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In this study, we conducted a comprehensive investigation of rock magnetic,
mineralogical, and sedimentological records of sediment cores supplemented by a
high resolution seismic data to elucidate the controls of structural and diagenetic (early
vs. late) processes on the sediment magnetism in active and relict cold seep sites in the
Bay of Bengal. Two distinct sediment magnetic zones (Z-I and Z-II) are defined based on
the down-core variations in rock magnetic properties. The sediment magnetism is carried
by complexmagnetic mineral assemblages of detrital (titanomagnetite, titanohematite) and
authigenic (fine-grained greigite) minerals. Overall, the magnetic susceptibility varies over
one order of magnitude with highest values found in relict core. Uppermost sediment
magnetic zone (Z-I) is characterized by higher concentration of magnetite as seen through
elevated values of magnetic susceptibility (χ lf) and saturation isothermal remanent
magnetization (SIRM). A systematic gradual decrease of χ lf and IRM1T in Z-I is
attributed to the progressive diagenetic dissolution of iron oxides and subsequent
precipitation of iron sulfides. Magnetic grain size diagnostic (ARM/IRM1T) parameter
decreases initially due to the preferential dissolution of fine-grained magnetite in the
sulfidic zone (Z-I), and increases later in response to the authigenic formation of
magnetite and greigite in methanic zone (Z-II). Distinct low S-ratio and χ lf values in
methanic zone of relict core is due to increased relative contribution from highly
preserved coercive magnetic (titanohematite) grains of detrital origin which survived in
the diagenetic processes. A strong linkage between occurrence of authigenic carbonates
and greigite formation is observed. Two plausible mechanisms are proposed to explain the
formation and preservation of greigite in Z-I and Z-II: 1) decline in methane flux due to
massive hydrate accumulation within the active fault system and formation of authigenic
carbonate crust in the sub-surface sediments hindered the supply of upward migrating
fluid/gas; thereby limiting the sulfide production which preferentially enhanced greigite
formation in Z-I and 2) restricted supply of downward diffusing sulfide by the carbonate
layers in the uppermost sediments created a sulfide deficient zone which inhibited the
pyritization and favoured the formation of greigite in the methanic zone (Z-II).
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INTRODUCTION

At active cold seeps, methane and hydrogen sulfide fluids
emanate from the seafloor. These fluids led to diagenesis of
magnetic minerals at or below the sediment-water interface,
wherein primary detrital iron-bearing magnetic minerals
undergoes reductive dissolution and are converted into iron
sulfides e.g., greigite, pyrrhotite, pyrite (Canfield and Berner,
1987; Boetius et al., 2000; Jørgensen et al., 2004; Rowan et al.,
2009; Dewangan et al., 2013; Riedinger et al., 2014; Suess, 2014;
Kars and Kodama 2015; Roberts, 2015; Lin et al., 2017; Rodelli
et al., 2018; Amiel et al., 2020). Rock magnetic properties of
methanic sediments from active cold seep and gas hydrate
dominated sedimentary systems have been extensively studied
to understand the magnetic mineral diagenesis. For example in
Nankai trough, Japan (Kars and Kodama, 2015), CascadiaMargin
(Housen and Musgrave, 1996; Larrasoaña et al., 2007),
continental margin offshore of south-western Taiwan (Horng
and Chen, 2006), continental margin off Argentina and Uruguay
(Riedinger et al., 2014), Bay of Bengal (Badesab et al., 2017;
Badesab et al., 2019; Badesab et al., 2020a; Badesab et al., 2020b;
Badesab et al., 2020c), Southern Eastern Mediterranean
continental shelf (Amiel et al., 2020), Niger deep-sea fan
(Dillon and Bleil, 2006), Bulls eye vent off Vancouver Island,
Canada (Novosel et al., 2005), and North-western Weddell Sea
(Reilly et al., 2020).

Structural control on methane seepage at cold seep sites has
been well reported using high resolution seismic and bathymetry
data. For example Lomvi pockmark, Vestnesa Ridge, offshore
Svalbard (Bünz et al., 2012; Berndt et al., 2014; Yao et al., 2019),
Harstad Basin, southwest Barents Sea (Crémière et al., 2018), Bay
of Bengal (Dewangan et al., 2020), Concepción Methane Seep
Area, offshore Central Chile (Geersen et al., 2016), Taixinan
Basin, South China Sea (Wang, et al., 2018) Central Nile deep sea
fan (Römer et al., 2014), Nankai accretionary prism (Henry et al.,
2002), Congo basin (Wenau et al., 2015) and Black Sea
(Bohrmann et al., 2003). Extensive geological and geophysical
studies established the presence of fracture-filled and massive-
type gas hydrate deposits in the Krishna-Godavari (K-G) basin
(Collett et al., 2008; Dewangan et al., 2010; Shankar and Riedel,
2010; Dewangan et al., 2011; Kumar et al., 2014). Fractures/faults,
generated from shale-tectonism, provide an efficient gas
plumbing system in the K-G basin (Dewangan et al., 2010).
Fluid migration through these fractures/faults led to the
occurrence of paleo-cold seeps in the K-G basin (Mazumdar
et al., 2009; Dewangan et al., 2010). In some active faults, methane
migrates up to the seafloor and form active/relict cold seep system
associated with shallow gas hydrates (Gullapalli et al., 2019;
Mazumdar et al., 2019; Figure 1).

Methane migrates from deep-seated gas reservoirs and
interacts with downward diffusing seawater sulfate to trigger
multiple zones of anaerobic oxidation of methane (AOM)

FIGURE 1 | (A)Map showing the location of active (SSD-45/Stn-4), relict (SSD-45/Stn-11/GC-02) and paleo (MD161/Stn-08) seep sites in the Krishna-Godavari
(K-G) basin, Bay of Bengal High resolution seismic profile (P1) highlighting (B) the normal faults (blue dashed lines), subsurface chimney like feature (solid red lines) and
water column imaging showing gas flares (orange). Regional toe-thrust fault (yellow dashed line), feasible BSR (white dashed line), and subsurface horizons (solid black
lines) are marked on the seismic section (modified after Dewangan et al., 2020). The spade sediment cores SPC-01, SPC-02, SPC-03, SPC-04, SPC-05, and
SPC-06 were retrieved from active seep site SSD-45/Stn-4 and gravity core GC-02 was retrieved from relict site SSD-45/Stn-11. The location of the sediment core from
paleo-seep site (MD161/Stn-8) is also marked. Bathymetry data of the studied area was obtained from GEBCO Compilation Group665 (2020) GEBCO 2020 Grid
(10.5285/a29c5465-b138-234d-e053-6c86abc040b9).
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(Jørgensen et al., 2004; Knittel and Boetius, 2009; Lin et al., 2018)
driven by sulfate reduction (Mazumdar et al., 2019). At seep sites,
non-steady and multiple diagenetic fronts would yield a complex
pattern of magnetic mineral assemblages (Roberts, 2015; Reilly
et al., 2020). Recent study by Reilly et al. (2020) provides new
insights on magnetic mineral diagenesis through a shallow
sulfate-methane transition zone (SMTZ) in a sediment core
from Perseverance Drift, Northwestern Weddell Sea, Antartica.
They reported that non-steady state disturbances including
fluctuations in carbon flux and sedimentation can shift the
pore-water geochemical profiles resulting in preservation of
authigenic ferrimagnetic iron sulfides. In contrast, steady-state
diagenetic processes at relict sites would lead to dissolution of
detrital magnetic minerals followed by subsequent diagenetic
formation of iron sulfide (pyrite) which can significantly
reduce magnetic susceptibility of the bulk sediments (Canfield
and Berner, 1987; Roberts et al., 2005; Roberts and Weaver, 2005;
Mohamed et al., 2011; Kars and Kodama, 2015; Roberts, 2015;
Amiel et al., 2020; Lin et al., 2020; Reilly et al., 2020).

Magnetic minerals are potential recorders of the geological
and methane-related geochemical processes and provide vital
information on the methane seepage dynamics and diagenetic
processes in marine gas hydrate sedimentary system (Musgrave
et al., 2006; Larrasoaña et al., 2007; Kars and Kodama, 2015;
Roberts, 2015; Badesab et al., 2019). Previous rock magnetic
studies on sediment cores overlying shallow and deep-seated
gas hydrate deposits in the K-G basin mainly aimed at delineating
the magnetic signatures of detrital and diagenetic processes
associated with evolution of gas-hydrate system (Dewangan
et al., 2013; Badesab et al., 2017). For example, a magnetic
based proxy for deciphering paleo-methane seepage events and
sediment dispersal patterns, tracking of the rapid sedimentation
events and its control on the magnetic mineral diagenesis and
evolution of gas hydrate deposits was developed (Usapkar et al.,
2014; Badesab et al., 2017; Badesab et al., 2019; Badesab et al.,
2020b). Furthermore, the mechanism of formation and
preservation of greigite in deep methanic sediments were
unravelled by Badesab et al. (2020c). The occurrence of
silicate-hosted greigite inclusion were reported by Badesab
et al. (2020a). They further highlighted its importance in
understanding magnetic mineral diagenesis in the gas hydrate
system. More recently, Badesab et al. (2020c) conducted a
comprehensive rock magnetic and mineralogical investigation
on a seep-impacted sediment core from a newly discovered site
and successfully delineated the processes governing the methane
seepage dynamics and evolution of shallow gas hydrate
(2–3 mbsf) system in the K-G basin. However, a dedicated
rock magnetic study focussing on understanding the complex
diagenetic (early and late) processes controlled by variability in
methane fluxes and underlying fault/fractures at active and relict
seep dominated sedimentary systems is still lacking.

