Fv) is added to damp the reflected waves
from the boundary of the particle and to avoid buildup of kinetic
energy in the closed system (Place et al., 2002; Liu C. et al., 2013).
The viscous force is proportional to the particle velocities and is
given by Fv � ηvp, where η is the artificial viscosity and vp is the
particle velocity. The time step Δt is a constant value. It is chosen
to ensure the stability and accuracy of the numerical simulation,
particularly the integration. It is determined on the basis of the
maximum stiffness of the contact, k, and the particle with the
smallest particle mass, m. The relationship often used is of the
form Δt � f · �����

2m/k
√

, where f is the safety factor of the time step
(Itasca Consulting, 2008).

CALIBRATING THE MICROSCOPIC
PARAMETERS OF PARTICLES

The accuracy of the DEM depends largely on the microscopic
properties of particles. The microscopic properties of particles
and the macroscopic properties of loose quartz sand were
calibrated through a series of repose angle tests and biaxial
tests, in order to reproduce the specified mechanical properties
of loose quartz. To do this, the static repose angle of the material
was measured by the repose angle tests, where initially the
assemblage is inside a rigid box, and then one side of the box

is removed, as shown in Figure 1. The microscopic parameters of
particles used in the DEM are given in Table 1. When the
particles’ friction coefficient, μ, changes from 0.0 to 0.5, the
static repose angle of the sample is proportional to the
particles’ friction coefficient (Figure 2).

From repose angle tests, Hardy et al. (2009) had determined
that their inter-particle coefficients of friction, 0.2, 0.1, and 0.05,
correspond to bulk coefficients of friction of ∼0.55, 0.36, and 0.18,
respectively (angles of ∼30°, 20°, and 10°), values that allow for
comparison with analog modeling studies and that can be
compared to natural examples (McClay and Whitehouse,
2004). Additional ledge simulation was used to measure the
angle of repose for our model (Oger et al., 1998; Botter et al.,
2014). Finally, the friction coefficients of the particle in our model
were 0.30 corresponding to the repose angle of ca. 40°, which is
also consistent with that of the quartz sand used in our laboratory
(Figure 1).

The dimensions of biaxial samples are 1 × 2 cm (Figure 3D). The
Mohr–Coulomb failure envelope of the material is derived from
biaxial tests under various confining pressures (50, 100, 200, and
300 Pa) (Figure 4). The initial biaxial sample is created by radius
expansion (Itasca Consulting, 2008). First, as shown in Figure 3A, 1,
600 particles are created inside a rigid box with smaller diameters
(0.1, 0.2, 0.25, and 0.3 mm). Then, their diameters aremultiplied by 2

FIGURE 1 | Static repose angle of the sample. (A) Laboratory test. (B)
Discrete element simulation. The microscopic parameters of particles are
shown in Table 1.

TABLE 1 | Microscopic parameters of particles.

d (mm) k (N·m−1) ρ (kg·m−2) g (m·s−2) f μ η (N s·m−1) υ (m·s−1)

0.6 7.5e3 1.3e3 10.0 0.4 0.3 0.04 0.04

Note: The particle packing consists of four particle sizes, with diameters and quantity ratio of 0.2 mm, 0.4 mm, 0.5 mm, and 0.6 mm and 2:2:1:1, respectively. d, largest particle diameter.
ρ, particle density. g, gravitational acceleration. f, safety factor of the time step. k, stiffness of the contact. μ, friction coefficient. η, dynamic viscosity. υ, velocity of the mobile wall.

FIGURE 2 | The static repose angle, θ, of the sample is proportional to
the particles’ friction coefficient, μ.
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(Figure 3B). Finally, the assembly is cycled to equilibrium. The
particles outside the dashed line are deleted (Figure 3C) to create
new sidewalls, and the initial biaxial sample is obtained (Figure 3D).

