
Centimeter-Scale Lithology and
Facies Prediction in CoredWells Using
Machine Learning
Thomas Martin*, Ross Meyer and Zane Jobe

Colorado School of Mines, Geology and Geological Engineering, Golden, CO, United States

Machine-learning algorithms have been used by geoscientists to infer geologic and
physical properties from hydrocarbon exploration and development wells for more than
40 years. These techniques historically utilize digital well-log information, which, like any
remotely sensed measurement, have resolution limitations. Core is the only subsurface
data that is true to geologic scale and heterogeneity. However, core description and
analysis are time-intensive, and therefore most core data are not utilized to their full
potential. Quadrant 204 on the United Kingdom Continental Shelf has publicly available
open-source core and well log data. This study utilizes this dataset and machine-learning
models to predict lithology and facies at the centimeter scale. We selected 12 wells from
the Q204 region with well-log and core data from the Schiehallion, Foinaven, Loyal, and
Alligin hydrocarbon fields. We interpreted training data from 659m of core at the sub-
centimeter scale, utilizing a lithology-based labeling scheme (five classes) and a
depositional-process-based facies labeling scheme (six classes). Utilizing a “color-
channel-log” (CCL) that summarizes the core image at each depth interval, our best
performing trained model predicts the correct lithology with 69% accuracy (i.e., the
predicted lithology output from the model is the same as the interpreted lithology) and
predicts individual lithology classes of sandstone and mudstone with over 80% accuracy.
The CCL data require less compute power than core image data and generate more
accurate results. While the process-based facies labels better characterize turbidites and
hybrid-event-bed stratigraphy, the machine-learning based predictions were not as
accurate as compared to lithology. In all cases, the standard well-log data cannot
accurately predict lithology or facies at the centimeter level. The machine-learning
workflow developed for this study can unlock warehouses full of high-resolution data
in a multitude of geological settings. The workflow can be applied to other geographic
areas and deposit types where large quantities of photographed core material are
available. This research establishes an open-source, python-based machine-learning
workflow to analyze open-source core image data in a scalable, reproducible way. We
anticipate that this study will serve as a baseline for future research and analysis of borehole
and core data.
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INTRODUCTION

Supervised and unsupervised machine-learning techniques have
been widely employed by petrophysicists for subsurface analysis
for almost forty years (Wolff and Pelissier-Combescure, 1982),
and more advanced neural networks were subsequently
developed for facies prediction and petrophysical formation
evaluation (Baldwin et al., 1990). Recently, the increased
accessibility of modern machine-learning (ML) methods and
digital data-collection efforts have led to a resurgence of ML
research for surface and subsurface characterization (Dramsch,
2020). In 2016, the Society of Exploration Geophysicists
organized a ML contest to predict facies from a core-
calibrated well-log dataset (Hall, 2016). Participants used
various models, including k-nearest neighbors, neural
networks, support vector machines, and boosted tree models
(Hall and Hall, 2017), with the most accurate model utilizing a
boosted tree approach with a median accuracy of 0.64 from nine
classes (Hall and Hall, 2017). The dataset provided in the contest
is still being used today for new ML-based facies prediction
studies (e.g., Dunham et al., 2020). This contest demonstrated
that well log data is a powerful data type for ML-based lithology
and facies prediction, but logs are low-resolution data, typically
only resolving vertically ∼0.3 m for gamma ray, ∼0.5 m for
density, and ∼0.1 m for photoelectric tools (Rider and
Kennedy, 2011). Resolving fine-scale (<5 cm) changes in
lithology using standard log data is impossible (Passey, 2006),
preventing well-log data from fully characterizing the subsurface.
This log-resolution limit is a key reason that core data are
collected and analyzed, as core and/or cuttings are necessary
to fully resolve fine-scale changes in lithology as well as other
subsurface geologic characteristics [e.g., sedimentary structures,
grain size, bioturbation (Tucker, 2012)].

Slabbed geologic core, primarily collected during drilling for
hydrocarbon exploration and development, is expensive to collect
and store, and is typically not fully utilized due to its inherently
analog nature. When geoscientists describe core, the color, grain
size, lithology, sedimentary structures, and other geologic
parameters are typically recorded as a qualitative and analog
“graphic log”, either on paper or in graphics software (Compton,
2016). There is no standard scale for logging core, and depending
on the task, the description can be very coarse or extremely
detailed. These different scales of investigation and the
subjectivity in core description are problematic for comparing
datasets among authors and studies. Furthermore, graphic logs of
core data are rarely digitized into machine-readable formats for
quantitative analysis, modeling, and machine-learning. Core
photographs (i.e., images), on the other hand, are an objective
data type that preserves fine-scale lithologic heterogeneity and
doesn’t depend on a geologist’s subjective interpretation. Due to
recent and ongoing digitalization efforts, core that is stored
around the world in public and private repositories is being
carefully photographed and cataloged. For example, the British
Geological Survey has more than 300 km of open-access core data
with high-resolution digital photographs.

This study develops a machine-learning workflow to quickly
and accurately extract lithology and facies information from core

photographs. We demonstrate this workflow using British
Geological Survey data from a submarine fan system, West of
Shetlands, United Kingdom (UK). The workflow outputs are fully
digital, machine-readable, and can be used for further analysis
(e.g., reservoir model parameterization, basin-wide mapping of
cored lithology, geotechnical studies). Our workflow is scalable,
allowing a user to describe thousands of meters of core in hours
instead of spending weeks performing analog core description;
however, it is not meant to, nor can it replace manual core
inspection and description. Finally, utilizing this dataset, we
discuss subjectivity of evaluating ML model results of
geologically defined labels (e.g., lithology, facies), the usability
of this workflow, and how it can be applied to other rock types
and geological environments. We expect these initial results to be
improved on in the future with more applied research into
machine-learning models for geoscience and larger open-
source, labeled datasets.

GEOLOGIC SETTING

This study investigates Paleocene deep-marine strata within
Quadrant 204 and 205 of the Faroe-Shetland Basin, West of
Shetland, United Kingdom. West of Shetland is a prolific
petroleum-producing area in the Faroe-Shetland Basin, now
located on the United Kingdom continental shelf (UKCS). In
Q204, Foinaven field was discovered in 1990, and Schiehallion
field was discovered three years later; first oil was in 1997 and
1998 respectively. The wells in this study are from Foinaven,
Schiehallion, Loyal, and Alligin fields (Figure 1), and one
additional well that is non-reservoir (well 204/24-6).
Approximately 850 million barrels of oil have been produced
from this region to date, and renewed interest during the last
decade has reinvigorated the area (e.g., Austin et al., 2014).