Sediment cores retrieved during gas hydrate discovery cruise
in 2018 in the K-G basin provides an excellent opportunity to
establish a magnetic mineral inventory and investigate the
diagenetic processes at active/relict and paleo-seep sites
associated with shallow and deep-seated marine gas hydrates
respectively. The active seep sites (SPC-01 to SPC-06) are mainly

characterized by gas flares as observed in the water-column
images, higher methane flux and presence of live
chemosynthesis dependent organisms predominantly Bivalvia,
Gastropods, and Polychaete (Mazumdar et al., 2019; Dewangan
et al., 2020). Relict seep site (Stn-11/GC-02) is characterized by
the absence of gas flares, presence of non-living shell fragment,
Calyptogena Sp. and occurrence light brown colored authigenic
carbonates at 48 cm below sea floor at this site. Contrastingly,
paleo-seep site (MD161/Stn-8) is marked by the presence of
methane-derived carbonates, non-living with chemosynthetic
clams (Calyptogena sp.) and authigenic carbonates within
17–23 mbsf in this core which provided evidence of seepage of
methane and sulfide-bearing fluids to the seafloor in the
geological past (Mazumdar et al., 2009). In this study, we
conducted a comprehensive investigation of rock magnetic,
mineralogical, and sedimentological records of sediment cores
supplemented by high resolution seismic data to elucidate the
controls of structural and diagenetic (early vs. late) processes on
the sediment magnetism in an active (SSD-45/Stn-4/SPC-01 to
SPC-06) and relict (SSD-45/Stn-11/GC-02) cold seep sites in the
Bay of Bengal.

GEOLOGY OF KRISHNA-GODAVARI BASIN

Krishna-Godavari (K-G) basin is situated along the eastern
continental margin of India (Figure 1). The K-G basin covers
onshore area of 28,000 km2 and offshore area about
145,000 km2 and extends from Ongole in South to
Vishakhapatnam in north (Ojha and Dubey, 2006). Average
sediment thickness is about 3–5 km in onshore region, which
increases to about 8 km in the offshore region (Prabhakar and
Zutshi, 1993; Bastia, 2007). The Krishna and Godavari rivers
and their tributaries deliver major sediment load to the K-G
basin. Annual sediment load delivered by the Krishna and
Godavari rivers is estimated to be around 67.7 × 106 and 170 ×
106 metric ton respectively (Biksham and Subramanian, 1988;
Ramesh and Subramanian, 1988). Both the river systems flows
through the Deccan trap basalt and Precambrian metamorphic
rocks and supplies large amount of detrital magnetite-rich
sediments to the K-G basin (Ramesh and Subramanian 1988;
Sangode et al., 2007). Sediments in the K-G basin are primarily
composed of montmorillonite clay with traces of illite and
kaolinite (Rao, 1991). Neo-tectonic activities in the K-G basin
resulted in the formation of geomorphic structures including
shale diapirs, mounds, and faults. Migration of methane
through the fault system favoured the accumulation of gas
hydrates in the K-G basin (Dewangan et al., 2010).

METHODOLOGY

Sampling and Measurements
During gas hydrate exploration cruise (SSD-45) of Council of
Scientific and Industrial Research -National Institute of
Oceanography (CSIR-NIO) onboard R/V Sindhu Sadhana,
six short spade cores (SPC-01 to SPC-06; Table. 1) were
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retrieved from active site (SSD-45/Stn-4) and one gravity core
(Stn-11/GC-02) from relict seep site (as evident through the
presence of non-living shell fragment, Calyptogena Sp. and
authigenic carbonates at 48 cmbsf in this core) in the K-G
basin (Figure 1). Upon recovery, sediment cores from active
sites smelled strongly of hydrogen sulfide (H2S) suggesting a
shallow SMTZ that motivated this study. Magnetic samples
were taken onboard immediately after collection of pore water
samples to minimize sediment alteration due to warmer
temperatures and oxygen exposure. The cores were sub-
sampled in the presence of high purity nitrogen flushing to
minimize the exposure of samples to atmospheric conditions,
which could oxidize hydrogen sulfide or iron mono-sulfide.
Samples for magnetic analysis were collected by pushing non-
magnetic plastic bottles into the split halves at ∼2 cm intervals.
After sub-sampling, magnetic samples were transferred to a cold
room (4°C) for storage. Magnetic measurements were carried
out on wet sediment samples (packed in 25 mm plastic sample
bottled) at the Paleomagnetic laboratory of CSIR-NIO and
specialized rock magnetic measurements on dry samples at
Center for Advanced Marine Core Research (CMCR), Kochi
University, Japan.

Magnetic Measurements
Low-field magnetic susceptibility measurements were carried out
using a Bartington Instruments MS2B dual frequency
susceptibility meter. The susceptibility was measured at low
(lf) and high (hf) frequencies χlf � 0.47 kHz and χhf � 4.7 kHz.
The frequency-dependent susceptibility was calculated as χfd % �
(χlf − χhf)/χlf × 100%. All remanent magnetizations were
measured using an AGICO JR-6A spinner magnetometer. An
anhysteretic remanent magnetization (ARM) was imparted using
a 100 mT alternating magnetic field superimposed on a fixed
direct current (DC) bias field of 50 μT. An isothermal remanent
magnetization (IRM) was imparted using an inducing field of
+1T in the forward direction by a MMPM10 pulse magnetizer.
S-ratio is calculated as the ratio of IRM at −300 mT and SIRM

(IRM−300 mT/IRM1T) (Thompson and Oldfield, 1986).
Thermomagnetic measurements were conducted on eight
selected samples using a Natsuhara Giken (Model NMB-89)
magnetic balance at CMCR with a heating rate of 10°C/min in
a 0.3-T field.

Hysteresis loops, first-order reversal curves (FORC) (Pike
et al., 1999), and back-field curves were also measured for 14
selected samples with a maximum field of 1T (number of loops
per FORC: 91, averaging time: 200 ms, field increment: 4 mT,
and a slew rate limit: 1T/s) at CMCR. Processing of FORC
diagrams were done using the FORCinel software (Harrison
and Feinberg, 2008). FORC distributions were processed using
a smoothing factor (SF) of 5, but SF � 6 were used where
possible. Low-temperature magnetic measurements were
conducted on selected samples using a Quantum Design
Magnetic Properties Measurement System (MPMS) at
CMCR. A room temperature SIRM (RT-SIRM) was
imparted at room temperature (300 K) in 2.5 T. Samples
were then cooled to 5 K and warmed back to 300 K in a
zero magnetic field. A low temperature SIRM (LT-SIRM)
was then imparted at 5 K in 2.5 T. Samples were warmed up
to 300 K in a zero magnetic field (termed “ZFC” for zero field-
cooled). Samples were then cooled to 5 K in the presence of a
2.5 T magnetic field. A LT-SIRM was again imparted at 5 K,
and samples were warmed to 300 K in a zero magnetic field
(termed “FC” for field-cooled).

Bulk Sediment Grain Size Analyses
Sediment grain size measurements were carried out using a
Malvern Mastersizer 2000 Laser Particle Size Analyzer at
CSIR-NIO. Before analyses, desalination of sediment samples
were carried out by washing repeatedly with deionized water
followed by decarbonisation using dilute HCl (1N) acid. For
removal of organic carbon, samples were treated with 10% H2O2

and later, Sodium hexametaphosphate was added to sediments
for better dispersal of the sediment fractions. Grain size values are
reported as volume%.

TABLE 1 | Information of spade sediment cores retrieved from an active seep site in the Krishna-Godavari (K-G) basin, Bay of Bengal.