When the particles’ friction coefficient, μ, is 0.0, 0.1, 0.2, 0.3,
0.4, and 0.5, the samples’ friction angle, φ, and cohesion values,
Co, are shown in Figure 5. They both increase with the increase in
the particles’ friction coefficient, μ. Klinkmüller et al. (2016)
reported the material properties of 26 granular analog
materials used in 14 analog modeling laboratories. The peak
friction angle and cohesion values measured from ring-shear tests
are shown in Figure 6, and the five-pointed star is measured from
biaxial tests by the DEM (Figure 4B). The bulk cohesion value of
the DEM is ca. 67.4 Pa. by and large, consistent with the cohesion
values of the quartz sand used in analog experiments (Figure 6).

The DEM for geological applications typically uses larger
particle sizes and fewer particles (Saltzer and Pollard, 1992;
Burbidge and Braun, 2002; Strayer and Suppe, 2002; Finch
et al., 2003; Yamada, 2004; Naylor et al., 2005; Benesh et al.,
2007; Hardy et al., 2009; Miyakawa et al., 2010; Hardy, 2011;

Vidal-Royo et al., 2011; Hardy, 2015;Morgan, 2015), so that it can
model structures at a larger spatial scale applicable to common
geological problems. The particle sizes in our models were
selected to directly compare against the quartz sand. The
quartz sand, with a grain size of 0.2–0.4 mm and the
spontaneous stacking density of about 1,500 kg/m3, was used
in the AM experiment, and its deformation obeys the
Mohr–Coulomb failure criterion (Lohrmann et al., 2003;
Panien et al., 2006). The average bulk material density of
particle assemblage is ca. 1,500 kg m−3. The assembly with four
different particle diameters (0.2, 0.4, 0.5, and 0.6 mm) was used in
the DEM. Furthermore, the sizes of the elements used in our
DEM (0.2–0.6mm) are very close to the real size of the quartz
sand (0.2–0.4mm) in our AM. Although the size of disks could be
modeled more accurately by using smaller particles, the
representation chosen was thought to be accurate enough and
yet computationally efficient. The particle aggregate can basically
represent the physical characteristics of analog materials used in
analog modeling laboratories. A full discussion of parameter
testing can be found in the following references: Place et al.,
2002; Hardy and Finch, 2006; Hardy et al., 2009; Hardy, 2011;
Vidal-Royo et al., 2011; Hardy, 2013; Botter et al., 2014.

SHORTENING EXPERIMENT

DEM Setup
Approximately 120,000 particles with four different particle
diameters (0.2, 0.4, 0.5, and 0.6 mm, their quantity ratio is 2:2:
1:1) were initialized by randomly generating particles within a
60.0 cm long and 10.0 cm high domain. Then, they were allowed
to reach a static equilibrium state under the action of gravity. The
particles whose height exceeded 2.5 cm would be deleted, and
they were permitted to relax to a stable equilibrium state by
settling under gravity again, i.e., all particles in the assembly have
come to rest and their positions change only insignificantly, and
the kinetic energy and the gravitational potential energy are
approximately constant. The resulting particle assembly is
60.0 cm long and 2.5 cm high, and the number of particles is
101, 599. Microscopic parameters in Table 1 were chosen as the
particle properties for the simulations. Deformation is illustrated
in relation to 10 initially flat-lying layers that are pure for
visualization purposes, which allows a much higher resolution
of structures to be achieved and observed compared to previous
studies of thrust wedges (Burbidge and Braun, 2002; Naylor et al.,
2005; Hardy et al., 2009; Morgan, 2015). The computing
restrictions limit the number of particles. The particle
numbers (ca. 120,000) are carefully chosen to balance the
resolution of the calculation domain and the computing
restrictions. The left (mobile), right, and basal walls of the
model have the same coefficient of friction as particles. Our
simulation was run for 129,048 time steps with output of the
assembly every 8,065 time steps equivalent to 1 cm (Δt × v ×
8,065) of shortening along the base wall, which took ca. 3 h to
complete by VBOX (Li et al., 2017; Li et al., 2018; Li, 2019), which
was compiled with GCC (Richard M. Stallman and the GCC
Developer Community, 2012) at O2 levels of optimization and