The Faroe-Shetland Basin is a rift basin with a NE-SW
orientation located between the Shetland and Faroe Islands on
the UKCS (Figure 2) (Ebdon et al., 1995). The basin was formed
from several rift phases from the late Paleozoic to Mesozoic times
(Ólavsdóttir and Boldreel, 2013). Revived rifting during the
Paleocene created a deepwater (200 m+) basin (Ellis and
Martyn, 2014). West of Shetlands is an informal term
referring to an area of hydrocarbon exploration and
development in the Faroe-Shetland basin as a result of this
latest rifting episode. The overall tectonic fabric of West of
Shetlands region trends NE-SW with secondary NW-SE
transform faults (Ebdon et al., 1995). This structural fabric, in
addition to stratigraphic complexity, compartmentalizes the
Schiehallion field and the Foinaven Fields (Cooper 1997;
Ward, 2017). Early Eocene volcanic units associated with the
North Atlantic Igneous Province are widespread and thus used as
a regional datum (e.g., Balder Formation, Figure 3) (Lamers and
Carmichael, 1999).

The Vaila Formation was deposited during the Paleocene,
T22-T35 in the stratigraphic nomenclature developed by BP and
Shell (Figure 3), and consists of deep-marine siliciclastic
submarine fan deposits, with both sand-rich and mud-rich
facies (Ebdon et al., 1995; Lamers and Carmichael, 1999;
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Leach et al., 1999;Ward, 2017). The Vaila Formation is equivalent
to the Andrew Sandstone in the Lower Lista Formation in the
North Sea (Leach et al., 1999, Mudge, 2015; Ward, 2017), a deep
marine siliciclastic reservoir unit in the Cyrus and Andrew fields
∼600 km to the south east (Figure 2 inset). The interpreted

depositional environment for the Vaila Formation in the study
area is a submarine fan-channel system sourced from the south-
southeast (Morton et al., 2002; Ward, 2017) (Figure 2). The
hydrocarbons trapped in the Vaila reservoirs of Q204 are sourced
from Kimmeridgian equivalent pre-rift Jurassic aged strata (Carr

FIGURE 1 | Map of wells and hydrocarbon fields in this study.

FIGURE 2 |Geological map of Faroe-Shetland Basin after Freeman et al. (2008). The data used in this study is derived from boreholes in quadrants Q204 andQ205
(red box denotes location of Figure 1).
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and Scotchman, 2003). Reservoir properties of the Vaila
Formation are favorable, with porosity of ∼28% and horizontal
permeability ranging from 500 to 1,500 milliDarcies (Richardson
et al., 1997).

DATASET

Our dataset consists of open-access core images and wireline logs
from Quadrant 204 and 205, UKCS, collected during drilling
activities for the conventional Foinaven, Alligin, Schiehallion, and

Loyal fields (Figures 1, 2). All data are available online from the
British Geological Survey. The study area was chosen because
both well-log data and high quality color core images are
available, and multiple wells with core from the Vaila
Formation are located in close proximity to each other
(Figure 1). Additionally, this dataset is ideal for image-
processing and machine-learning workflow development, as
the well-log data is high quality and has modern headers, and
every core image was photographed under the same conditions
(lighting, pixel dimensions, camera, and metadata) by the British
Geological Survey (video, BGS, 2012). We specifically chose the

FIGURE 3 | (A) Schematic cross section of the hydrocarbon reservoirs and surrounding strata. (B) Simplified stratigraphic column. Both figures modified from
Lamers and Carmichael (1999) with additional information from Mudge (2015).

TABLE 1 | Well-log and core dataset from Q204/205 used in this study. Amount of labeled core in meters.

Well
Name

Field Amount
of lithology-labeled

core (m)

Amount
of facies-labeled

core (m)

GR PEF SP RESD NPOR DTC RHOB

204/19-3A Foinaven 78 78 x x x x x x x
204/19-6 Alligin 13 13 x x x x x x x
204/19-7 Alligin 72 — x x x x x x x
204/20-1 Schiehallion 67 — x x x x x x x
204/20-1Z Schiehallion 12 — x x x x x
204/20-2 Schiehallion 20 — x x x x x x x
204/20-3 Loyal 79 79 x x x x x x x
204/20-6a Loyal 26 26 x x x x x x
204/20a-7 Schiehallion 20 — x x x x x x x
204/24a-6 N/A 91 91 x x x x x x
204/24a-7 Foinaven 153 — x x x x x x
204/21b-3 Schiehallion 28 — x x x x x x

Notes: Abbreviations are; GR �Gamma Ray, PEF � Photoelectric Factor, SP � Spontaneous Potential, RSED � Deep Resistivity, NPOR � Neutron Porosity, DTC � Compressional Sonic,
RHOB � Bulk Density.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6596114

Martin et al. Centimeter-Scale Prediction in Wells

https://www.youtube.com/watch?v=HdhrOJGpy2c
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


British Geological Survey data because of this consistency, as
many open-source datasets (e.g., Norway, New Zealand,
United States Geological Survey, and various United States
state repositories) have quite variable conditions of the core
photographs, or no photographs at all.

We selected wells with at least 10 m of continuous core that
was slabbed, photographed, and standard width (∼10 cm)
(Table 1). We excluded intervals that were excessively broken
or rubbly, impregnated or epoxied, had sample bags obscuring
the core, or extensively sampled. Each image contains up to 3 m
of core in a standardized tray (Figure 4) that includes a ruler,
color calibration chart, and digital tablet screen showing meta-
data (e.g., well name, box number, top and bottom core depth).
Due to the consistent lighting over the whole dataset, no further
editing or processing of the color spectrum was necessary to
standardize the core-image dataset.

Core Column Processing
The images utilized in this study are standard core tray photos
from the British Geological Survey (BGS). The resolution for all
the images in this study were consistent at 2,942 by 1,959 pixels
for each photo of an entire BGS core tray (left side of Figure 4).
The images were downloaded, converted from JP2 to JPEG
format, and organized on a per-well basis. Each image was
processed using the “corebreakout” methodology of Meyer
et al. (2020) to obtain a “core column” image where each pixel
is registered to the depth of the core (Figure 4). Meyer et al.
(2020) use a machine-learning model to separate the core from
the storage tray (non-geologic material) in an automated, reliable
way. This method is more rapid and objective compared to
manual methods that rely on cropping and aligning images
one at a time using image-editing software. The productivity
gain from using this automated workflow compared to manual

methods speeds up editing by one to two orders of magnitude.We
spot-checked core columns to ensure accuracy for both masking/
cropping and depth registration; depth errors are <2 cm for any
one core image, and the error is not additive for the core column.

