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Natural gas hydrates have the properties of ice with a microporous structure and its
concentration in sediments highly affects the wave velocity and attenuation. Previous
studies have performed investigations based on the measurements of laboratory data,
sonic-log data, and field data, whereas the variation trend of wave dissipation with
increasing hydrate concentration at different frequencies is still unclear. We consider two
different models to study this problem, both based on the Biot-Rayleigh double-porosity
theory. In the first model, hydrate is part of the pore infill, unbonded from the grains,
and brine saturates the remaining pore space. In the second model, hydrate forms a
second skeleton and cements the grains. We obtain the P-wave velocity dispersion
and attenuation as a function of the inclusion radius, porosity, and hydrate content. The
analysis shows that the predictions of both models agree with the experimental data.
At sonic log frequencies, the second model predicts much more attenuation, due to
wave-induced local fluid flow (mesoscopic loss), and the behavior is such that below
a given hydrate concentration the dissipation increases and then decreases beyond
that concentration.

Keywords: Biot-Rayleigh double-porosity theory, rock-physical model, effective medium theory, velocity
dispersion, attenuation, gas hydrate

INTRODUCTION

The concentration of natural gas hydrate in sediments affects their acoustic properties (Guerin and
Goldberg, 2002). In particular, the wave velocity highly increases, even with small concentrations
(Chand and Minshull, 2003; Dvorkin et al., 2003; Chand et al., 2004; Guerin and Goldberg,
2005; Lee and Waite, 2008). This property is used to determine the distribution of hydrate
in sediments (Tinivella and Carcione, 2001). Moreover, the P-wave quality factor obtained, by
attenuation tomography, for instance, can also be used to monitor the presence of gas hydrate
(Carcione et al., 2012). Samples from marine sediments or from permafrost regions show that
hydrates are microporous (Kuhs et al., 2004). It has been observed that seismic attenuation
decreases due to a stiffening effect when the hydrate concentration increases (Dvorkin et al.,
2003; Rossi et al., 2007; Gei and Carcione, 2003). Vertical-seismic-profile data in Nankai areas
showed no significant attenuation (Matsushima, 2006). However, the sonic log data in the Mallik
area show that attenuation increases linearly with hydrate saturation (Guerin and Goldberg, 2002;
Chand and Minshull, 2004).
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Actually, attenuation depends not only on hydrate
concentration, but also on other reservoir properties, such
as microstructure (Ecker et al., 2000; Priest et al., 2009). Figure 1
shows different cases (Ecker et al., 1998, 2000; Waite et al., 2009;
Zhan and Matsushima, 2018): (1) hydrate grows freely in the
pores away from the grains (pore-filling hydrate); (2) hydrate
forms a second skeleton (load-bearing hydrate); (3) hydrate
cements the grains (contact-cementing hydrate); (4) hydrate
evenly deposited on the grain surface (envelope-cementing
hydrate). Gas hydrate can be part of the pore infill or rock
skeleton (Liu et al., 2018; Lin et al., 2019). Dvorkin and Nur
(1993) proposed the BISQ model to effectively combine the global
Biot-flow mechanism with the local squirt-flow mechanism.
This model can be used to describe seismic attenuation in
combination with frozen porous-media theories (Leclaire et al.,
1994; Guerin and Goldberg, 2005). The effective-medium theory
has been implemented by Helgerud et al. (1999) and Dvorkin
et al. (1999). Carcione and Tinivella (2000) presented a Biot-type
theory with two solids and one fluid, where hydrate forms an
additional skeleton and water is the pore fluid. The concentration
of gas hydrate and saturation of free gas has been estimated from
seismic velocity and attenuation based on this theory (Carcione
and Gei, 2004; Carcione et al., 2005). Lee (2002a,b) extended the
classical Biot–Gassmann theory to predict the S-wave velocity.
Chand et al. (2006) use the self-consistent approximation,
differential effective medium theory and consider the Biot and
squirt-flow attenuation mechanisms to estimate the hydrate
concentration in the Mallik area. An effective-medium model,
considering different microstructures, has been considered in Liu
et al. (2017) and Qu et al. (2016) use a model based on penny-
shaped and infinite cracks. Sell et al. (2016) combine tomography
and 3D modeling to simulate the acoustic properties with digital
rock physics, whereas Sell et al. (2018) show that there is an
interfacial water film between hydrate and grains through 3D
micro-tomography, and a new conceptual squirt-flow model is
proposed. Tuan et al. (2019) uses a homogenization theory for
multiphase composites to predict wave velocities that agree with
laboratory and sonic-log data.