FIGURE 3 | Biaxial tests. (A) Particles with smaller diameters, i.e., 0.1,
0.2, 0.25, and 0.3 mm. (B) Radius expansion, with particle diameters of 0.2,
0.4, 0.5, and 0.6 mm. (C) Deleting the particles outside the dashed line. (D)
Coloring. (E) The sample’s final state of deformation. (F) The sample’s
deformational strain at the final state. The shear strain magnitude is shown by
color intensity. Red denotes top to the right sense of shear, and blue denotes
top to the left sense of shear. The calculation methods of deformational strain
can be found in the study of Morgan (2015).
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using OpenMP (Chapman et al., 2008) parallelization on 16-
core (Intel Xeon E5-2650) machines. The total displacement in
the experiment is 16.0 cm giving a total of 26.7% shortening.

The geometric evolution of the DEM simulation is shown in
Figure 7.

AM Setup
The AM experiments, which have a long history in tectonic
modeling, form an excellent basis for testing how well the DEM
reproduces structures that are relatively well understood. A
typical shortening experiment based on the AM was carried
out using an apparatus with two glass sidewalls, i.e., a fixed
backstop and a mobile wall, all of which were installed on a
horizontal Plexiglas base plate. Shortening was induced by the
mobile wall, which was connected to a motor-driven piston. The
internal dimension of the apparatus was 100 × 30 × 30 cm
(length, height, width), while the size of our initial model was
60 × 2.5 × 30 cm. Themodeling materials were sieved into the box
from a height of 30 cm. Ten initially flat-lying sand layers were
sieved on the apparatus (Figure 7). Before sieving, the inside of
the apparatus was carefully cleaned using an alcoholic solution
and dried thoroughly to minimize sidewall friction. The
shortening velocity of the mobile wall was set as 0.004 mm/s.
During the experiment, sequential deformation was monitored
by digital cameras. Photographs were taken from the side at
intervals of 2 min.

The structural evolution of the AM is shown in Figure 7 with
plots of the geometry after 2 cm, 4 cm, 8 cm, 12 cm, and 16 cm of
shortening, and fault zones can readily be identified on the
geometry plots. Accretion of the material was in sequence and

FIGURE 5 | (A) The samples’ friction angle, φ, and (B) cohesion values, Co, with different friction coefficients, μ, of particles.

FIGURE 6 | Comparisons of the samples’ friction angle and cohesion
between laboratory tests and the DEM. The dots are obtained from ring-shear
tests by Klinkmüller et al. (2016), and the five-pointed star is obtained from
biaxial tests by the DEM (Figure 4B).

FIGURE 4 | (A) Stress–strain curve of the biaxial samples at different confining pressures and (B) Mohr–Coulomb failure envelope of the biaxial samples at the
particles’ friction coefficient, μ, of 0.3.

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6365125

Li et al. Discrete Element Method Shortening Experiments

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


can be described in two stages: an initial stage of rapid thickening
involving closely spaced thrusts (Figures 7A–C) followed by a
stage of cyclical growth with alternations between wedge

lengthening and wedge thickening involving widely spaced
thrusts (Figures 7D,E). General evolution of fold and thrust
belts has been the focus of previous studies (Mulugeta, 1988; Liu
et al., 1992; Burbidge and Braun, 2002; Schreurs et al., 2006;
Bonnet et al., 2007; Bose et al., 2009; Bigi et al., 2010; Wu and
McClay, 2011; Schreurs et al., 2016; Sun et al., 2016); the
comparison of our model results with previous studies
demonstrates that the fold and thrust belts were characterized
by forward thrust propagation and by back thrusting. In
particular, a shortening experiment performed by Schreurs
et al. (2016) had good agreement with our experiment, as
shown in Figure 8.