Image Data
Core columns at native resolution were generated and stored for
each individual well in the dataset, with column images averaging
roughly 600 pixels wide and ranging from ∼75,000 to 1,000,000
pixels in the depth dimension. We utilized rectangular patches
method to segment the processed core column (Figure 5).
Patches are 600 pixels wide and 32 pixels high, which is
approximately 10 cm wide and 0.5 cm tall (Figure 5). Because
training large neural networks for image classification is a

FIGURE 4 | Workflow for creating depth-registered core columns (right) from a standard core photograph (left) using a machine-learning model. The workflow
uses standard British Geological Survey hydrocarbon core images organized on a per-well basis and depth registration and creates ∼10 m long “core columns” that is
only geologic material. These core columns are easily readable by machine-learning workflows. This core-image processing workflow requires some depth registering of
each image and organization. Figure and workflow from Meyer et al. (2020).

FIGURE 5 | Diagram of image data and down sampling scheme. The full
width core image is 600 pixels, and we downscale that to the central 400
pixels, and then further down sampled to 200 pixels. Each individual image
feature is 32 pixels tall, scaling to ∼0.5 cm thickness in the core. Image
from the 204-19-6 well at 2,215 m.
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memory-limited process, we use only the central 400 pixels of
each row (Figure 5), and then further down-sample the images by
a factor of two, resulting in image sections that are 200 pixels
wide. This allows training examples to capture 6 times more
vertical context than would otherwise be possible, and reduces
total training time enough to make hyperparameter searches and
training practical using consumer-grade hardware (10.5,
Supplementary Materials). An additional benefit of using the
central portion of the core (Figure 5) is that edge effects (e.g.,
cracks, core pieces with broken edges) are minimized.

Color Channel Logs
Because the image data are large and memory-intensive when
modeling, we derived a “color-channel log”, a simple statistic that
summarizes the brightness and color of the core image
(Figure 6.). For each pixel row of the aligned core
photographs, we computed the mean and variance of the red,

green, blue, and greyscale pixel channels. These measurements
depth registered make up the Color Channel Logs (CCL). This
collapses the 400 pixels in each pixel row of the image to just eight
values, reducing the volume of data by almost two orders of
magnitude (Figure 6). This simple calculation creates a pseudo-
lithology log directly from the images, where changes from sand
to mud result in a shift in the log values (Figure 6). We
experimented with using the greyscale log only, and found
accuracy improvements using the red, green and blue color
channels in addition to the gray. While some of this data may
be redundant for some specific sections of core, this additional
data did not significantly increase computational time. This
method works with the Vaila Formation cores because 1)
lithology is consistently linked to brightness and color, with
sand typically white to light-tan, and mud being dark gray
(Figure 6), and 2) the cores are generally cut perpendicular to
bedding, so the lithologic contacts are generally horizontal and

FIGURE 6 | Example of core image (left), calculated color channel log(CCL, center) and gamma ray log (GR, right) from well 204/19-6 (depth in meters). We
normalize the scale of the CCL log from 0–255 values to 0–1 on a per channel basis (i.e., red, green, blue and gray), representing the mean value for each channel across
the core. Note that the CCL log captures fine-scale detail that the GR log does not. We evaluated only using the greyscale log and found improvement in accuracy using
the red, green, blue, and gray logs.
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thus aligned with pixel rows. In cores with inconsistent lithology-
color relationships and/or steeply dipping strata, this method
would need to be modified to sum values along the bedding
direction, or compute additional statistics that capture the
heterogeneity across horizontal sections. As with the image
data, the CCL is sensitive to poor quality images, shadows,
and errors in masking. Dust, labels, or changes in lighting all
will have a direct impact on CCL quality.

Wireline Logs
Wireline log curves used in this study are open-source data files
provided by the United Kingdom Oil and Gas Authority and
include industry-standard tools (e.g., gamma-ray, resistivity,
density, porosity; see complete log suites in Tables 1, 2).
While many parameters can be determined or inferred from
subsurface wireline measurements, standard log suites typically
have vertical resolution ∼30–60 cm (Table 2). Modern image logs
can have resolution of <1 cm (e.g., Rider and Kennedy, 2011), but
such data were not available for this study.

Well-logs were not edited or processed in any way to ensure
reproducibility. For example, a depth shift is sometimes
performed between core and wireline log data to align the two
datasets (e.g., Fontana et al., 2010), but we chose not to depth-
shift the wireline logs or core images in the study because 1) there
is large subjectivity involved with the depth-shifting process, and
2) upon inspection of the two datasets, the logs and core are
broadly depth-aligned, suggesting that any depth shift would be
less than 0.3 m (about the vertical resolution of most well logs).
We acknowledge that this may slightly degrade the performance
of our comparisons between machine-learning models of log and
core data, but creates a more simple, objective, and reproducible
dataset.

Labeling of Core and Well-Log Data for
Supervised Machine-Learning
A consistent and reliably labeled dataset is required for generating
accurate inference using supervised ML methods (Sheng et al.,
2008). Two different labeling schemes for the core data were
created (Figure 7): 1) basic lithologies (e.g., sandstone, mudstone)
and 2) a depositional-process-based sedimentary facies scheme
(e.g., thin-bedded turbidites, hybrid event beds) similar to
classification schemes employed by many core and outcrop-
based turbidite studies (e.g., Lowe, 1982; Mutti and Normak,

1987; Sullivan et al., 2004; Hubbard et al., 2008; Bernhardt et al.,
2011; Brooks et al., 2018). We labeled core at <2 cm resolution
from the core images and use these labels for all of the data types
(well-log, CCL, and image data). We acknowledge that
subjectivity exists when labeling geologic material based on
core photographs alone, and we attempted to be as consistent
as possible; while we did not visit the BGS core repository, the
photographs are very high resolution and allow for distinguishing
texture and relative grain size (i.e., sand vs. mud). These labels
provide a broad classification for defining lithological trends and
depositional processes; the labels and machine-learning models
are not designed and not able to interpret building blocks of these
units, such as lamina, beds, and bedsets (sensu Campbell, 1967).
For example, building a machine-learning model to identify
ripple cross-lamination vs. parallel lamination would require a
different, more focused labeling scheme. Lastly, it is best to have
equal amounts of training data for each label when performing
machine-learning inference (i.e., class (im)balance, Japkowicz,
2000). In order to honor the geologic complexity and the
stratigraphic architecture of the dataset, class balance was not
possible for this study (Figure 8). In other words, because of
where the core was taken, there is more labeled thickness of
mudstone than sandstone in the dataset (Figure 8). We use
balanced class weighting during training, such that each class
has an equal effect on the model regardless of prevalence in the
dataset.

Labeling of Core Data–Lithology
We labeled 659 m of core from 12 wells with five basic lithologic
labels: sandstone, muddy sandstone, sandy mudstone, oil-stained
sandstone, and mudstone (Figure 7).