Core
no

Location Water
depth (m)

Core
recovery (cm)

Core Description

Lat. (°N) Long. (°E)

SPC-01 15°42.9986 82°04.0154 1755.0 30 0–4 cmbsf, light gray sediment; 4–30 cmbsf homogeneous deep black sediment; live
Bathymodiolus sp. found on surface of the spade core

SPC-02 15°43.0058 82°04.0787 1756.5 43 0–18 cmbsf, light gray sediments; 18–43 cmbsf deep black sediments; live
Bathymodiolus sp. found on surface of the spade core

SPC-03 15°43.0055 82°04.0791 1754.0 40 0–40 cmbsf, homogenous light gray sediments throughout the core; chemosynthetic
community were not found in this core

SPC-04 15°42.9098 82°03.9825 1756.4 25 0–25 cmbsf, homogenous deep black sediments throughout the core; strong H2S smell
during sub-sampling the core; live Bathymodiolus sp. and squat lobsters were found in
this spade core

SPC-05 15°43.0411 82°04.0599 1750.0 20 0–20 cmbsf, homogenous deep black sediments throughout the core; moderate H2S
smell during sub-sampling the core; live Bathymodiolus sp. found in this spade core

SPC-06 15°42.0991 82°04.0006 1754.0 25 0–25 cmbsf, homogenous deep black sediments throughout the core; moderate H2S
smell during sub-sampling the core; live Bathymodiolus sp. and Acharax sp.were found in
this spade core

GC-02 15°24.1603 81°00.3078 1,354.0 63 0–45 cmbsf, homogenous deep black sediments; 45–63 cmbsf homogenous gray
sediments; buried Calyptogena sp. and authigenic carbonates were found at 48 cmbsf in
this gravity core
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FIGURE 2 | Down-core variations of selected rock magnetic data of spade (A–E): SPC-01, (F–J): SPC-02, (K–O): SPC-03, (P–T): SPC-04, (U–Y): SPC-05,
(Z–A4): SPC-06, and gravity sediment cores (A5–A9): GC-02. Based onmagnetic susceptibility variations two sedimentary magnetic zones Z-I and Z-II are demarcated.
Z-I highlighted with gray shading. (Please note that χ lf, low frequency magnetic susceptibility; ARM, anhysteretic remanent magnetization; and IRM1T, isothermal
remanent magnetization; χfd%, frequency dependent susceptibility). Depth of carbonate occurrence are highlighted in solid black arrows (horizontal). The depth of
greigite occurrence is marked by “G.” Sediment magnetic zones (Z-I, Z-II) in each profile are marked.
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Mineralogical Analysis
Magnetic particles were extracted from bulk sediments following
the separation method of Petersen et al. (1986). Bulk sediment
samples were disintegrated into 500 ml of distilled water with
addition of 200 mg of a dispersing agent (sodium
hexametaphosphate) and suspensions were treated with
ultrasonics. Further, sediment suspension was allowed to
continuously flow through the magnetic extraction set-up. The
extraction method is based on the principle that high magnetic
field gradients are created by inserting magnets on the teflon
coated magnetic finger. During continuous circulation, magnetic
particles within the bulk sediments get attracted towards the
magnetic finger. These magnetic fractions are removed and
washed several times in a small volume of distilled water to
remove clay fractions and other contaminants. Magnetic particles
were mounted on a carbon tape and were carbon coated for
imaging. Images of magnetic grains were captured in secondary
electron (SE) imaging mode at energy levels between 15 and
20 keV using a scanning electron microscope (SEM; JEOL JSM-
5800 LV) at CSIR-NIO. Energy dispersive X-ray spectroscopy
(EDS) probe attached to the microscope was used to determine
the composition of magnetic minerals. Magnetic mineralogy was
determined on the extracted magnetic particles using a Rigaku
X-Ray Diffractometer (Ultima IV). The samples were allowed to
run from 15° to 65° of 2θ at 1°/min scan speed using Cu Kα
radiation (λ � 1.5414 Å).

RESULTS

Down-Core Changes in Rock Magnetic
Parameters
The magnetic susceptibility (χlf) profile of all spade cores (SPC-01 to
SPC-06) from active seep and a gravity core from relict (SSD-45/Stn-
11/GC-02) sites along with IRM1T, ARM/IRM1T, IRM1T/χlf and
S-ratio are shown in Figure 2. Two distinct sedimentmagnetic zones
(Z-I and Z-II) are defined based on down-core variations of χlf in all
cores (Figures 2A,G,M,S,Y,A5,A11). In active methane-seep
influenced sediment cores, Z-I is marked by relatively higher
values of χlf and IRM1T indicating high concentration of
magnetic minerals as compared to that observed in Z-II.
Magnetic grain size diagnostic proxy (ARM/IRM1T) showed
variations in Z-I and Z-II of all analyzed sediment cores
(Figure 2; Maher and Thompson, 1999; Peters and Dekkers,
2003). A general trend of downcore decrease suggesting
coarsening in magnetic grain size is observed till the bottom of
Z-I in all cores except SPC-02 (Figure 2I). In SPC-01, SPC-03, SPC-
04, SPC-06, and GC-02 ARM/IRM1T first decreases probably due to
preferential dissolution of fine-grained magnetite in Z-I, and rises
downcore in response to the authigenic formation of greigite
(Figures 2C,O,U,A7, A13) or fine-grained magnetite (Rodelli
et al., 2019; Lin et al., 2020) in Z-II. A mixed trend of ARM/
IRM1T in SPC-02 and SPC-05 reflects the dominance of both fine
and coarse magnetic particles in Z-II (Figures 2I,A1). Two distinct
patterns in grain size indicator of magnetic iron sulfides (IRM1T/χlf)
are observed (Figure 2; Maher and Thompson, 1999; Peters and
Dekkers, 2003; Snowball, 1991; Snowball and Thompson, 1990). A

trend of initial rise in IRM1T/χlf values are noticed in Z-I of cores
SPC-01, SPC-02, SPC-03, SPC-05, and GC-02 suggest the presence
of fine grained magnetic particles (Figures 2D,J,P,A2). After initial
rise, a gradual decline in IRM1T/χlf values till end of Z-II of the same
cores is noticed (Figures 2D,J,P,A2,A14). Overall, S-ratios vary
between 0.82 and 0.99 for majority of the samples suggesting that
bulk magnetic mineralogy is characterized by both soft as well as
hard coercive minerals in the cores from active seep sites (Figures
2E,K,Q,W,A3,A9; Frank and Nowaczyk, 2008). A systematic
downcore decrease in χfd (%) is seen in all cores from active sites
(Figure 2F,L,R,X,A4,A10). High values in Z-I indicate higher
concentration of fine-grained magnetic particles, while relatively
lower values in Z-II suggest the relative dominance of coarse
magnetic particles. Interestingly, we noticed an opposite trend in
χfd (%) profile of relict site. Lower χfd (%) values were found in Z-I
and vice-versa (Figure 2A16).

Magnetic record of relict site (SSD-45/Stn-11/GC-02) showed
similar magnetic zonation (Z-I, Z-II), but exhibit different
downcore trends in ARM/IRM1T, IRM1T/χlf and S-ratio
(Figure 2A11–A16). Three sediment intervals (11 cmbsf,
13 cmbsf, 15 cmbsf) within Z-I showed higher χlf, IRM1T and
IRM1T/χlf suggesting the presence of fine-grained ferrimagnetic
iron sulfides in these samples (Figures 2A11,A12,A14). An
anomalous increase in ARM/IRM1T between 39 and 57 cmbsf
suggests the dominance of fine-grained magnetic particles in this
interval (Figure 2A13). A major shift in S-ratio at 29 cmbsf
followed by a minor rise in IRM1T downcore (29–33 cmbsf)
indicates that the relict site has much higher concentration of
high-coercive (coarse-grained) minerals (Figures 2A12,A15) as
compared to other sites.

MAGNETIC MINERALOGY AND GRAIN
SIZE DIAGNOSTIC PARAMETERS

Thermomagnetic Measurements
Figures 3A–H show the thermomagnetic curves of the
representative sediment samples from Z-I to Z-II of cores
SPC-01/02/03/05. A steady decrease in χ between 552 and
633°C in majority of the samples imply that the bulk magnetic
mineralogy is governed by magnetite (Dunlop et al., 1997).
Two samples from SPC-01 (21 cmbsf) (Figure 3B) and SPC-
02 (41 cmbsf) (Figure 3D) showed a major drop in χ at 695
and 673°C respectively. A minor increase in χ between 357
and 473°C for most of the samples could be either due to the
presence of titanomagnetite with a wide range of Ti-contents
(Lattard et al., 2006) or because of conversion of
paramagnetic minerals into magnetite during heating
process (Hirt and Gehring, 1991; Pan et al., 2000; Passier
et al., 2001; Figures 3A–H).

FORC Diagrams
FORC diagram provided additional information on the type of
magnetic minerals and their domain states. Representative
FORC diagrams for Z-I and Z-II samples of cores SPC-01/
02/03/06 are shown in Figure 4A–N. In majority of the
samples, FORC distributions are characterized by closed
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FIGURE 3 | Thermomagnetic profiles of selected representative samples representing two sedimentary magnetic zones of the studied spade sediment cores.
(A–B): SPC-01, (C–D): SPC-02, (E–F): SPC-03, and (G–H): SPC-05. Solid red lines indicate heating curves, and blue lines indicate cooling curves respectively.
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contours with a peak at Bc ∼10–12 mT which suggest that
magnetic particles exhibit vortex state to multidomain (MD)
type behavior (Figures 4A–N; Roberts et al., 2017; Lascu et al.,
2018; Roberts et al., 2020).