Based on the effective-grain model (Leurer, 1997), Best et al.
(2013) apply the squirt-flow mechanism to explain the observed
attenuation, and Marín-Moreno et al. (2017) consider squirt-
flow mechanisms and gas-bubble damping factors, showing that
there are different behaviors of the attenuation as a function
of frequency above and below a given hydrate saturation (6%)
(Sahoo et al., 2019).

In this work, the Biot-Rayleigh theory of wave propagation in
double-porosity media is used here to describe the gas-hydrate
distribution in the sediment and study wave dispersion and
attenuation (Ba et al., 2011). The model predictions are then
compared with laboratory data (Priest et al., 2005, 2009) and
sonic-logging data (Zhan and Matsushima, 2018).

ROCK-PHYSICS MODELS

As shown in Figure 2, solid hydrate can be part of the pore infill
(Model 1, Figure 2A) or constitute a skeleton and cement the

grains (Model 2, Figures 2B,C). The skeleton or frame properties
are obtained with the effective-medium theory according to
Ecker et al. (2000), and the wet-rock P-wave properties with the
Biot-Rayleigh theory. Figures 3, 4 show the modeling workflow
and the description of the two models, respectively. Hydrate is
abundant in the seafloor and permafrost (e.g., Marín-Moreno
et al., 2017), for instance, in Qilian region (China) (Qu et al.,
2016), the Mount Elbert in Alaska (Pan et al., 2019), and in the
Eastern Nankai Trough offshore Japan (Konno et al., 2015). These
cases showed the characteristics of Model 1. Lei et al. (2018) and
Chen et al. (2020) observed the distribution characteristics of
Model 2 by CT imaging.

Model 1: Hydrate as Pore Infill
At low concentrations, hydrate can be assumed as pore infill (Lee
et al., 2010), such that a fluid is formation water and the other is a
mixture of solid hydrate and free gas (hydrate/gas shortly), with

K(1)
f = Kw, (1)

ρ
(1)
f = ρw, (2)

where Kw and ρw are the water bulk modulus and density,
respectively, and

K(2)
f =

(
ch

Kh
+

cg

Kg

)−1
, (3)

ρ
(2)
f = chρh + cgρg, (4)

where Kh and Kg are the bulk moduli of gas hydrate and free
gas, respectively, and ch and cg are the respective volume ratios
(ch+cg = 1). ρh and ρg are the densities of gas hydrate and free
gas, respectively. The saturation of free gas is

Sg=
cgSh

ch
, (5)

with Sh + Sg + Sw = 1.
The bulk and shear moduli of the m-phase mineral mixture

without hydrate (moduli of the mineral mixture, referred to as
mineral moduli) are obtained with Hill’s average:Ks =

1
2

[∑m
i=1 fiKi + (

∑m
i=1

fi
Ki

)−1
]

Gs =
1
2

[∑m
i=1 fiGi + (

∑m
i=1

fi
Gi

)−1
] , (6)

Where fi is the volumetric fraction of the i-th component and Ki
and Gi are the respective bulk and shear moduli.

The dry-rock moduli can be obtained by combining Eqs
1–6 and the modified Hashin–Shtrikman theory given in
Supplementary Appendix A. By substituting a plane-wave
solution into the Biot-Rayleigh equations (see Supplementary
Appendix B) of Ba et al. (2011, 2012), we obtain∣∣∣∣∣∣

a11k2
+ b11 a12k2

+ b12 a13k2
+ b13

a21k2
+ b21 a22k2

+ b22 a23k2
+ b23

a31k2
+ b31 a32k2

+ b32 a33k2
+ b33

∣∣∣∣∣∣ = 0, (7)
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FIGURE 1 | Microstructure in gas hydrate-bearing sediments. The white, orange, and blue colors indicate the hydrate, grain, and pore fluid.