• Sandstone: sand grains comprise >95% of the lithology, with
a <5%mud component, commonly as a muddy matrix or as
mud clasts. Generally, sandstone is structureless
(i.e., massive), but sometimes contains parallel or cross-
laminated intervals. Color is bright tan to light brown.

• Muddy Sandstone: sand comprises 50–90% of the lithology,
with 10–50% mud occurring as muddy matrix (Figure 7) or
less commonly as interbeds. Sand beds commonly contain
parallel- or cross-laminated intervals, and occasionally
convolute lamination and mud clasts. Mud occurs as clearly
defined interbeds or is incorporated into sand beds as swirly,
lenticular intervals. Color is light to dark brown/gray.

TABLE 2 | Resolution and use cases are from Rider and Kennedy (2011).

Name Abbreviation Units Minimum vertical bed
thickness

Typically used for

Gamma ray GR API 30–41 cm Depositional environment, stratigraphic correlation, lithology
Spontaneous potential SP M/V ∼2 m Formation water salinity, shale volume
Photoelectric PE B/E 10–15 cm Lithology, mineral identification
Caliper CALI IN N/A Borehole stability
Deep resistivity RESO Ohm/m 1–2 cm Hydrocarbon saturation, lithology
Compressional sonic DTC dT 61 cm Lithology, rock properties, seismic properties
Bulk density RHOB g/C3 51 cm Lithology, porosity, rock properties, acoustic impedience
Neutron porosity NPOR V/V 61 cm Lithology, porosity, gas identification
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• Sandy Mudstone: mud comprises 50–95% of the lithology,
interbedded/interspersed with 5–50% sand. Sand beds
commonly contain parallel- or cross-laminated intervals,
and occasionally convolute lamination andmud clasts. Sand
generally occurs as discrete beds, but some intervals are
well-mixed, either due to depositional processes and/or
bioturbation. Color is dark gray to brown.

• Oil-stained sandstone: Very similar to Sandstone (above)
but stained by hydrocarbons. Sand grains comprise >95% of
the lithology, with a <5% mud. Color is dark brown with
interpreted inter-particle hydrocarbon residue.

• Mudstone: mud comprises >95% of the lithology, with a
<5% sand occurring as discrete intervals <1 cm thick. We do
not distinguish between silt and clay, rather lumping all
sediment not distinguishable as sand into the mud
component. Bioturbation is rare to occasional and
dominated by Skolithos and/or Cruziana ichnofacies.
Color is very dark gray.

This labeling scheme is designed to be widely applicable and
objective and does not rely on any interpretation of depositional
process, environment, water depth, or post-depositional
diagenesis. A benefit of this lithologic labeling scheme is that
it is applicable to many depositional environments (e.g., fluvial,
shallow-marine, deep-marine). These five lithologic labels also
very compatible with traditional petrophysical analysis (Passey,
2006). However, due to its simplicity, this scheme provides less
information about sedimentary facies, sedimentary structures,
and other characteristics useful for inferring depositional
environment and dimensions of architectural elements (Cf.
Mutti and Normark, 1987; Deptuck et al., 2008; Pettinga et al.,
2018; Shumaker et al., 2018). We tested the number of lithology
classes using unsupervized machine-learning techniques (e.g.,

k-means clustering) of the CCL data, and found that five
classes is approaching the upper limit of appropriate number
of clusters when comparing the silhouette scores. Thus,
additional lithology classes probably would not improve the
research result for this dataset, but in fact may degrade the results.

Labeling of Core Data-Facies
We also labeled 287 m of core data from five wells (Table 1)
using the following depositional-process-based facies scheme:
structureless sandstone, laminated sandstone, matrix-rich
sandstone, interbedded sandstone/mudstone, mudstone, and
oil-stained rock (Figure 7). These facies are briefly described
below, and the structureless sandstone, mudstone, and oil-
stained rock are identical to the lithology labeling scheme.
We identified these facies from visual patterns, color, texture,
and relative scale. These facies capture the most common types
of heterogeneity observed in this dataset and provide more
contextual geologic information than lithology. The labels were
interpreted to the core (<1 cm) scale. Sedimentary structures
and event-beds documented in the core are consistent with a
deep-marine interpretation and include low- and high-density
turbidites (Bouma, 1962; Lowe, 1982) as well as hybrid event
beds (sensu Haughton et al., 2009). The facies in our study area
are quite similar in style and interpreted process to those
described by Bouma (1962), Lowe (1982), Lowe and Guy
(2000), Haughton et al., (2009), and summarized by Talling
et al. (2012).

Sandstone, Mudstone, and Oil-stained sandstone are identical
to the lithology labels, and their descriptions can be found above.
The sandstone and oil-stained sandstone facies are interpreted to
be high-density turbidity current deposits (sensu Lowe, 1982).
The mudstone facies is interpreted to be low-density turbidity-
current and hemipelagic deposits, although we did not

FIGURE 7 | Example core images for lithology and facies labels. These labels were derived solely from core image interpretations.
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distinguish between these two deposit types in our labeling
scheme.

Matrix-rich sandstone consists of light-to dark-colored
sandstone, commonly with swirly textures, shear fabrics, mud
clasts, and sand-injections. These deposits are interpreted to be
deposited by “hybrid” sediment gravity flows (i.e., those with
transitional flow rheologies). These “hybrid event beds” (also
referred to as slurry beds, linked debrites, and several other
textural terms) have been extensively described in the
subsurface of the North Sea (e.g., Lowe and Martin, 2000;
Barker et al., 2008; Haughton et al., 2009) and in many other
outcropping and subsurface submarine depositional systems (see
review in Talling, 2013). The hybrid event beds of the Vaila
Formation often contain a disorganized, swirly texture of both
sand and mud at varying scales (0–5 cm in core, Figure 7) as well
as mud clasts, similar to textures reported in other hybrid-event-
bed studies (e.g., Lowe and Martin, 2000; Haughton et al., 2009;
Pierce et al., 2018). Individual mud clasts can vary from a few
millimeters to the width of the core (∼10 cm), are rounded, and
vary from circular to lenticular in shape.

Laminated sandstone consists of fine-scale (<0.2 cm)
alternating dark and light colored laminae and likely
represents the upper-flow regime, parallel-laminated Tb
division of a Bouma sequence (Bouma, 1962). The dark
colored bands are interpreted to be heavy-mineral rich, as they
do not appear to be mud rich due to their color and stacking
pattern. However, we did not visually inspect these cores as we
only had access to the photos and cannot unequivocally say there
is no mudstone present in these laminated sandstone deposits.