COMPARISONS WITH ANALOG MODEL
AND DISCRETE ELEMENT METHOD

Deformation Fields and Strain Analysis
Schreurs et al. (2006) and Schreurs et al. (2016) presented the
results of an analog comparison study with many participating
modeling laboratories, which shows that when one modeler
repeats the same experiment, quantitative model results still
show variability. In the AM, the deformation should be
quantified using image analysis [e.g., particle image
velocimetry (Adam et al., 2005; Leever et al., 2011; Boutelier
and Cruden, 2017)], laser scanning (miniature laser altimetry)
(Liu Z. et al., 2013), and volumetric scanning using computerized
X-ray tomography (Suppe, 1983; Boyer et al., 1989; Suppe and
Medwedeff, 1990; Colletta et al., 1991; Uehara and Takahashi,
2014; Zulauf et al., 2016). Laboratories that do not have access to
tomographic techniques can only monitor the outside boundary
of models, with the observation of internal structures limited to
cutting the model at the end of the experiment.

FIGURE 7 | Comparisons between AM and DEM results. Deformation
and strain illustrated after (A) 2 cm, (B) 4 cm, (C) 8 cm, (D) 12 cm, and (E)
16 cm of shortening. In every panel, there are three figures. The first one is
deformation for the AM. The second is deformation for the DEM. The
third is the distortional strain field for the DEM. The shear strain magnitude is
shown by color intensity. Red denotes top to the right sense of shear, and blue
denotes top to the left sense of shear.

FIGURE 8 | Final deformation of two shortening experiments after 10 cm
of shortening. (A) The model had an initial 35 cm long and 3 cm high domain
(Schreurs et al., 2016). (B) The model had an initial 60 cm long and 2.5 cm
high domain, but the image was cropped at 35 km for display in order to
compare with the experiment of Schreurs et al. (2016).
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The DEM is easy and exactly reproducible under the self-same
initial and boundary conditions, allows great flexibility in the
choice of geometries and material properties, and can quantify a
large range of parameters directly, such as stress, strain, and
velocity. The DEM gives detailed information on the
displacement trajectories of all the particles in the system.
Using this information, a representative, or average, strain for
the overall system of particles or a subdomain of the system can
be determined. The cumulative displacements of the particles
were derived for each new particle configuration and resolved
into horizontal and vertical components as shown by Morgan
(2015). A triangulation-based nearest neighbor interpolation
algorithm (MathWorks, 2015) was used to grid ca. 0.58 mm
spacing, which is triple the average radius of all the particles,
and a continuous surface was fit to each component. To analyze

the simulation processes, involving strains are not small
compared to unity, and the theory of finite strain must be
used (Oertel, 1996; Means, 1976). The distortional strain,
i.e., strain-induced distortion, was used to quantify the results
for the DEM and was calculated according to Morgan (2015), and
it can be quantified as the second invariant of the deviatoric finite
strain tensor.

The structural evolutions of the models are shown in Figure 7
with plots of deformation and cumulative distortional strain after
2 cm, 4 cm, 8 cm, 12 cm, and 16 cm of shortening. We can
discriminate more elaborate expressions of fault damage from
deformation fields by strain analysis. As shortening went on, the
deformation zones in the AM and DEM expanded bidirectionally,
i.e., toward both the foreland and the hinterland near the
backstop. The hinterland of the AM near the backstop was
over a relatively flat terrain; on the other hand, there was not
an obvious flat hinterland in the DEM. The inner parts of the
proto wedges were progressively involved in deformation by
sequential back thrusting identified from distortional strain
fields in Figure 7. The deformation zones expanded
bidirectionally, toward both the foreland and the hinterland
near the backstop, and the “X” shear zones (blue and red
zones in the map of distortional strain) come into being
(Figure 7A). Synchronously, the deformation fronts migrated
forward, and new thrusts developed in the foreland. Backward
thrusts (blue zone of distortional strain in Figure 7) that occurred
in the DEM showed relatively little displacement, and the slip was
predominantly along forward thrusts.