FIGURE 2 | Different distributions of hydrate in the sediment. (A) Pore-filling hydrate; (B) load-bearing hydrate; (C) contact-cementing and envelope-cementing
hydrate.

where ω is the angular frequency, k is the complex P-wave wave
number,

a11 = A+ 2N + i (Q2φ1 − Q1φ2) x1, b11 = −ρ11ω
2
+ iω

(
b1 + b2

)
,

a12 = Q1 + i (Q2φ1 − Q1φ2) x1, b12 = −ρ12ω
2
− iωb1,

a13 = Q2 + i (Q2φ1 − Q1φ2) x3, b13 = −ρ13ω
2
− iωb2,

a21 = Q1 − iR1φ2x1, b21 = −ρ12ω
2
− iωb1,

a22 = R1 − iR1φ2x2, b22 = −ρ22ω
2
+iωb1,

a23 = iR1φ2x3, b23 = 0,

a31 = Q2 + iR2φ1x1, b31 = −ρ13ω
2
− iωb2,

a32 = iR2φ1x2, b32 = 0,

a33 = R2 + iR2φ1x3, b33 = −ρ33ω
2
+iωb2,

where x1 = i (φ2Q1 − φ1Q2)
/

Z, x2 = iφ2R1
/

Z,
x3 = −iφ1R2

/
Z,

Z =
iωηφ2

1φ2φ20R2
0
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2
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(
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)
.
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FIGURE 3 | Modeling workflow methods for the two models.

FIGURE 4 | The two models used in the workflow with the definition of the inclusion radius.

where φ1 and φ2 are the porosities of the water- and hydrate-
saturated pores, respectively, φ10 and φ20 are the local porosities
in the two regions, ρf , η1 and κ1 are the density, viscosity and
permeability of the host phase fluid, respectively. b1 and b2
are Biot dissipation coefficients, ρ11, ρ12, ρ13, ρ22, and ρ33 are
density coefficients, and A, Q1, Q2, R1, and R2 are stiffnesses
(see Supplementary Appendix C).

The mixture of hydrate/gas forms a spherical inclusion of
radius of R0. It is related to the scale of hydrate as a solid
component or a hydrate (fluid type)-saturated porous solid,
which are embedded in the host rock frame. The phase velocity
and quality factor are (Carcione, 2014).

Vp = [Re(ν−1)]−1, Q =
Re(ν)

2Im(ν)
. (8)

The volume ratios of formation water and hydrate/gas mixture
are υ1 and υ2, respectively. According to the Biot-Rayleigh theory
of patchy-saturated rocks with one solid phase and two fluid

phases (Ba et al., 2012; Sun et al., 2015), φ1=φ10υ1, φ2=φ20υ2,
and φ10=φ20=φ. The volume ratio of mixture of hydrate/gas
mixture is

υ2=Sh+Sg (9)

Examples
The properties of the components the of hydrate-bearing
sediment are given in Table 1, and other properties are shown
in Table 2 (Best et al., 2013). The free gas properties in Table 1
are given in Ecker et al. (2000), and the free gas ratio is set as
cg = 0.02.

The energy losses caused by local fluid flow depends on the
inclusion radius of the mixture of hydrate/gas in the pores.
Four radii are selected to illustrate the physics. Figure 5 shows
the P-wave phase velocity (Figure 5A) and dissipation factor
(Figure 5B) as a function of frequency for different inclusion
radii. Two peaks occur, corresponding to the local and global
flow mechanisms. The first moves towards the low frequencies
with increasing radius. The radius mainly controls the location
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TABLE 1 | Properties of the sediment constituents.

Bulk modulus
(GPa)

Shear modulus
(GPa)

Density
(g m−3)

Quartz 36.5 45 2650

Hydrate 7.9 3.3 910

Formation water 2.17 0 1006

Free gas 0.1 0 235

TABLE 2 | Other input properties.

Value Value

Effective pressure 500 kPa Grain coordination number 8.5

Water viscosity 0.001 Pa s Bulk permeability (Model 1) 100 × 10−15 m2

Critical porosity 0.38 Bulk permeability (Model 2) 10 × 10−15 m2

of the peak and has no significant effect on the global flow
dispersion/attenuation, which occurs at high frequencies.

Porosity is an important reservoir property that affects the
dry-rock moduli. The porosity of core samples in gas hydrate-
bearing sediments of the Nankai Trough ranges between 35 and
43% (Zhan and Matsushima, 2018), while the porosity in Qilian
Mountain permafrost is much smaller, with values between 1 and
5% (Lin et al., 2019). Figure 6 shows the P-wave phase velocity
(Figure 6A) and dissipation factor (Figure 6B) as a function of
frequency for different porosities. Velocity decreases and the local
and global-flow attenuations increase with increasing porosity.
At 10% porosity, these loss mechanisms start to be evident and
at higher porosities the two peaks split, with the global-flow
one more affected.