Interbedded sandstone and mudstone consists of stacked ∼1 cm
thick sandstone beds and mudstone intervals (i.e., heterolithic
bedding). These deposits are interpreted to be “thin-bedded
turbidites,” the deposits of low-density turbidites in an off-axis
environment. While we interpret a general off-axis environment,
these deposits can occur in levees (Hansen et al., 2017) and other
channel-overbank environments (e.g., Jobe et al., 2017), as well as
both proximal, lateral, and distal submarine-fan settings (Spychala
et al., 2017). Without further context from seismic or other data, we
do not speculate on the particular environment.

MACHINE-LEARNING MODELS

Code Repository
All code and data from this study are available on the github
repository, https://github.com/rgmyr/coremdlr (Meyer and
Martin, 2021). The installation guide, Jupyter Notebooks
(Kluyver et al., 2016), processing routines, and installation
instructions are included in the repository. The requirements
for installation are:

Python 3.x.
Numpy (Harris et al., 2020).
Scipy (Virtanen et al., 2020).
Matplotlib.
Scikit-image.
Scikit-learn.
Tensorflow.keras.

FIGURE 8 | Distribution of thickness for lithology and facies in the overall, labeled dataset. Note the unbalanced classes for both lithology and facies studies.
Laminated sandstone and Matrix-rich Sandstone classes for facies were 5.4 and 2.2%, respectively. Due to facies being a subset of the wells, the proportion of
sandstone and mudstone are different compared to lithology.
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These dependencies are all maintained and open source.

General Parameters
Weexperimentedwith various supervisedmachine-learningmodels,
and chose the models described below based on performance,
usability, and flexibility for each data type. Each model is open-
source, currently maintained, and is used natively in Python. The
code, parameters, and specific models used to produce the results in
the study are included in the supplementary materials. The choice
for each data type to have its ownmodel was driven by data structure
and density (e.g. well-logs vs. images). We evaluated combining
these datasets but the complexity in implementing this into the
model construction proved to be unwieldy and ultimately did not
improve performance.

Because the stratigraphic record is built on the principle of
superposition, information both above and below a region of
interest is important for understanding the evolution of
stratigraphic architecture. We utilize a thickness-based, sliding-
window approach for both training and inference. This ensures
that the model incorporates context both above and below every
labeled interval during training. This approach also makes
inference less sensitive to missing context at window
boundaries, as predictions are averaged wherever two adjacent
windows overlap. For a particular labeled target interval, the
model incorporates weights both above and below the window at
each thickness step (24–64 cm for image and CCL data,
respectively). This method is also commonly used for
machine-learning analysis of time series data (Ma and Hovy,
2016; Zeng et al., 2016).

Scoring Metrics
Four metrics are used to score the overall performance of each
model with associated training and testing data set: Accuracy,
Precision, Recall, and F1, all of which are defined in Eqs 1–4,
respectively. Accuracy is an important and commonly used
metric, but does not capture the variability of performance in
an unbalanced dataset (i.e., not the same number of labels for

each class–also see Figure 8). Precision and recall better assess the
class imbalance of the training and testing data, and F1 is a
combined metric of precision and recall. Each metric for each
dataset will be released in the Supplementary Materials (Supp.
Mat. 10.3), but we will focus on Accuracy and F1 below
(Figure 9).

Accuracy � (Tp + Tn)
(Tp + Tn + Fp + Fn)

(1)

Precision � Tp

(Tp + Fp)
(2)

Recall � Tp

(Tp + Fn)
(3)

F1 � 2pPrecisionpRecall

(Precision + Recall) (4)

where Tp is true positive predictions, Tn is true negative, Fp is
false positives and Fn is false negatives. (also see Figure 9).

Train and Test Splits
Supervised machine-learning models generally train on a subset
of an entire dataset, and then perform inference (i.e., test) on a
different subset. This eliminates using training data on the testing
data, which can lead to overfitting. Our lithology dataset consists
of twelve wells (Table 1), and so we divided the wells into training
sets that consist of three, six, and nine wells (10.4, Supplementary
Materials). We determined that five test-train runs for each set
was enough to capture heterogeneity in the training data, while
being tractable to run. We grouped training sets by creating a mix
of different wells in each set; no two sets are the same. We chose
this method for reproducibility rather than randomly assigning
wells to train-test splits. For facies labels, only five wells have
labels, so each single test well was trained by the rest of the wells in
the dataset (see Table 1); therefore, testing and training was done
five separate times, with different training and testing wells in
each run.

We chose these methodologies for lithology and facies labels as
it emulates a traditional geoscience interpretation workflow; a
geoscientist typically interprets all the core data from one well for
a subsurface interpretation and then compares it against other
nearby wells. Splitting on a per-well basis also avoids data leaking
between testing and training datasets. We feel that this honors the
data and traditional geoscience workflows better than a typical
ML workflow, which would randomly assign test and train splits
or use weighting to achieve a balanced label proportion for each
test-train split. Geoscience based ML contests typically utilize the
strategy of test-train splitting on a per-well basis to avoid
overfitting (e.g., Hall and Hall, 2017).

XGBoost for Wireline Well-Log Data
XGBoost (Chen and Guestrin, 2016) is an open-source gradient
boosting library. Gradient boosting is an algorithm for building a
strong ensemble model by combining many weak base predictors,
usually decision trees (Quinlan, 1986). Trees are added to the
ensemble sequentially, with later trees constructed to minimize
the error from earlier trees, subject to regularization constraints

FIGURE 9 | Confusion matrix of True Positives, False Positives, False
Negatives, and True Negatives. Green shading represents correct predictions,
and gray shading represents incorrect predictions.
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that help prevent overfitting. XGBoost was used to build the
winning model in the Higgs Boson Machine Learning challenge
and is used widely for various machine-learning applications
(e.g., Chen and He, 2014). Gradient boosted tree models easily
accommodate missing values and non-standard data types, are
indifferent to the scale or normalization of input features, and
their performance is relatively insensitive to hyperparameter
settings (especially compared to neural networks). These
properties make them useful and convenient as a baseline for
relatively incomplete data types, like well-log data, where not
every well has the same suite of downhole measurements (e.g.,
Table 1).

In our study, XGBoost was used to train models for predicting
lithology and facies from well-log data. The labels for the well-log
data were derived from the core images, as described above. These
labels, ∼0.5 cm in thickness, were mapped onto the depth values
for the well-log data using linear interpolation from typical well-
log resolution, which ranges from 15 to 60 cm (Table 2).