Fault Interpretation
A back thrust fault and nine forward thrusts in the AM
(Figure 9A) and a main back thrust fault and seven forward
thrusts in the DEM (Figure 9B) were interpreted, involving
closely spaced thrusts near the mobile wall (between F1–F6
and F7 for the AM in Figure 9A, between F1–F4 and F5 for
the DEM in Figure 9B) and widely spaced thrusts near the
foreland (between F7, F8, and F9 for the AM in Figure 9A,
between F5, F6, and F7 for the DEM in Figure 9B). Forward
thrusts accommodate most of the shortening in both the AM and
the DEM, which was consistent with previous discrete element
simulations (Morgan, 2015). F0, F3, F5, F7, F8, F9 of the AM and
F0, F3, F4, F5, F6, F7 of the DEM were essentially in the same
position, as shown in Figure 10A, respectively. Meanwhile, the
spaces between F8 and F9 for the AM and F6 and F7 for the DEM
were nearly the same (Figure 10A). Dip angles of the forward
thrusts increased from the foreland (ca. 20°) to the mobile wall
(ca. 85°), as shown in Figure 10B. This phenomenon is very
common among Piedmont tectonic belts, such as the Longmen
Shan fold–thrust belt in Central China (Jia et al., 2006; Hubbard
and Shaw, 2009) and the South Tianshan Mountain range in the
Kuqa region of Northwest China (Wen et al., 2017). Meanwhile,
the fault geometry changed from a “line” (e.g., F6–F9 in
Figure 9A) to “S” (e.g., F1–F4 in Figure 9A). From the
distortional strain field of the DEM (Figure 9C), linear faults
near the foreland and “S” faults near the mobile wall could be
identified easily as the strain was very concentrated to help us
identify the shape of the faults. Both the steepening of faults

FIGURE 9 | Fault interpretation after 16 cm of shortening. The
deformation zones in the AM and DEM both expanded bidirectionally. (A)
There are 10 faults (F0–F9) to be identified using the black line. (B) There are
eight faults (F0–F7) to be identified using the black line. (C) Distortional
strain field for the DEM. The shear strain magnitude is shown by color intensity.
Red denotes top to the right sense of shear, and blue denotes top to the left
sense of shear. Faults (F0–F7) interpreted from (B) are marked in their
corresponding positions. More backward thrusts are recognized near the
backstop.
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toward the hinterland and the change in shape from linear to
more “S” shaped reflect the process of break-forward imbrication
and fault-related folding of structures to the hinterland in a
break-forward sequence of thrusts (Shaw et al., 2005).

Wedge Sensitivities
In order to allow for a comparison of AM and DEM results in a
more quantitative manner, the following properties: surface

slope, wedge width, and wedge height, were measured. The
surface slope, wedge width, and wedge height of the AM were
obtained from the cross section shown in Figure 7. So far, there
seems to be no general agreement on how to measure thrust
wedge surface slopes (Buiter, 2012). The initial surface slope
angles are difficult to determine because there is only one thrust
(Buiter et al., 2006). For two or more thrusts, the surface slopes
have been determined by drawing the enveloping surface as

FIGURE 10 | (A) Position of the faults obtained from the AM in Figure 9A and DEM in Figure 9B. The position of a fault was defined as the intersection of this fault
and the stratigraphic line between the above two stratums, i.e., the position of F9 in Figure 9A is 29.2 cm and the position of F7 in Figure 9B is 28.0 cm. In particular, the
position of the back thrusting, i.e., F0 in Figure 9A and F0 in Figure 9B, was defined as the intersection of this fault and the stratigraphic line between the below two
stratums. (B) Dip angle of faults obtained from the AM in Figure 9A and DEM in Figure 9B. As the shape of some faults, e.g., F1 in Figure 9A, is “S.” The dip angle
of a fault was defined as the dip angle of the segment across the intersections of this fault and the stratigraphic line between the above two stratums and the below two
stratums. Therefore, the dip angle of F1 in Figure 9A is ca. 78°, i.e., the dip angle of the yellow line.