Figure 7 shows the P-wave phase velocity (Figure 7A)
and dissipation factor (Figure 7B) as a function of frequency
for different hydrate concentrations. Model 1 is assumed for
hydrate content less than 40%. Velocity increases with hydrate
concentration. The local- and global flow peak amplitude
increase with concentration. The locations of peaks are hardly
affected. Basically, Figure 7B shows that attenuation depends on
hydrate content and frequency.

Model 2: Hydrate as an Additional
Skeleton
In this case, the pore fluid is a mixture of water and free gas, such
that the effective bulk modulus is

Kf = (Sw/Kw + Sg/Kg)
−1, (10)

where Sg +Sw = 1.
The density of the pore fluid is

ρf = ρwSw + ρgSg . (11)

The porosity, after the gas-hydrate deposition can be obtained
as (Helgerud et al., 1999; Ecker et al., 2000)

φr = φ(1− Sh), (12)

and the volume percentage of hydrate in the solid matrix is

fh =
φSh

1− φr
. (13)

According to Eq. 6, the mineral moduli considering the
presence of hydrate are

Ks =
1
2

{
fhKh + (1− fh)Kn +

[
fh
Kh
+

1−fh
Kn

]−1
}

Gs =
1
2

{
fhGh + (1− fh)Gn +

[
fh
Gh
+

1−fh
Gn

]−1
} , (14)

where Kn and Gn are the bulk modulus and shear modulus of the
mineral mixtures without hydrate, respectively.

Clay is a solid component in the theory of Ba et al. (2016), i.e.,
and the host skeleton is composed of grains and intergranular
pores, forming two solids and one fluid (water/gas). The clay
squirt-flow mechanism induced by acoustic waves is discussed
in that paper. Compared with hydrate as a pure solid, the
hydrate micropores and intergranular pores are connected to
favor squirt flow. Here, gas hydrate is modeled as clay, and
it is considered to also cause wave-induced fluid flow and
dissipation (Best et al., 2013; Marín-Moreno et al., 2017; Sahoo
et al., 2019). X-ray CT analysis has observed the contact
and cementation of gas hydrate and mineral grains in the
core samples, supporting the setup of skeleton type model
(Lei et al., 2018).

The dry-rock moduli are also determined with the modified
Hashin–Shtrikman theory given in Supplementary Appendix A
and the wave propagation by Eq. 7, redefining the variables and
properties as in Supplementary Appendix C (Ba et al., 2011; Sun
et al., 2015). φ10 and φ20 are the local porosities of the main
skeleton and inclusions, and φ1 and φ2 are the absolute porosities
of the main skeleton and inclusions, respectively. The hydrate
skeleton forms a spherical inclusion with a radius of R 0 .

The volume ratio of the inclusion phase is υ2, and that of
main skeleton is υ1, with υ1+υ2 = 1. The inclusion porosity is
set φ20 = 0.05%. φ1=φ10υ1 and φ2=φ20υ2, with

υ2 = φSh. (15)

The porosity of the main skeleton is

φ1=φr=φ(1− Sh), (16)

and the total porosity is φ̄=φ1+φ2 .

Examples
The inclusion radius of hydrate, which contains micropores, also
affects the squirt flow. We choose the same four inclusion radii
for the comparison with Model 1. Figure 8 shows the P-wave
phase velocity (Figure 8A) and dissipation factor (Figure 8b)
as a function of frequency for different inclusion radii. If the
radius increases, the local fluid-flow attenuation peak moves to
the low frequencies. The global fluid-flow peak, occurring at high
frequencies, is much weaker, almost negligible.

Figure 9 shows the P-wave phase velocity (Figure 9A) and
dissipation factor (Figure 9B) as a function of frequency for
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A

B

FIGURE 5 | Model 1. P-wave velocity (A) and dissipation factor (B) as a function of frequency for different inclusion radii of hydrate/gas. The hydrate concentration is
20%, and the porosity is 40%.

different porosities. As in Model 1, increasing porosity implies
decreasing P-wave velocity and increasing local-flow attenuation.
Beyond 40%, two attenuation peaks can be observed, with the
weaker one at high frequencies being the global-flow one.

Figure 10 shows the P-wave phase velocity (Figure 9A) and
dissipation factor (Figure 9B) as a function of frequency for
different hydrate concentrations. The P-wave velocity increases
with the concentration and the local-flow peak dissipation
has a maximum value at 30% and then decreases, while the

global-flow peak is weak. The first peak is mainly located at
seismic frequencies.