Low-Temperature Measurements
Results of the low-temperature magnetic measurements
displaying characteristic magnetic signatures with respect to
the sediment magnetic zones (Z-I, Z-II) (Figure 5). A typical
Verwey transition (Tv) temperature indicative of presence of
magnetite (Figures 5A,B,D–F) is noticed in RT-SIRM, ZFC-FC,
and in the first derivative of magnetization curves (Verwey,
1939; Verwey, 1947; Özdemir et al., 2002; Chang et al., 2016a).
Samples from magnetically reduced zone (Z-II) do not exhibit
any Tv. The displayed LTmagnetization curve (Figure 5C) at 29
cmbsf of core SPC-01 is indicative of maghemite (Özdemir and
Dunlop, 2010). Approximately 62% loss of RT-SIRM induced at
5 K is seen during warming between 5 and 30 k (Figure 5C)
indicating the presence of SP size magnetic particles. We do not
observe any Besnus transition (typical for pyrrhotite; Besnus
and Meyer, 1964; Dekkers, 1989; Larrasoaña et al., 2007) in the
studied samples.

Identification of Magnetic Mineralogy Using
X-Ray Diffraction Analysis and Scanning
Electron Microscopy
Titanomagnetite and greigite are the dominant magnetic
minerals identified in all the sediment magnetic zones
(Figure 6A–M). Greigite is present in both magnetic zones
(Z-I and Z-II) of the cores SPC-01 (Figures 6B,C), SPC-02
(Figures 6E,F), and SPC-04 (Figures 6J,K). The electron
microscopic images and respective EDS spectra of magnetic
particles extracted from different sediment depth intervals of
spade cores SPC-01–04 are presented in Figures 7A–L.
Ferrimagnetic iron oxides (detrital) and sulfides (diagenetic)
minerals of different sizes and shapes are identified in all spade
cores (Figures 7A–L). Well-preserved (Figures 7A,D,G,I) as
well as diagenetically altered (Figures 7C,H) titanomagnetite
grains are found in both sediment magnetic zones. EDS data
for these grains indicate the presence of titanium, iron, and
oxygen with minor amount of silicon, aluminum, calcium,
potassium, manganese and magnesium. Numerous
diagenetically formed iron sulfides occurring as framboidal
crystals and individual grains are observed (Figures 7B,K,L)

FIGURE 4 | First-order reversal curve diagrams for selected representative samples from spade cores. (A–D): SPC-01, (E–H): SPC-02, (I–J): SPC-03, (K–L):
SPC-05, and (M–N): SPC-06.
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and EDS data indicate the presence of sulfur and iron along
with minor amounts of aluminum and silicon (Figures 7A–L).
Greigite was found to occur as fine-grained minerals only in
few samples and the EDS results of these grains show the
presence of sulfur and iron with minor traces of calcium,
potassium, silicon, aluminum, and magnesium (Figures
7E,F,J). The titanomagnetite grains in Figures 7C,L show a
shrinkage-cracks typical of low-temperature mathematization
(Nowaczyk, 2011). The cracks on the grains most likely
indicate the areas where dissolution might have started. In
the relict seep core (GC-02), magnetic mineralogy is carried by
titanomagnetite, titanohematite and greigite particles (Figures
8I–P). Z-I is dominated by coarse-grained titanomagnetite and

titanohematite grains. A skeletal type titanohematite grains
exhibiting the dissolution features are observed in Z-I
(Figure 8J) and Z-II (Figures 8M,O,P). Numerous
titanomagnetite grains showing the overgrowth of fine-
grained greigite particles are noticed in Z-I (Figures 8K,L)
and Z-II (Figure 8O).

Grain Size Distributions of Sediments,
Chemosynthetic Communities and
Authigenic Carbonates
Bulk sediment grain size in the studied cores mainly composed of silt
and clay size fractions (Figure 9). Sand content is relatively low and

FIGURE 5 | Low-temperature magnetization curves for selected representative samples from the two spade cores (A–C): SPC-01 and (D–F): SPC-02. FC, field-
cooled; RTSIRM, saturation isothermal remanent magnetization at room temperature; ZFC, zero field-cooled. The corresponding values of Verwey transition (Tv) are
placed near the first derivative of magnetization curves.

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 9 | Article 6385949

Gaikwad et al. Magnetic Minerals in Active/Relict Methane-Seep

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 6 | X-ray diffraction spectra for magnetic minerals extracted from different sediment core depth intervals of spade cores. (A–C): SPC-01, (D–F): SPC-02,
(G–I): SPC-03, (J–K): SPC-04, and (L–M): SPC-05. TM, titanomagnetite; P, pyrite; Qz, quartz, and G, greigite.
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varies between 0.99 and 18.58 vol%. Sand bearing sediment layers are
observed throughout the core only in SPC-04/05/06 (Figures 9D–F).
Higher magnetic susceptibility was found only in silt and clay size
fractions (Figures 9A–F). Characteristic chemosynthetic living
communities (Mazumdar et al., 2019) including Bathymodiolus
sp., (Figures 8A–C,E), Acharax sp. shell (Figure 8F) and
Decapod crustaceans (squat lobsters) belonging to the family
Galatheidae and Munidopsidae (Figure 8D) are abundantly found
at the active methane seep sites. At relict seep site (SSD-45/Stn-11/

GC-02), light brown colored authigenic carbonates showing various
morphologies and a non-living shell fragments (Calyptogena sp.)
were found at 48 cmbsf (Z-II) in this core (Figures 8G,H).

Correlation Between Magnetic Parameters
of Active and Relict Methane-Seep Sites
A clear distinction in terms of magnetic mineral concentration, grain
size and mineralogy is seen between active and relict seep sites

FIGURE 7 | Scanning electron microscopy on magnetic extracts from different sediment core depth intervals. Energy dispersive x-ray spectroscopy spectra are
placed adjacent to the respective images. (A–C): SPC-01, (D–F): SPC-02, (G–I): SPC-03, and (J–L): SPC-04. Iron (Fe), titanium (Ti), sulfur (S), oxygen (O), calcium (Ca),
silicon (Si), carbon (C), aluminium (Al), potassium (K), magnesium (Mg), and manganese (Mn) peaks are indicated.
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(Figure 10). A positive correlation between χlf and IRM1T is observed
in all the samples, but showed different slopes which can be attributed
to the presence of different magnetic mineralogies (Figure 10A).
Contrastingly, anomalous lower values (0.11–0.55) of S-ratio andwide
range of χlf displayed by samples from relict site indicates the
predominance of highly coercive minerals (Figure 10C). Coupling
between magnetic grain size (ARM/IRM1T) and physical grain size is
noticed in majority of samples from active and relict seep sites
(Figure 10D). We observed two populations (A and B). The
samples from group-A showed uniformity in physical grain size,
but exhibit wide range of magnetic grain size, while group-B samples

follow equivalent trend and showed slight variation in magnetic and
large scattering in physical grain size (Figure 10D).

DISCUSSION

Room, low and high temperature based rock magnetic data,
FORC diagrams, XRD and SEM-EDS observations provide
vital information about complex magnetic mineral assemblages
in the studied cores. Data revealed that the sediment cores from
active seep sites have undergone significant diagenetic dissolution

FIGURE 8 | Photographs showing occurrence of (A,B,C,E):Bathymodiolus sp (D): Decapod crustaceans (squat lobsters) (F): Acharax sp. found at the spade core
(surface) locations (G) calyptogena sp., shell fragment, and (H) authigenic carbonates found at 48 cmbsf in GC-02 location (I–P): Scanning electron microscopy on
magnetic extracts from different sediment core depth intervals (Relict seep site: SSD-45/Stn-11/GC-02). TM, titanomagnetite; TH, titanohematite; and G, greigite).
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in Z-I, while antigenically formed fine-grained magnetite and
greigite is predominant in Z-II. Contrastingly, sulfitic (Z-I) and
methanic (Z-II) zones of relict core are devoid of authigenic
magnetite and mainly dominated by large amount of coarse-
grained titanomagnetite and highly coercive (titanohematite)
grains of detrital origin which most likely survived the
diagenetic dissolution and remained preserved in these zones
(Figures 8I–P). Here, we analyse these information to elucidate
the controls of structural and diagenetic (early vs. late) processes
on the sediment magnetic signals in an active/relict cold seep sites
in the Bay of Bengal.

Magnetic Mineral Inventory of Sediments at
Active/Relict Cold Seep Sites in the K-G
Basin
Magnetic mineral assemblages in the sediment cores from active
and relict seep sites from K-G basin, primarily consists of detrital
(titanomagnetite, titanohematite), diagenetic (greigite/pyrite)
and authigenic (magnetite) origin and are present in various
proportions (Figures 2, 3, 5–7, 8I–P). Higher values of χlf in Z-I
can be attributed to the presence of mixture of fine and coarse
grained detrital titanomagnetite and titanohematite primarily
sourced from Deccan trap basalts (Ramesh and Subramanian,
1988; Sangode et al., 2001; Badesab et al., 2019; Figures 2, 7,

FIGURE 10 | (A–D): Bivariate scatter plots of magnetic parameters
magnetic susceptibility (χlf), saturation isothermal remanent magnetization
(IRM1T), IRM1T/χ, S-ratio, ARM/IRM1T and mean grain size for spade cores
(SPC-01 to SPC-06) from active (SSD-45/Stn-4) and gravity core (GC-
02) from relict seep site (SSD-45/Stn-11) in the Krishna-Godavari (K-G) basin,
Bay of Bengal. The gray arrows are used to highlight the trends in plots.