WaveNet for Use With CCL Data
WaveNet (Oord et al., 2016) is a convolutional neural network
(CNN) model architecture that was originally designed as a
generative model for raw audio waveforms, with applications in
text-to-speech, music generation, and speech recognition. The
blocks that comprise the network consist of stacks of dilated
convolutions, which perform multi-scale context aggregation
(Yu and Koltun, 2016), coupled with causal filters (Oord et al.,
2016) that prevent “current” output from using “future”
information, assuming the input and output sequences are time
domain equivalent. Because we want stratigraphic context both
above and below the “current” output, we modified the original
WaveNet architecture to perform variable-resolution sequence-to-
sequence learning (Sutskever et al., 2014) and removed the causal
filters to allow the model to use context both above and below the
individual prediction targets. This is broadly analogous to how a
geoscientist interprets stratigraphic data, taking into account
information from the strata and stacking patterns both above
and below an interval to make a context-dependent prediction.
We also experimented with recurrent neural network (RNN)
architectures but found that they did not improve performance
and were less stable during training (Bai et al., 2018).

It’s not necessary to apply additional transformations to the
CCL data because CNNs (and in general, deep neural networks
with non-linear activation between layers) can learn to
approximate any of those functions. The only reason to apply
a transformation to input features is to make themmore normally
distributed, and even then this generally only improves
convergence time rather than improving the model.

Compared to XGBoost, the WaveNet CNN model requires
more standardized data input. WaveNet models were trained and
tested on the CCL log data (Figure 6), and models were
configured so each 32 pixel section of a CCL log is mapped to
a single ∼0.5 cm (32 pixel height) prediction. Because the CCL
data is 50x smaller in size than the image data for a given depth
interval, this efficiency allows for larger vertical extents of
perception (i.e., window size) using CCL data compared to
image data.

Deep TEN for Use With Image Data
Classification of geological images aligns well with the problems
in image processing known as texture recognition, texture
classification, or fine-grained image classification (grain in this
case referring to classification of subtly different objects e.g.,
different models of cars, not geologic grains). These terms
broadly refer to the modeling of image datasets where the
salient differences between images are small, repeated patterns
and local image statistics, rather than more global geometric
structures and their relative positions and orientations (Wei et al.,
2019).

Deep TEN (Zhang et al., 2020) is a Convolutional Neural
Network (CNN) model architecture that adapts dictionary
learning, a popular and successful approach to image texture
classification (Liu et al., 2019), as a trainable component of the
neural network. We adapted the network to take depth-aligned
core images as input (see Figure 5), and predict sequences of
labels as output (rather than a single classification per image)
(Figure 7). As with WaveNet, this allows the network to consider
context above and below the individual labels when making
predictions–however, the sequences could not be as long, since
image data is two orders of magnitude larger memory size than
CCL per unit depth. Other researchers have used CNNmodels on
carbonate core image data with success (Pires de Lima et al.,
2019).

To further emphasize contextual information for predictions,
we also added recurrent neural network layers (Long Short-Term
Memory, Gated Recurrent Unit) to the feature sequences
generated by Deep TEN (Shi et al., 2015) but ultimately this
increased training overhead without any appreciable
improvement in performance.

RESULTS

Overall Performance
Figure 10 shows the difference between two metrics for all of the
lithology experiments. The well-log data models had a maximum
accuracy of 35.7% (nine training wells) andminimum accuracy of
18.2% (six training wells). None of the metrics improve
significantly with more training data for well log data. For
perspective on this accuracy, a randomly generated model
would have an accuracy roughly equivalent to the proportion
of the most common class (mudstone � 32.5%, Figure 8), the
well-log data predictive performance is similar to randomly
choosing a class.

The image data models had a maximum accuracy of 57% (six
training wells) and minimum accuracy 36% (six training wells),
respectively. This data type is less accurate and has longer
compute time compared to CCL data. Additional training data
did not improve performance for this data type. Models using
CCL data had a maximum accuracy of 69% (nine training wells)
and minimum accuracy of 39% (three training wells),
respectively. The maximum accuracy for six training wells is 65%.

The WaveNet model using CCL data was the fastest to
compute and had the most accurate results; it was the only
data type to show improvement with more training data. As
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shown in Figure 10, the most accurate model run for each test
and train set did not improve substantially using CCL data, but
the outlier of 39% on the three well test and train set was avoided
using six wells. The intermediate lithologies have an irregular and
heterogeneous CCL signature, compared to the more continuous
sandstone and mudstone character (Figure 11). Along with
character, these signatures also vary in magnitude, and the
end-member lithologies (sandstone, mudstone) are clearly
separated, whereas the intermediate lithologies can have
overlapping CCL values. In Figure 11, 2215.3–2215.8 m results
demonstrate the power of this workflow. Both models capture the
correct sandstone thickness and the sharp transition to mudstone
above and below it.

The WaveNet model generally predicts homogeneous
sandstone and mudstone well (Figures 10, 11), but
intermediate lithologies are not predicted to the same
accuracy. The stacking patterns of typical turbidites are
preserved in the CCL data (e.g., fining upward turbidites,
Figure 11), but bed boundaries aren’t always predicted
accurately. However, the overall sand-mud ratio is generally
preserved, even for misclassified sections (e.g., 2209.4 m in
Figure 11); the changes in CCL character are correlated to the
interpreted lithology in this section (Figure 11), but the model
over-predicted the amount of sandstone.

Figure 11 demonstrates how the WaveNet model predicted
facies from CCL data. For example, the very thin sand bed at
2,209.3 m was predicted correctly by the model even though it
was not labeled as a sandstone facies. However, the interval
2214.0–2214.4 m in Figure 11 has a facies label of
“interbedded sandstone and mudstone” but the model predicts
thinner, stacked “sandstone” and “mudstone” facies labels. In this
case, the model predictions are incorrect, but may be acceptable

for some geologic workflows (e.g., net-to-gross determination
over a large area). However, in some cases, the model predictions
are more “correct” than the labeled “truth” (e.g., 2214.2 m in
Figure 11) this could be especially helpful if this workflow is used
to assist/bolster manual core description. Hence, judging model
accuracy and utility in these situations is difficult, and creating a
metric that captures this ambiguity in “geologic reasonableness”
is difficult to implement for ML models.

Confusion Matrices-Lithology
A confusion matrix (Figure 12) provides insight into
misclassification for each labeled class; an ideal model would
only have values in the diagonally aligned boxes that define true
positive (Tp) predictions (also see Figure 8). In our model,
Sandstone and Mudstone had the best predictions (Figure 12)
while Muddy Sandstone and Sandy Mudstone had the least
accurate predictions. These two intermediate lithologies were
more commonly predicted as mudstone and Oil Stained
Sandstone, but also were sometimes interpreted as Sandstone.
While the exact lithology label is sometimes predicted incorrectly,
the boundaries of individual sedimentation units (i.e., beds) and
their thicknesses are generally preserved (Figure 11). Merging the
two intermediate lithology classes would improve model accuracy
but would somewhat limit the utility of the predictions (e.g., for
detailed petrophysical or geological work).