COMPARISON WITH REAL DATA

Laboratory Data
We have used the experimental data from Priest et al. (2005, 2009)
and Best et al. (2013), who performed the resonance-column
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A

B

FIGURE 6 | Model 1. P-wave velocity (A) and dissipation factor (B) as a function of frequency for different rock porosities. The inclusion radius is 1 cm, and hydrate
concentration is 20%.

experiments on synthetic hydrates, to further analyze the two
models. Two methods, termed “excess water” and “excess gas,” are
implement to generate solid hydrate (Priest et al., 2009). P-wave
velocity and attenuation at an effective pressure of 500 kPa were
measured in sand samples (Priest et al., 2005; Priest et al., 2009;
Best et al., 2013). The moduli, permeability, and critical porosity
are given in Tables 1, 2. In section “Laboratory Data,” we choose
the same grain coordination number n = 4 as Best et al. (2013), to
compare the theoretical curves proposed by those authors.

Excess-Water Method
The continuously injected water reacts with a certain amount of
methane gas to form small quantities of hydrates, which are not
in contact with the grains. In this case, we have the assumption
of Model 1 (Best et al., 2013; Tuan et al., 2019), with hydrate
concentrations less than 40% (Priest et al., 2009; Zhao et al.,
2015). Figures 11, 12 compare the theoretical and experimental
P-wave velocities and dissipation factors as a function of hydrate
concentration around 200 Hz, respectively. Porosities are 40
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A

B

FIGURE 7 | Model 1. P-wave velocity (A) and dissipation factor (B) as a function of frequency for different hydrate contents. The inclusion radius is 1 cm and the
porosity is 40%.

and 42%, respectively. The inclusion radius is 0.8 and 4 cm,
respectively, based on fitting. We assume a small free-gas volume
ratio (0.002), considering that the free gas does not fully react with
water during the experiment. As the hydrate content increases,
it gradually cements the mineral grains and we have Model 2.
Chen et al. (2020) applied microtomography (CT) to analyze
the evolution of hydrate pore habit during hydrate formation.
Therefore, at low concentrations, the P-wave velocity increases
slowly with hydrate content (Ecker et al., 1998).

Both the pore-filling model and cementing model proposed
by Priest et al. (2009) are based on effective-medium theories,
because Gassmann equation cannot describe the characteristics
of rocks with a double-porosity structure. Therefore, Model 1
can better describe the P-wave velocity, as shown in Figure 11.
As the hydrate content exceeds 30%, Model 1 does not fit the
P-wave velocity and the assumptions of Model 2 hold. Best et al.
(2013) used the effective-medium theory and the correspondence
principle to model attenuation (poro-filling curve shown in

Frontiers in Earth Science | www.frontiersin.org 8 April 2021 | Volume 9 | Article 640424

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-640424 April 29, 2021 Time: 14:2 # 9

Wang et al. Wave Properties of Gas-Hydrate Sediments

A

B

FIGURE 8 | Model 2. P-wave velocity (A) and dissipation factor (B) as a function of frequency for different inclusion radii of hydrate/gas. The hydrate concentration is
20% and the porosity is 40%.

Figure 12). Their prediction results are lower than the measured
attenuation values, while Model 1 provides a relatively good fit.
The key parameter is the size of the hydrate-inclusion radius.

Excess-Gas Method
A high amount of methane gas is injected to react with water, and
then gas hydrate is formed at the grain contacts or at the surface
of the grains. Thus, we have the conditions of Model 2 (Best et al.,
2013; Tuan et al., 2019). Figures 13, 14 compare the theoretical

and experimental P-wave velocities and dissipation factors as a
function of hydrate concentration around 200 Hz, respectively
(the porosities are 42%). The hydrate inclusion radius are 2 and
0.2 cm, respectively, and as in section “Excess-Water Method,”
the free-gas volume ratio is 0.002.

The hydrate cementing the grains significantly increases the
dry-rock moduli and the P-wave velocity. Although the P-wave
velocity of the cementing model proposed by Priest et al. (2009)
does not fit the experimental data (Figure 13), it follows the trend
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A

B

FIGURE 9 | Model 2. P-wave velocity (A) and dissipation factor (B) as a function of frequency for different rock porosities. The inclusion radius is 1 cm, and hydrate
concentration is 20%.

at low hydrate content. The results from Model 2 show that the
P-wave velocity increases sharply at low hydrate saturations. It is
evident that Model 2 better describes the P-wave velocity data. In
Figure 14, the load-bearing curve proposed by Best et al. (2013)
agrees with the data when the hydrate content is lower than 10%,
but the match of the attenuation peak of attenuation is not good.
Instead, Model 2, shows a better agreement.