FIGURE9 | (A–F)Grain size distribution andmagnetic susceptibility data
of all spade (SPC-01 to SPC-06) sediment cores retrieved from active
methane seep site SSD-45/Stn-4. Depths of carbonate occurrence are
highlighted in solid red arrows (vertical). The depth of greigite occurrence
is marked by “G”. Sediment magnetic zones (Z-I, Z-II) in each profile are
marked.
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8I–P). Higher values of grain size indicative (ARM/IRM1T) ratio
(Maher, 1988) in Z-II of cores SPC-01/03/04/06, and GC-02
reveals high concentrations of fine SD/PSD magnetite (Figures
2C,O,U,A7,A13). ARM/IRM1T first decreases because of
preferential dissolution of fine-grained magnetite in the upper
part of the reduced zone (Z-I), and increases later in response to
the authigenic formation of fine-grained authigenic magnetite
(Rodelli et al., 2019; Lin et al., 2020) and greigite in deeper
positions downcore (Z-II). Diagenetically formed magnetic iron
sulfide (greigite) are also found to co-exist with detrital
titanomagnetite grains and are spatially distributed in both
sediment magnetic zones (Z-I and Z-II) of cores from active
and relict seep sites (Figures 6, 7, 8I–P, 11). These can be
explained based on the fact that few titanomagnetite grains
might have survived the early diagenetic dissolution and got
rapidly buried and remain preserved due to increased
sedimentation.

Verwey transition (Tv) temperatures has been successfully
utilized as a diagnostic for discriminating detrital magnetite in
sulfitic marine sedimentary systems. For example in Oman
continental margin (Chang et al., 2016a), offshore of Western
Australia (Heslop et al., 2013), and Ria de Vigo, Spain (Mohamed
et al., 2011). Low-temperature magnetic data of SPC-01 and SPC-
02 revealed the presence of magnetite (Figures 5A,B,D–F;
Moskowitz et al., 1993; Özdemir et al., 1993; Verwey, 1947;
Muxworthy and McClelland, 2000; Prozorov et al., 2007;
Chang et al., 2013; Chang et al., 2014; Chang et al., 2016a;
Chang et al., 2016b). At relict seep site (GC-02), magnetic
mineralogy in the high χlf zone (Z-I) comprised of abundant
detrital coarse-grained titanomagnetite and titanohematite
particles (Figures 8I,J). Within sulfidic zone, minor peak of
high χlf, χfd%, and IRM1T/χlf between 11 and 13 cmbsf reflect
the diagenetic formation of greigite in this interval (Figures
2A11,A14,A16, 8K–L). Reduced methane flux due to either
closure of underlying fractures/fault or cut-off in the supply of
downward diffusing sulfate concentrations most likely
interrupted the reductive diagenetic process and rather favored
the formation and preservation of greigite by limiting H2S
production at this site (Jørgensen et al., 2004; Neretin et al.,
2004). Overgrowth of sub-micron sized particles on the larger
titanomagnetite grain in Z-II is suggestive of authigenic growth of
greigite probably due to weakening of anaerobic oxidation of
methane (AOM) process in GC-02 (Figure 8O).

Magnetic granulometry (ARM/IRM1T, IRM1T/χlf; Snowball
and Thompson, 1990; Roberts, 1995; Maher and Thompson,
1999; Sagnotti and Winkler, 1999; Nowaczyk et al., 2012) and
mineralogy (S-ratio; Bloemendal et al., 1992) diagnostic
parameters exhibits different trends in Z-1 and Z-II,
respectively (Figure 2). A trend of down-core decrease of
ARM/IRM1T in SPC-01/03/04/05/06 and GC-02 indicates the
increase in abundance of coarser magnetic particles in Z-I
(Figures 2C,O,U,A1,A7,A13). Loss of finer magnetic fraction
in Z-I can be explained by selective diagenetic dissolution of fine-
grained magnetic minerals due to their high reactivity and large
surface area (Karlin and Levi, 1983; Rodelli et al., 2019; Tarduno,
1995). In contrast, core SPC-02 showed an opposite trend of
down-core increase in ARM/IRM1T upto 11 cmbsf in Z-I

(Figure 2I). Fining of magnetic particles in Z-I (Figure 2I)
can be attributed to diagenetically induced fining mechanism
(Chang et al., 2016b) or due to increased production of ultra-fine
magnetic grains during magnetite reduction processes (Tarduno,
1995; Rodelli et al., 2019). The titanomagnetite grain in Z-II
(Figures 7C,L) showed shrinkage-cracks typical of low-
temperature maghemitization (Nowaczyk, 2011). The cracks
on the grains indicate the areas where dissolution might have
started. Hence, the finingmechanism inmethanic Z-II can also be
linked to the partial dissolution of large titanomagnetite grains
(Nowaczyk, 2011). Down-core variations in χlf and IRM1T/χlf
illustrate the spatial distribution of magnetic iron sulfides in the
studied spade and gravity cores (Figure 2). Apparent linkage
between high IRM1T/χlf, χfd%, and greigite occurrence was clearly
observed for SPC-01/02/04 (Figures 2D,F,L,X,J,V, 6B,C,E,F,J,K,
7B,E,F,J,K,L). Several peaks of IRM1T/χlf and χfd%,
predominantly in Z-I manifested by presence of non-
uniformly distributed greigite (confirmed through SEM-EDS
and XRD; Peters and Dekkers, 2003; Fu et al., 2008; Rowan
et al., 2009; Figures 2, 6, 7) can be attributed to non-steady state
magnetic mineral diagenesis driven by fluctuations in diffusive
methane flux at these sites.

Variability in rock magnetic parameters in each core reflects
the different degree of diagenetic disturbances created by
methane seepage within the studied sites in the K-G basin.
Similar observations were reported from Vestnesa Ridge,
Svalbard margin (Sztybor and Rasmussen, 2017) and Oregon
continental margin (Karlin, 1990). Variations in S-ratio can be
attributed to the changes in magnetic mineralogy (Figures
2E,K,Q,W,A3,A9,A15). High S-ratio in Z-I is due to the
presence of detrital titanomagnetite (Figures
2E,K,Q,W,A3,A9,A15, 6A,D,G,J,L, 7A,D,G). In spade cores
(SPC-01 to SPC-06), we did not observe any signatures of
higher coercivity (hematite) in SEM-EDS and XRD data
(Figures 6, 7). In fact, XRD data confirmed the presence of
greigite in samples exhibiting low S-ratio in both Z-I and Z-II
(Figures 6B,C,E,F,K). The S-ratio drop in Z-II of relict core can
be well-explained by the occurrence of numerous titanohematite
grains (Figure 2A15, 8M,O,P). Preservation of titanomagnetite
grains (Figures 8M–P) in Z-II could be either due to weakened
AOM (Reidinger et al., 2005) or higher resistance against
dissolution (Nowaczyk, 2011; Rodelli et al., 2019) which might
have hindered the early diagenetic processes and led to the
preservation of detrital magnetic particles. Significant drop in
S-ratio (Figure 2A15) followed by high χfd% (Figure 2A16) in
Z-II of relict core (SSD-45/Stn-11/GC-02) can be attributed to the
presence of mixture of detrital titanohematite (Figures 8M,O,P),
authigenic greigite (Dillon and Bleil, 2006; Larrasoaña et al., 2007;
Rodelli et al., 2019) and hexagonal 3C pyrrhotite (Horng, 2018;
Horng and Roberts, 2018). Similar observations were recently
reported from Perseverance Drift, North-western Weddell Sea
(Reilly et al., 2020).