Confusion Matrices–Facies
Facies testing with five of the twelve wells had limited success with
accurately predicting the three newly introduced facies labels. For
example, only 5% of interbedded sandstone and mudstone was
predicted correctly (Figure 12), with this facies much more
commonly misclassified as Sandstone or Mudstone (see

FIGURE 10 | Box plot of Accuracy, Weighted F1 for lithology prediction on all data types. X axis is number of training wells (3, 6, and 9). A perfect score would be a
score of 1.0, but because there are five classes, a 0.2 score represents random-choice, while a 0.5 score is significantly better than random. Typical baseline for ML
models is if you predicted the most common class, which in this case predicting all Mudstone would result in an accuracy of 0.325. The well-log data used XGBoost ML
model, Image used Deep TEN and Color Channel Log (CCL) used WaveNet respectively.
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discussion above and 2214.2 m interval in Figure 11). For
interbedded sandstone and mudstone, label vs. prediction
thickness is potentially an issue for prediction accuracy, as
strict definitions for class labels must be determined when
labeling a layer as interbedded sandstone and mudstone
compared to individual layers of sandstone and mudstone.
These thickness parameters and cutoffs are an interpretation
that has impact on modeling, accuracy, and training.

Mudstone predictions are very good using the lithology labels
(63% image-data and 87% CCL-data accuracy, Figure 12) and
the facies-labels with the CCL models (75%, Figure 12).
However, mudstone predictions using the image-data and
facies labels has only 13% accuracy (Figure 12). The
misclassification of the mudstone facies using the image data
may be attributed to 1) more limited training data compared to
the lithology data set (Figure 8), or 2) more complex class labels
compared to the lithology dataset. This can be problematic for
neural net class of models. Increasing training data of these
more uncommon classes and the overall size of the dataset can
only help prediction of these facies. At this level of prediction
performance, data is the limiting factor, not ML model choice.
Increasing computing power for the image data would not
necessitate as much down sampling and loss of finer scale
details. This combined with limited sequence length might be
one reason for poor performance.

The more complex facies (e.g., laminated sandstone)
performed similarly to the intermediate lithology classes for
prediction with the CCL data. The facies classes (Figure 7)
compared to the lithology endmembers (Figures 7, 11) can
have similar CCL log characteristics to each other and these
lithology end members. The CCL data alone does not capture all
of the heterogeneity or detail of the native core image
interpretations, and subtle differences become more nuanced
with this data type and complex class labels.

DISCUSSION

Data Type Comparison
The greater amount of information in the image data did not
improve performance compared with CCL data. In fact, our
results demonstrate that CCL data are more accurate than
image data and require fewer computing resources for the
same amount of data. By calculating the CCL curves, we may
be filtering out less important geologic features or small-scale
heterogeneities that are unimportant for prediction but create
noise in the image data. One factor that might hamper the
accuracy of the image data is the thickness of the image slices;
32 pixels (0.5 cm) might not be thick enough to provide proper
context for correct prediction. However, experimenting with

FIGURE 11 | Example of core image, CCL, lithology and facies labels and predictions for one well, 204-19-6. Part A ranges from 2,008 to 2,010 m and part B
ranges from 2,214 to 2,216 mmeasured well depth below sea surface. These model results are from nine training wells using the CCL data to predict both lithology and
facies.
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enlarging the thickness window size to 64, 128 and larger pixels
did not improve performance. In fact, performance was degraded
in most cases, at least partially due to the fact that with thicker
label sizes, multiple classes were agglomerated into one label,
reducing the total amount of training data available. Training
data for this project was created as true to core scale as possible
with no thought to minimum size of each interpretation, so some
labels are only 0.5 cm or 1 cm thick. Future work could explore
segmentation of the core based on clustering or other parameters
(e.g., Luthi, 1994), then predict on that segmented core with
various label scales instead of pre-defined bin sizes (e.g., 1 cm);
with larger label size/thickness, a minimum threshold of label size
could potentially improve model performance, but at the cost of
high-resolution detail.

The lack of accuracy for facies for both CCL and Image data
could be caused by the scale of the labels (as just discussed), or
perhaps a lack of training data (Figure 8). Increasing the number
of facies labels with the current amount of training material
would not improve model performance for image or CCL data
types. Accurate prediction of facies will probably require larger
and more strictly defined labels and datasets other than the one
explored in this research. The model for predicting facies from
image data (Deep TEN) was chosen from testing on lithology, but
potentially more complex visual characteristics of facies (e.g.,
laminated sandstone, mud clasts) will require different machine-
learning models. As geological parameters from images becomes
a more standard workflow, more research will focus on what
texture-based ML models perform best (Adebayo et al., 2018).

FIGURE 12 | Part (A)Confusion matrices from the nine well test sets for both CCL and Imagemodel runs. The matrices are overall performance, and include all five
sets for each group. A perfect model would only have predictions on the diagonal, and a score of 1.0 (i.e., 100%) within a box. The majority of misclassification was an
intermediate lithology predicted as oil stained or as mudstone. The maximum accuracy of an intermediate lithology was 0.04 (4%) for sandy mudstone using CCL. Part
(B) Confusion Matrices from CCL data (left) and image data (right) for the six facies categories. A perfect score would be 1.0 for an individual box, in the diagonal.
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Well-log data did not perform at an accuracy level that would
be useful for typical standard core-based geoscience workflows. In
fact, the best performing models would have had similar accuracy
by just predicting mudstone (Figure 8). Thus, predicting core
level (<1 cm) detail is not possible with current standard well-log
data, which is perhaps not a surprising result considering typical
well-log resolution (Table 2). Addingmicro-resistivity, image log,
or other higher resolution downhole tools may vastly improve the
prediction at the core (<1 cm) level. Previous studies that use
standard well-log information on core-derived classes (Hall and
Hall, 2017) have label intervals that are closer to well-log scale at
∼15 cm thickness, roughly thirty times larger than our label
resolution. Label size for all data types is an important
parameter that will affect the amount of labeling, algorithm
choice, and model architecture. Relabeling a dataset manually
is labor intensive, and thus picking an appropriate scale for labels
is an important task that has many downstream effects on the
modeling results.

To improve on this result using similar core quality and
deposit type, additional digital data types could be used.
Hyperspectral imaging or multispectral imaging of slabbed
core, computed tomography (CT) scanning, micro-XRF, and
downhole image logs are a few examples of data types that
could be utilized to provide more information into
mineralogical, chemical, or physical properties of the core.
However, these involve additional costs and considerations
compared to standard photographs and are often not available
for legacy datasets that are stored in core warehouses around the
world. Conveniently, our current workflow is expandable to these
types of digital depth-registered datasets with minimal
modifications necessary.