Sonic-Logging Data
In the hydrate-bearing sediments, estimations of hydrate
concentration based on a single model may not be appropriate,

because of the different spatial distributions of the hydrate. For
instance, Liu et al. (2020) confirmed the coexistence of different
gas-hydrate distributions from seismic velocity.

We have used the sonic-log data obtained by Zhan and
Matsushima (2018) in Nankai Trough of Japan for the analysis,
data required by the two models. In their work, the sonic-log
(magnetic monopoles) frequency is 14 kHz, the average porosity
is 40%, the grain coordination number is 8.5, the seawater
viscosity is 0.0018 Pa s, and the effective pressure is about
500 kPa. The hydrate inclusion radius is 0.18 cm. Figure 15
shows the results. The sonic-log data in Figure 15A shows that
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A

B

FIGURE 10 | Model 2. P-wave velocity (A) and dissipation factor (B) as a function of frequency for different hydrate contents. The inclusion radius is 1 cm and the
porosity is 40%.

the P-wave velocity gradually increases with hydrate content,
showing a linear relation. Zhan and Matsushima (2018) used the
Marín-Moreno and Guerin models to predict P-wave velocity and
attenuation, respectively. When the hydrate saturation is higher
than 20%, the Guerin model is consistent with the P-wave velocity
of sonic-logging data. The Marín-Moreno model considers 20%
pore-filling hydrate and 80% contact cementing hydrate, giving
a better prediction. Without considering the diverse hydrate
morphologies, the Models 1 and 2 are applied to predict

the velocities in the lower and higher bounds, respectively.
Figure 15B, shows that the experimental dissipation factor is
distributed on a wide range, which may be related to different
geometrical distributions of the hydrate. Model 1 predicts low
values, while those of Model 2 are more consistent with the
data. The attenuation of P-wave increases first and then decreases
with hydrate saturation increasing. Rossi et al. (2007) estimated
a lower dissipation factor when hydrate is present at lower
frequencies than those involved in Figure 15B. The increasing
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FIGURE 11 | Model 1. P-wave velocity as a function of hydrate concentration. The frequency is around 200 Hz. The pore-filling model curve and the experimental
data (triangles) are taken from Priest et al. (2009).

FIGURE 12 | Model 1. Dissipation factor as a function of hydrate concentration. The frequency is around 200 Hz. The pore-filling model and the experimental data
(circles) are taken from Best et al. (2013).
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FIGURE 13 | Model 2. P-wave velocity as a function of hydrate concentration. The frequency is around 200 Hz. The cementing-model curve and experimental data
(triangles) are taken from Priest et al. (2005).

FIGURE 14 | Model 2. Dissipation factor as a function of hydrate concentration. The frequency is around 200 Hz. The load-bearing model curve and experimental
data (circles) are taken from Best et al. (2013).
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FIGURE 15 | Model comparison with those of the other authors. (A) P-wave velocity and (B) dissipation factor.

attenuation at low concentrations can be due to a local-flow
mechanism or to scattering loss, since the data corresponds to
sonic frequencies.

CONCLUSION

We propose two models to calculate the wave velocity and
attenuation of gas-hydrate bearing sediments, based on the Biot-
Rayleigh double-porosity theory and two different distributions
of the hydrate in the porous medium. The difference is that in one
case hydrate is part of the pore infill and in the other constitutes

an additional (load-bearing) skeleton. The local inclusion radius
of the Biot-Rayleigh theory is related to the hydrate/gas mixture
in the first model and to the hydrate frame in the second.
The models predict two relaxation peaks, namely the local-
flow one (mesoscopic loss) and the classical global flow one,
also predicted by the Biot theory. As expected, P-wave velocity
decreases and attenuation increases with porosity. The local-
flow relaxation (attenuation) peak moves to the low frequencies
with increasing inclusion radius. More hydrate content has the
effect to increase the attenuation at low values, reach a maximum
loss and then decrease it. Modeling results are compared with
data obtained from the excess-water and excess-gas experiments,
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which generally reproduce the conditions of the first and second
models, respectively. The predictions describe quite satisfactory
the measured data in both cases. Moreover, comparisons with
log data show a good agreement, in particular the second model
(hydrate forming a frame). The models can be useful to estimate
gas-hydrate content from seismic data.
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