Authigenically formed ferrimagnetic iron sulfides (greigite
and pyrrhotite) are well-reported in methane-rich
sedimentary system, for instance in Nankai Trough
(Horng, 2018; Kars and Kodama, 2015), Hydrate Ridge
(Larrasoaña et al., 2007), and offshore Taiwan (Horng and
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Roberts, 2018). FORC diagrams and low-temperature
magnetic measurements provided additional constraints on
the magnetic mineralogy and domain states. FORC
distributions showed the mixture of vortex to multi-
domain magnetic particles (Figures 4A–N). In natural
system, greigite can commonly occur as magnetostatically
interacting framboids. A micromagnetic modelling study
involving hysteresis and FORC simulations demonstrated
that magnetostatic interactions could remarkably alter the
FORC response of greigite framboids and can form patterns
similar to vortex and MD (Rodelli et al., 2018; Valdez-
Grijalva et al., 2020). It is quite possible that greigite
clusters observed in SPC-02 (Figures 7E,F) and SPC-04
(Figure 7J) might be contributing significantly towards the
observed FORC (vortex to multi-domain) distributions. Low
temperature magnetic data indicated the presence of
magnetite in Z-I and Z-II (Figures 5A,B,D–F). Similar to
our findings, Korff et al. (2016) reported cyclic magnetite
dissolution and preservation of detrital magnetite in
methanic sediments of the abyssal northwest Pacific
Ocean. Sample from the zone of reduced magnetic

susceptibility (Z-II) of SPC-01 did not show any indication
of a Verwey transition in RT-SIRM, ZFC-FC, and the first
derivative of magnetization curves (Figure 5C). We observed
that nearly 62% of the LT-SIRM applied at 5 K is lost during
warming between 5 and 30 K (Figure 5C). This observation
indicates the presence of superparamagnetic (SP) magnetic
particles in these samples (Tarduno, 1995; Passier and
Dekkers, 2002). Similar to our observation, Kars and
Kodama (2015) reported a related pattern of sudden
decrease in LT-SIRM from 5 to ∼30 K and about ∼50–60%
loss of the applied remanence in the sediment core samples
from Nankai Trough, offshore Japan. They linked the loss of
remanence to the presence of SP particles which get
unblocked very rapidly. The SP magnetic particles in this
sample (Figure 5C) is most likely iron sulfides like greigite,
pyrrhotite, titanohematite (Horng, 2018; Rodelli et al., 2019;
Roberts et al., 2020). This interpretation can be explained by
the fact that fine-grained magnetic particles in this sample
would get readily dissolved in the sulfitic environment (as
seen through lowest χlf in Z-II). Contrastingly, the SP greigite
and pyrrhotite nanoparticles are thermodynamically more
stable compared to the SP magnetite nanoparticles and would
rather remain preserved (Rowan et al., 2009; Roberts et al.,
2018; Rodelli et al., 2018). Lack of LT transitions in the
magnetization derivation curves in this sample
(Figure 5C) is persistent and further confirms the
presence of greigite (through high χfd%, Figure 2F) and
pyrrhotite (Chang et al., 2009; Roberts et al., 2011).

Early Versus Late Diagenesis of Magnetic
Minerals in Active and Relict Methane Seep
Sites in the Bay of Bengal: Constraints From
Rock Magnetism and Mineralogical Proxies
In active cold seep sedimentary system, temporal movement of
diagenetic fronts due to variability in methane fluxes and sulfate
reduction rates favours non-steady state diagenesis. Such process
could generate complex magnetic signatures in sediments
involving magnetite reduction and authigenic formation of
magnetite (Amiel et al., 2020; Lin et al., 2020; Riedinger et al.,
2014) and iron sulfides (Canfield and Berner, 1987; Larrasoaña
et al., 2003; Liu et al., 2012; Riedinger et al., 2014; Roberts, 2015).
Rock magnetic data showed progressive downcore dissolution of
magnetite in sediment cores from active (Figures 2A–A10) and
relict (Figures 2A11–A16; Karlin and Levi, 1983) sites in K-G
basin. A gradual downcore decrease in ARM/IRM1T and χlf
within Z-I in cores SPC-01/03/04/05/06 suggest substantial
dissolution of fine-grained magnetic particles due to early
diagenesis (Figures 2C,O,U,A1,A7; Rodelli et al., 2019). A
slight increase in ARM/IRM1T in Z-II of SPC-01/03/04/06
(Figures 2C,O,U,A7) can be attributed to the presence of fine-
grained authigenic magnetite (Karlin et al., 1987; Roberts, 2015;
Roberts et al., 2018; Rodelli et al., 2019; Lin et al., 2020). A similar
steady increase of ARM/IRM1T in sulfidic zone of a sediment
cores from deep methanic zone of Southern Eastern
Mediterranean continental shelf (Amiel et al., 2020) and Niger
deep-sea fan was attributed to the gradual authigenic growth of

FIGURE 11 | (A–D) X-ray diffraction spectra for magnetic minerals
extracted from different sediment intervals of relict seep site: SSD-45/Stn-11/
GC-02. TM, titanomagnetite; H, hematite; Py, pyrite; and G, greigite.
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SD magnetite (Dillon and Bleil, 2006). A downcore increase in
ARM/IRM1T in Z-II of active seep sites (SPC-01/03/04/06) could
also be due to presence of authigenic magnetite formed as a result
of microbial iron reduction process in methanic sediments which
might have permitted the newly formed magnetite to survive the
sulfidic dissolution and favoured preservation (Rodelli et al.,
2018; Rodelli et al., 2019; Lin et al., 2020; Figures
2C,O,U,A7). SEM-EDS and XRD data of cores showed the
presence of greigite in methanic zone (Z-II) from active seep
sites (Figures 6C,E,F,K, 7E,F,K,L). Following the concept put
forward by Lin et al. (2020), we propose that following
mechanism for authigenic greigite formation in Z-II of active
seep sites. Increased supply of reactive iron (secondary iron
oxyhydroxides) produced during iron-sulfide mineral
oxidation due to decline in methane seepage intensities (Lin
et al., 2016; Lin et al., 2020) and limitation of sulfide in
methanic zone (below SMTZ) probably favoured the greigite
formation in this zone.

During early diagenesis, sulfate gets readily depleted through
decomposition of organic matter (Karlin, 1990a). We put forward
the plausible mechanism for the preservation of fine-grained
authigenic magnetite in Z-II as seen through a trend of high
ARM/IRM1T in SPC-01/03/04/06 (Figure 2C,O,U,A7). Fine-
grained magnetite (SD-type) could also occur as magnetic
inclusions in silicates which most likely protected the
magnetite from diagenetic dissolution (Hounslow and Morton
2004; Feinberg et al., 2005; Tarduno et al., 2006; Muxworthy and
Evans, 2013; Chang et al., 2016a; Chang et al., 2016b) and could
explain the preservation of fine-grained magnetite in Z-II.
Another possibility is that authigenic magnetite formation
coupled to microbial iron reduction (Lin et al., 2020) within
methanic sediments might have allowed the freshly formed fine-
grained magnetite to survive sulfidic dissolution fronts and rather
favoured preservation as evident through high ARM/IRM1T

values in Z-II (methanic) of cores SPC-01/03/04/06 from
active seep sites. However, we do not rule out the possibility
of presence of fine-grained titanomagnetite in Z-II. Similar
findings were reported from rock magnetic studies on
sediment cores from continental margin of Oman north-
western Arabian Sea (Chang et al., 2016b) and northeast part
of Japan Sea (Yamazaki et al., 2003). At relict site, an anomalous
(39–57 cmbsf) interval within (Z-II) showed increased ARM/
IRM1T values and significant drop in S-ratio (29–63 cmbsf)
indicating the preservation of numerous highly coercive
magnetic particles as confirmed through SEM observations
(Figures 2A13,A15, 8M−P). We proposed that overgrowth of
sub-micron sized authigenically formed SP greigite particles on
the larger titanomagnetite grain (at 43 cmbsf, Figure 8O) might
have contributed towards the observed increase in IRM1T/χlf
(Figure 2A14). The presence of SP greigite is further
confirmed by the observed increase in χfd% in Z-II of GC-02
(Figure 2A16).

Magnetic iron sulfides including greigite and pyrrhotite forms
within the sulfidic pore water produced by upward migrating
SMTZ fronts (Kasten et al., 1998; Horng, 2018). Significant
downcore decrease in magnetite concentration (χlf) and grain
size (ARM/IRM1T) diagnostic parameters in SPC-01/03/04/05/06

and GC-02 suggests that fine-grained magnetic particles were
selectively removed by diagenetic dissolution (Figures
2A,C,M,O,S,U,Y,A1,A5,A7,A11,A13; Chang et al., 1987;
Karlin et al., 1987; Roberts, 2015; Rodelli et al., 2019; Lin
et al., 2020). Rock magnetic (Figure 2), SEM-EDS (Figures 7,
8I–P) observations, and mineralogical (Figures 6, 11) records
provide evidence on the spatial distribution of diagenetically
formed iron sulfides (greigite, pyrite) in Z-I and Z-II of all
analyzed cores. A noticeable high IRM1T/χlf and χfd% values in
samples from Z-I are exhibited by fine-grained greigite particles
formed during early diagenesis (Figure 2). FORC diagrams for
majority of samples provided evidences of two important
magnetic (fine-grained, SD + SP) populations in Z-I and Z-II
(Figures 4A–N). SP sized ultra-fine authigenically formed
ferrimagnetic greigite particles (as seen through high χfd% and
rapid decrease of ZFC and FC remanences upon warming from 5
to 30 K (Banerjee et al., 1993; Muxworthy and Roberts, 2007;
Figures 2, 5C) and SD-type (as seen through negative regions in
the horizontal axis, Sagnotti et al., 2005; Rowan and Roberts,
2006; Sagnotti et al., 2010; Roberts et al., 2011; Figures 4A–M)
indicate the preservation of fine-grained SD magnetite particles.