FIGURE 11 | (A) Schematic figure showing how the surface slope, wedge width, and wedge height have been determined. (B) Surface slope vs. the amount of
displacement. (C) The width of the wedge deformation zone vs. the amount of displacement. The width of wedge deformation zones is taken as the distance between
the moving backstop and the wedge toe. (D) The maximum height of wedge vs. the amount of displacement.
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shown in Figure 11A. Oscillations in surface slope angles occur
just before or after the formation of a new thrust, depending on
the degree to which a new thrust is incorporated into the wedge.
Figure 11A shows how they have been determined in our paper.
The experimental evolution of the AM and DEM was
quantitatively analyzed by those parameters in the following
sections. Inevitably, the measurements of surface slopes may
be influenced by the measurer and subject to small differences
in interpretation (Buiter et al., 2006). Therefore, in a general way,
the values of surface slopes of the AM were completely measured
by three people, in the same manner, and subsequently averaged.
Here, an automated wedge quantification method is proposed
based on the mesh and illustrated by a given example.

The contractional wedges consist of the top, toe, surface,
surface slope, width, and height, as shown in Figure 11A. To
find the top point, the coordinates of the point in the surface
should be found. In the discrete element model, the object of the
study is discrete particles. Here, the points of the surface are
searched based on the mesh, and the toe of the slope is found by
the farthest distance method. The surface slope, wedge width, and
wedge height have been determined by the following steps.

1) Surface search method based on mesh.

First, parallel to the Y-axis, the mesh is divided (Figure 12A).
The mesh width is generally two to three times the maximum
particle radius. The highest particle of each mesh was found.
Their IDs were stored in an array from left to right. The surfaces
were formed by connecting the particles in the array in turn,
i.e., the yellow and blue particles in Figure 12A.

2) The farthest distance method searches the toe of the slope.

Among the particles forming the surface, the position of the
particle with the maximum y value, Tm, is the slope top. The
particle with the maximum x value, Tn, is the termination point of
the surface extension. Among the blue particles between Tm and
Tn, the point Tj with the maximum distance from the line
segment TmTn is defined as the slope toe (Figure 12A).

3) Surface slope calculation method.

After the slope toe Tj is obtained, the particles between the
slope top Tm and the slope toe Tj can be determined (purple and
green particles in Figure 12B). Yellow particles in the middle 80%

region of the line segment TmTj are taken to fit a straight line, and
the angle between the straight line and the horizontal plane is
defined as the surface slope, as shown in Figure 12B.

Then, the width and height of the wedge can be easily
calculated from the top and toe of the wedge. The sequential
deformation was monitored by digital cameras in the AM. A
high-quality binary image of the AM can be obtained based on
the digital image processing methods, including binarization and
noise removal (Li et al., 2016). The high-quality binary image
consists of a rectangular array of pixels. Those pixels can be
regarded as discrete square particles. Then, the above method can
still be used to acquire the actual surface of the AM.

The same as the surface slopes of the DEM from 4 to 6 cm, the
surface slopes of the AM have an obvious fluctuation from 3 to
5 cm, as shown in Figure 11B, based on the new wedge
quantification method we presented. The surface slopes of the
DEM change slightly after 6 cm, and the surface slopes of the AM
change slightly after 5 cm. In the first stage, the thickness of the
wedge increased slowly, and the surface slope gradually increased,
i.e., when model shortening was from 3 to 4 cm in the AM and
from 4 to 5 cm in the DEM (Figure 11B). In the second stage,
i.e., when the model was pushed from 4 to 5 cm in the AM and
from 5 to 6 cm in the DEM, a new fault began to grow and wedge
lengthening played a dominant role in this stage, which made the
surface slopes get reduced (Figure 11B).