Usability
The results for nine training wells of CCL data types with five
lithologies indicate an overall accuracy of 62% for all sets, with the
best set reaching 69%. The Sandstone and Mudstone classes are
predicted even more accurately (>80%). Model prediction of just
Sandstone for the entire well would result in an accuracy of 32.5%.
Using these machine-learning models improves this result by
roughly 200%. Our workflow is capable of producing accurate
lithology predictions for thousands of meters of core relatively
quickly (100s of meters in minutes) using current standard
consumer computer hardware (10.5, Supplementary Materials).
The two intermediate lithology labels are the most challenging to
predict. Additionally, because intermediate lithologies are less
common in this dataset (Figure 8), a lack of training data further
inhibits the prediction.

This workflow will be very useful for basin-scale studies of a
specific formation (e.g., net-sand-thickness map from core data)
or for applications where a practitioner could conduct initial
screening to highlight wells with lithologies of interest. This
technique is of particular value in cases where logging/
describing individual cores is not feasible due to the volume of
core to process or core that isn’t available for in-person
examination. An example of this would be core from a data
trade, or examining entire databases, such as the USGS Core
Research Center (Hicks and Adrian, 2009).

However, the accuracy produced by this study is not capable of
replacing core descriptions performed by trained geoscientists,
nor is it meant to - this study attempts to encompass the full range
of deep-marine depositional variability in five lithologies and six
lithofacies. However, k-means clustering indicates that increasing
the number of classes without accompanying increases in training
data is not advised with this dataset. The five labeled lithologies
are broad, and provide no insight into grain size, sedimentary
structures, depositional process, bioturbation, chemical
composition (such as cementation or mineralogy), or
diagenesis. We attempted to reproduce some of this detail
using the facies labeling scheme, with unsatisfactory results.
Perhaps these more detailed features could be labeled and
predicted using ML methods (e.g., Tang et al., 2020), but
investigating these more detailed labeling schemes and their
accuracy is outside of the scope of this study. Geologic class
labels with subtle and nuanced differences and features (e.g.,
lithofacies, ichnofacies) will need specific and consistent labeling
definitions to be successful.

Furthermore, while we labeled each class as consistently and
accurately as possible, it is possible that errors exist in our
labels (Northcutt et al., 2021) or that our label selection was
biased by previous training, experience, and uncertainty (Cf.
Bond et al., 2007). Because label selection is inherently
qualitative and scale-dependent, we did not incorporate any
uncertainty metric into our labeling scheme. Each label was
considered the absolute correct answer in this study, and if the
label is incorrect it will affect the accuracy of the resulting
inference. Future work could develop a method for assigning
uncertainty to labeled geologic data and propagate that error
into the modeling workflow, including assessing when the
model gives an incorrect prediction but still accurately
portrays the lithology or scale of the core. Finally, we hope
that this study can serve as a baseline for future work to
improve labeling schemes and/or ML model selection/
methodologies.

Comparison With Other Modeling
Workflows
This study utilized only 1D, borehole-based data types. One way
to extend the prediction capability is by incorporating spatial
information and metrics. For example, utilizing forward
stratigraphic models to generate stratal surfaces, geometries,
and scales could be incorporated into spatial prediction of
lithology and facies (Mulder et al., 1997; Tinterri et al., 2003;
Pyrcz et al., 2005; McHargue et al., 2011; Albertão and Athayde,
2015; Burgess et al., 2019; Zhang et al., 2020). The model results
might also provide another metric to score the results from
machine-learning outputs. Other empirical data that focuses
on spatial lithology heterogeneity (e.g., bed thinning rates
derived from outcrops, Fryer and Jobe, 2019) could be utilized
to provide possible inter-well lithology predictions and
correlations. This hybrid approach of using forward-modeling
results and empirical data to guide machine-learning predictions
is a clear direction to advance geoscience-focused machine
learning workflows. Other data that could be incorporated
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include routine core analysis from plugs and/or thin sections (e.g.,
Anselmetti et al., 1998; Tang et al., 2020).

Applicability to Other Basins and Rock
Types
Expanding this workflow into other rock types (carbonates,
igneous, metamorphic) could change which workflow or data
type performs the best. As demonstrated by our research, the
quantity of training data needed to train amodel with usable results
can be as few as six wells worth of core, each with 10–100 + m of
core (Cf. Table 1). Labeling hundreds of different wells might be
necessary if trying to capture a wide range of lithologies and
depositional environments (or very specific structures, e.g.,
ripples), but less high-quality training data may be needed if the
project is limited to a specific depositional environment. Fluvial,
shallow-marine, and other predominantly siliciclastic deposit types
would be a natural extension of this workflow, and open-access
core exists that could be labeled. However, for carbonate and
evaporite rocks, we suggest incorporating additional data types as
suggested above (e.g., hyperspectral image data) that can better
detect differences in physical and chemical properties.

CONCLUSION

This study utilizes open-source borehole data from Quadrant 204 on
the United Kingdom Continental Shelf to evaluate the utility of
automated lithology prediction. 659m of core from 12 wells were
labeled at the sub-centimeter scale, utilizing a lithology-based labeling
scheme (five classes) and a depositional-process-based facies labeling
scheme (six classes). The best-performing models utilize a “color-
channel-log” (CCL) that summarizes the image at each depth interval,
with model accuracy >80% for Sandstone and Mudstone lithology
classes, and an overall accuracy of 69% for five lithology classes for the
best performing model. Furthermore, the CCL data was the faster to
compute and had the most accurate results, likely because the CCL
data summarizes data important for lithology prediction.

While facies-based labels are important for characterizing
depositional processes and environments, model prediction is not
as accurate as more strictly defined lithology labels. This poor
performance is likely caused by lumping of multiple lithologies into
one label (e.g., interbedded sandstone-mudstone). Well-log data did
not perform at an accuracy level that would be useful for typical
standard core-based centimeter-scale (<5 cm) geoscience workflows.

This study demonstrates the potential to transform hundreds of
thousands of meters of previously photographed core into a
normalized and digital format with specific geological insight and

interpretations using standard consumer desktop hardware and open-
source data and software. The workflow is also general enough for any
basin-wide or other large scale subsurface investigation that requires
lithology identification; thus, any geoscientist interested in assimilating
large subsurface datasets can utilize these techniques for better
characterizing core-image data for applications in mining,
hydrogeology, geothermal, carbon sequestration, and geotechnical
studies. Machine-learning workflows will not replace the need for
geoscientists’ interpretations, but they can augment and speed up
specific repetitive tasks (e.g., core description), especially when applied
at the broad, basin scale. Interpretation of core images alone will never
replace physical inspection of the core material by an experienced
geoscientist.
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