Reduced magnetization at gas hydrate vents has been
established in Cascadia accretionary margin off Vancouver
Island (Novosel et al., 2015). At active seep sites, methane is
being transported from deep-seated gas reservoir up to the
seafloor and the intensities of methane flux governs the SMTZ
location. Presence of abundant live chemosynthetic communities
(Bathymodiolus sp. and Acharax sp.) provide evidences of active
methane seepage at the studied site (Figures 8A–F). Elevated
methane flux will shift the SMTZ fronts upward and vice-versa
(Borowski et al., 1996). Production of hydrogen sulfide via AOM at
SMTZ causes the dissolution of iron oxides, and precipitation of
iron sulfides (Reidinger et al., 2014). Diagenetic dissolution of
magnetite followed by the subsequent transformation to pyrite will
create a distinct χlf minima compared to ferrimagnetic greigite
which would significantly increase χlf (Dewangan et al., 2013; Kars
and Kodama, 2015; Badesab et al., 2019). Several researchers
established that variability in the SMTZ depth can be used to
quantify methane flux (Housen andMusgrave, 1996; Neretin et al.,
2004; Novosel et al., 2005; Reidinger et al., 2005; Musgrave et al.,
2006; Larrasoaña et al., 2007; Roberts, 2015). A close linkage
between the depth of SMTZ and minima in χlf has been well-
established and increasingly utilized as a proxy for detecting SMTZ
fronts in methanic sediments for example in Cascadia margin
(Housen and Musgrave, 1996; Larrasoaña et al., 2007), offshore of
Argentina and Uruguay (Riedinger et al., 2014), Nankai trough,
Japan (Kars and Kodama, 2015), and offshore New Zealand
(Rowan and Roberts, 2006). In the analyzed sediment cores, the
distinct χlf minimamost probably reflect recent SMTZ front, which
varies between 5 cmbsf and 16 cmbsf (Figure 2). The shallowest χlf
minima is noticed in active seep core SPC-05 (Figure 2Y) and
deepest at SPC-03 (Figure 2M) and relict site GC-02
(Figure 2A11), respectively. Such variability in SMTZ depth
provides evidences on the differential rate of diagenesis
constrained by fluctuations in methane fluxes. In such non-
steady state diagenetic scenario, for instance at active seep sites
(SPC-01 to SPC-06), different degree of diagenetic disturbances
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created by changing methane flux could variably modify and
preserve the primary magnetic mineral assemblages in
sediments. SEM observations indicate the presence of abundant
coarse-grained titanomagnetite and titanohematite in Z-I (Figures
7A,D,G, 8I–P) and Z-II (Figures 7C,I, 8M–P). More recently
Amiel et al. (2020) conducted a detailed magnetic investigation on
the sediment cores from SE Mediterranean Continental Shelf to
examine the influence of early diagenesis in methanic
environment. They reported that rapid sedimentation and non-
steady state conditions triggered by variability in methane flux
favoured the survival of abundant iron-oxide minerals in the
sulfidic and deep methanic zone (Riedinger et al., 2014). In the
present study, survival and preservation of these minerals in Z-I
and Z-II can be explained by the fact that titanohematite and
titanomagnetite are more stable and offers strong resistance to
reductive dissolution induced by early and late diagenetic processes
(Channell and Hawthorne, 1990; Poulton et al., 2004; Nowaczyk,
2011; Rodelli et al., 2019) or due to increased sedimentation
(Riedinger et al., 2014; Amiel et al., 2020). Stability against

diagenetic alteration increases together with elevated Ti content
and, in turn, results in a higher magnetic stability. Dissolution of
titanohematite involves a noticeably slower reaction compared to
magnetite (Cornell and Schwertmann, 1996; Yamazaki et al., 2003;
Liu et al., 2004; Rodelli et al., 2019). Previous studies have
demonstrated that increasing titanium content stabilizes
titanomagnetite compounds because Ti4+ substitution
correspondingly reduces the number of Fe3+, the acting electron
acceptor under anaerobic conditions (Karlin, 1990; Garming et al.,
2005). During non-steady diagenesis, formation of secondary
minerals takes places whenever pore-water chemistry changes
due to upward or downward diffusion of dissolved hydrogen
sulfide (Roberts and Weaver, 2005) and could lead to the
formation and preservation of authigenic magnetite and
greigite. Microbial iron reduction within methanic sediments is
the most likely mechanism for authigenic magnetite formation
(Rodelli et al., 2018; Lin et al., 2020).

More recently Reilly et al. (2020) and Rodelli et al. (2019)
revealed that high coercivity magnetic minerals respond slowly to

FIGURE 12 | Comparative FORC diagrams of greigite bearing sediment intervals from (A,B): active (SSD-45/Stn-4/SPC-01) and (C,D) of paleo-seep location
(MD161-Station-08; modified from Badesab et al., 2020a) in the Krishna-Godavari (K-G) basin, Bay of Bengal. The dashed (black) lines along Bc axis highlights the
negative region on the horizontal axis.
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the diagenetic dissolution through entire SMTZ and can be a
potential source for ferric iron via microbial iron reduction
process coupled to AOM (Beal et al., 2009; Riedinger et al.,
2014; Amiel et al., 2020). They further concluded that
increased concentration of high coercivity minerals in
methanic zone (below SMTZ) can produce large amount of
ferric (Fe3+) via iron reduction where sulfide is limited and
favours the authigenic precipitation of greigite. In the relict
core (SSD-45/Stn-11/GC-02) greigite and titanohematite are
found to occur throughout the sulfidic (Z-I) and methanic
(Z-II) (Figures 2A11,A16, 8I–P, 11A–D). It is highly possible
that diagenetic dissolution of titaohematites during iron
reduction generated enough (Fe3+) and provided conducive
environment for greigite formation in the intervals where
sulfide got exhausted in core SSD-45/Stn-11/GC-02. Our SEM
(Figures 8K,L,O) and XRD (Figures 11B,C) observations
followed by high values of χfd% (Figure 2A16) support the
findings of Reilly et al. (2020). Bivariate magnetic plots
(Figure 10) and FORC diagrams (Figure 12) also helped to
evaluate the influence of steady and non-steady state diagenetic
processes on the magnetic record of sediment cores from active
(SPC-01 to SPC-06), relict (Stn-11/GC-02) and paleo (MD161/

Stn-8; Mazumdar et al., 2009) seep sites in the K-G basin.
Scattered data plot between IRM1T/χlf and χlf reflects a broad
range of SP greigite (Figures 2A16, 8K,L,O) particles and a larger
variations in their concentrations (Figure 10B). A scattered plot
between magnetic (ARM/IRM1T) and physical (mean) grain size
showed a systematic pattern of fining in magnetic grain size with
increase in diagenetic dissolution of detrital magnetic minerals
(Figure 10D).

Non-steady state diagenetic processes can potentially affect
the sediment magnetic parameters. For example, abrupt change
in the sedimentation rate can cause migration of the SMTZ (e.g.,
Fu et al., 2008; Riedinger et al., 2014), temporal changes in the
organic matter load into the sediment can affect the depths of
the different respiration processes (Larrasoaña et al., 2003;
Rowan et al., 2009), changes in the sediment composition
can lead to the accumulation of magnetic minerals in the
sediment and change in the magnetic parameters. These
mechanisms require time-variations in the flux of the
sediments from Krishna and Godavari rivers, which are main
source of detrital magnetic particles to the studied area. Multiple
layers of mass transport deposits (MTD’s) generated as a result
of frequently occurring high sedimentation events have been

FIGURE 13 | Photographs showing methane-derived authigenic carbonates found in an active seep sites SSD-45/Stn-04/SPC-01, SPC-04 and SPC-06.
Respective depths of the carbonate occurrence are mentioned.
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identified in the shallow and deep offshore regions of the K-G
basin (Ramana et al., 2007; Ramprasad et al., 2011; Yamamoto
et al., 2018). Recently Badesab et al. (2019) reported a high
resolution sediment magnetic record of high sedimentation
events in the K-G basin. Samples from relict site (SSD-45/
Stn-11/GC-02) showed remarkably high χlf and IRM1T

(Figures 2A11,A12) compared to active seep sites (SPC-01 to
SPC-06) probably due to non-steady state diagenesis driven by
high sedimentation events. It is most likely that coarse
titanomagnetite and titanohematite grains survived diagenesis
due to 1) its inherent property to resist the dissolution
(Nowaczyk, 2011; Rodelli et al., 2019), and 2) rapid burial
due to increased sedimentation (Badesab et al., 2019).
Detailed rock magnetic and microscope analyses conducted
on the sediment cores from continental margin of Oman and
northern California by Rowan et al. (2009) reported that newly
formed greigite particles are small initially and would display
thermally unstable SP behaviour unless it grows fully through

the stable SD blocking volume. They attributed the magnetic
enhancement to the late diagenetic growth of magnetically
stable greigite. Greigite can display both SD-type behaviour
(Roberts, 1995) as well as ultrafine-grained SP (Rowan and
Roberts, 2006; Rowan et al., 2009). Differences in the growth of
greigite particles from active (SPC-01 to SPC-06) and paleo
(MD161/Stn-8; Badesab et al., 2020a) samples is clearly reflected
in the FORC diagrams (Figures 12A–D). FORC diagram of
samples from active seep site (SPC-01) showed the magnetic
particles exhibit a mixed (vortex state to multidomain) type
behavior (Figures 12A,B; Roberts et al., 2017; Roberts et al.,
2020). In contrast, FORC diagrams of paleo-seep samples
showed broad distribution with concentric and elongated
contour indicative of presence of magnetically stable greigite
probably formed as a result of late diagenetic growth
(Figure 12C; Rowan et al., 2009) and biogenic mineralization
(Figure 12D; Rodelli et al., 2018; Badesab et al., 2020a) at site
MD161/Stn-8.