With respect to the surface slope, the wedge width and height
of the AM and DEM are more consistent, as shown in Figures
11C,D. The fluctuation of the maximum wedge width in the
whole experiments of the AM and DEM indicates that the
experiments entered a stage of cyclical growth with
alternations between wedge lengthening and wedge thickening
involving widely spaced thrusts (Figure 11C). In the maximum
height curves, the maximum wedge height of the AM and DEM
with a highly consistent degree increased linearly with shortening,
basically (Figure 11D). The growth of the wedge height is
relatively stable, in the whole experiments of the AM and
DEM. The results indicate an encouraging overall agreement
in model evolution.

CONCLUSION

An automated wedge quantificationmethod is proposed based on
the mesh. The results show the width, height, and surface slope of
the thrust wedge can be precisely quantified using the proposed

FIGURE 12 | (A) Search method of the surface and slope toe. (B) Calculation method of the surface slope.
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method. It is helpful for accurately measuring the width, height,
and surface slope of the thrust wedge for studying the overall
dynamic evolution of the numerical and analog models.

Although the manner in which the AM and DEM
accommodate shortening leads to a similar style of deformation,
it is also clear that variations exist among them. Similarities and
differences between AM and DEM results are listed as follows.

Similarities: Shortening is accommodated by in-sequence
forward propagation of thrusts (Figure 7). The shape of
thrusts is consistent, “S” for the smaller thrusts near the
mobile wall and “line” for the bigger thrusts near the foreland
(Figure 7). The distance between a newly formed thrust and the
previously formed thrust is highly variable for small thrusts near
the mobile wall (F1∼F6 of the AM and F1∼F5 of the DEM in
Figure 9). The positions and the dip angle of forward thrusts near
the foreland (F7, F8, F9 of the AM and F5, F6, F7 of the DEM)
show variations in Figure 10. The wedge height and width of the
AM and DEM increase linearly with shortening, and they are fit
very well.

Differences: The number of thrusts that have been formed at a
specified amount of displacement is variable, e.g., the number of
thrusts in the AM near the mobile wall is more than that in the
DEM (Figure 9). The surface slopes remain in the stable field for
critical taper theory. The wedge steepens until the critical taper is
attained, i.e., the angle between the base and the surface of the
wedge reaches a critical value. When the critical taper is attained,
the wedge is considered to be stable. The surface slopes of the AM
achieve a critical taper soon, but they moderately increase to a
critical taper in the DEM (Figure 11B).

The microscopic properties of particles and macroscopic
properties of loose quartz sand were calibrated through a
series of repose angle and biaxial tests. Then, a two-
dimensional DEM with high resolution and an AM
experiment were constructed to simulate the evolution of the
thrust wedge. Overall dynamic evolution of the DEM and AM is
highly consistent, in spite of the difficulty of achieving an exact
representation of the analog conditions with the DEM. In
addition, the AM often takes time and considerable resources.
Differences between DEM and AM results are found in
predictions of the location, spacing, and dip angle of fault
zones and the number of faults. Dip angles of the forward
thrusts increased from the foreland to the mobile wall at the
end of the experiment. Furthermore, the strain for the DEM was
calculated to investigate more elaborate tectonic characteristics.
These comparisons between the AM and the DEM are beneficial
to the Earth Sciences community. Our results show that the DEM
can successfully reproduce structures observed in the AM and
also indicate the utility of the DEM in modeling large-
displacement, complex deformation of analog and geological
materials. A complete structural numerical simulation
laboratory with different microscopic parameters of the other
materials (i.e., sand, clay, microbeads, wax, and silicone putty)
can be constructed by the similar approach we presented. Our
study provides a necessary comparison between commonly
applied modeling approaches, e.g., discrete element
simulations and scaled analog (sandbox) models, which is

important for more confidently applying these methods to
understand real fold and thrust belt systems.
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