FIGURE 14 |Conceptual model explaining the structural and diagenetic controls on the evolution of magnetic mineralogies at active and relict methane seep site in
the Krishna-Godavari (K-G) basin, Bay of Bengal.
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Structural Control on the Formation and
Preservation of Greigite
Methane venting episodes linked to active and paleo-cold seeps are
well documented in the K-G basin (Mazumdar et al., 2009; Dewangan
et al., 2020). High-resolution seismic data across active seep site (SSD-
45/Stn-4; present study) showed the presence of well-developed
seismic chimney and faults, which facilitated the migration of
deep-seated gas through the gas hydrate stability zone (GHSZ) up
to the seafloor and favored gas hydrate accumulation in theK-Gbasin
(Dewangan et al., 2020; Figure 1B). At the same site, shallow
(2–3mbsf) gas hydrates were recovered during a gas hydrate
exploration cruise in 2018 (Mazumdar et al., 2019). Vertical
migration of methane through the sedimentary column produces
multiple AOM’s resulting in the growth of diagenetic minerals
including pyrite, greigite and pyrrhotite (Roberts, 2015). Interplay
between the rates downward diffusing sulfate and upward migrating
methane concentrations control the amount of hydrogen sulfide
which is a key factor constraining the greigite formation (Kasten
et al., 1998; Jørgensen et al., 2004; Neretin et al., 2004). For instance,
enhanced methane flux would generate large amount of hydrogen
sulfide which could drive pyritization process to complete resulting in
the precipitation of pyrite, while limitation of sulfide due to decline in
methane would favor greigite/pyrrhotite formation (Liu et al., 2004).

At active site, presence of greigite in both sedimentmagnetic zones
of cores SPC-01/02/04 has been confirmed through SEM-EDS and
XRDdata (Figures 2, 6, 7).We try to investigate the structural control
on the variability in methane fluxes and subsequent diagenetic
formation of greigite in the studied cores. Control of opening and
closing dynamics of the underlying fracture/fault system on methane
migration in theK-Gbasin has beenwell-established (Dewangan et al.,
2011; Dewangan et al., 2020). Spatial distribution of authigenic
carbonates in cores SPC-01, SPC-04, SPC-06 (Figure 13) provide
evidence on several AOM’s and is indicative of past fluctuations in
methane fluxes. We put forward following plausible mechanisms to
explain the formation and preservation of greigite in Z-I and Z-II: 1)
decline in methane flux either due to massive hydrate accumulation
(Mazumdar et al., 2019; Dewangan et al., 2020) or hindering of
upward migrating fluid/gas by the carbonate layers in the subsurface
sediments most likely resulted in low sulfide production and
preferentially favoured formation and preservation of greigite in
the Z-I. Similar observations were reported in fault-controlled cold
seep-hydrate Woolsey Mound in the Northern Gulf of Mexico
(Simonetti et al., 2013), gas hydrate field offshore Vancouver
Island (Riedel et al., 2002), Vestnesa Ridge, W-Svalbard Margin
(Singhroha et al., 2020), and in the K-G basin (Badesab et al.,
2017; Dewangan et al., 2011). They explained that plugging of an
active fault system due to massive hydrate formation can also cause
significant drop in methane flux. 2) Occurrence of greigite below the
carbonate layers in cores SPC-01, SPC-04, SPC-06 (Figure 13) in Z-II
suggest that supply of downward diffusing sulfide is most likely
hindered and subsequently a sulfide deficient zone is formed below
the carbonate layer which inhibited the pyritization and rather
favoured the formation and preservation of greigite. A detailed
rock magnetic analysis of a 30m long sediment core from paleo-
seep site in the Bay of Bengal reported the presence of both diagenetic
and biogenic greigite (within 17–23mbsf) i.e., beneath a thick layer of

authigenic carbonate formed as a result of intense methane seepage
event (Mazumdar et al., 2009; Dewangan et al., 2013; Badesab et al.,
2020a). More recent study has demonstrated that elevated supply of
Fe2+ via iron reduction produced by high coercivityminerals in sulfide
limited zone (Z-II) can also favour the authigenic growth of greigite
(Rodelli et al., 2019; Reilly et al., 2020). Greigite presence in low S-ratio
intervals of Z-II in relict core (SSD-45/Stn-11/GC-02) can also be
linked with such process (Figures 2A15, 8O, 11C,D). The presence of
greigite is further confirmed by the observed increase in χfd%
(Figure 2A16). However additional geochemical and
microbiological data are warranted to resolve the mechanism.

A conceptual model explaining the evolution of magnetic
mineralogies at active (Stn-4/SPC-01 to SPC-06) and relict (Stn-
11/GC-02) seep sites is developed (Figure 14). Shallow gas hydrates
(2-3 mbsf) and authigenic carbonates (throughout the cores) were
recovered at active seep sites (Figure 13; Mazumdar et al., 2019). In
sulfidic (Z-I), detrital magnetic particles minerals supplied through
Krishna and Godavari river systems reacted with the H2S produced
by bacterial activity via organic matter decomposition and AOM-
coupled sulfate reduction which led to the diagenetic dissolution of
magnetic particles and subsequent precipitation of iron sulfide
(pyrite) with intermediate precursors such as greigite and
pyrrhotite (Berner, 1984; Karlin, 1990a). SEM-EDS and XRD
data coupled with χfd% confirmed the presence of greigite in
both sulfidic (Z-I) and methanic (Z-II) (Figures 2, 6, 7). Most
likely mechanism which can explain the formation and preservation
of greigite in Z-I and Z-II is as follows. Decline in methane flux due
to massive hydrate accumulation along the active fault system and
formation of authigenic carbonate crust in the sub-surface sediments
might have hindered the supply of upward migrating fluid/gas and
limited the sulfide production which preferentially enhanced greigite
formation in Z-I. Secondly, restricted supply of downward diffusing
sulfide by the carbonate layers in the uppermost sediments might be
a responsible process for creating a sulfide deficient zone beneath.
These might have inhibited the pyritization process and rather
favoured the formation of greigite in methanic zone (Z-II).
Samples from relict site (SSD-45/Stn-11/GC-02) showed notably
high χlf and IRM1T (Figure 2A11,A12) compared to active seep sites
which is most probably due to non-steady state diagenesis driven by
high sedimentation events in the K-G basin. Coarse titanomagnetite
and titanohematite grains might have survived diagenesis either due
to its inherent property to resist the dissolution (Nowaczyk, 2011;
Rodelli et al., 2019), or because of rapid burial due to increased
sedimentation (Badesab et al., 2019).

CONCLUSION

A set of rock magnetic, mineralogical and sedimentological
records of the sediment cores were used to characterize the
changes in the magnetic concentration, grain size, and
mineralogy in a newly discovered active (Stn-4/SPC-01 to
SPC-06) and relict (Stn-11/GC-02) cold seep sites in the K-G
basin, Bay of Bengal. Sediment magnetism is mainly carried by
complex magnetic mineral assemblages of detrital
(titanomagnetite, titanohematite) and authigenic (magnetite,
greigite) minerals. Topmost sulfidic sediment magnetic zone
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(Z-I) is marked by a higher concentration of magnetic minerals as
evident in rock magnetic parameters. A systematic downcore
decrease in χlf and IRM1T in this zone is due to the progressive
diagenetic dissolution of iron oxide and subsequent precipitation
of iron sulfides. Magnetogranulometric proxy (ARM/IRM1T)
provided valuable insights on the preferential dissolution of
fine-grained magnetite in the sulfidic zone (Z-I), and
authigenic formation of magnetite in methanic zone (Z-II) of
all studied cores. At relict site, elevated concentration of highly
coercive magnetic (titanohematite) grains relative to soft minerals
(as seen through lower S-ratio and χlf) which survived diagenesis
are found in the methanic zone. A strong linkage between
occurrence of authigenic carbonates and greigite formation
and preservation is noticed. We summarized our observations
into a conceptual model which provides insights on the evolution
of different magnetic mineralogies constrained by variable
diagenetic processes at active and relict seep sites in the K-G
basin, Bay of Bengal.
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