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Snow and precipitation estimates in high-mountain regions typically suffer from low
temporal and spatial resolution and large uncertainties. Here, we present a two-step
statistically basedmodel to derive spatio-temporal highly resolved estimates of snowwater
equivalent (SWE) across the Swiss Alps. A multiple linear regression model (Step-1 MLR)
was first used to combine the CombiPrecip radar-gauge product with the precipitation and
wind speed (10 m from the ground) of the numerical weather prediction model COSMO-1
in order to adjust the precipitation estimates. Step-1 MLR was trained with SWE data from
a cosmic ray sensor (CRS) installed on the Plaine Morte glacier and tested with SWE data
from a CRS on the Findel glacier. Step-1 MLR was then applied to the entire area of eight
Swiss glaciers and evaluated with scattered end-of-season in-situ manual SWE
measurements. The cumulative estimates of Step-1 MLR were found to agree well
with the end-of-season measurements. The observed differences can partially be
explained by considering the radar visibility, melting processes and preferential snow
deposition, which are dictated by the local topography and local weather conditions. To
address these limitations of Step-1 MLR, several high-resolution topographical
parameters and a solar radiation parameter were included in the subsequent MLR
version (Step-2 MLR). Step-2 MLR was evaluated by means of cross-validation, and it
showed an overall correlation of 0.78 and a mean bias error of 4 mm with respect to end-
of-season in-situ measurements. Step-2 MLR was also evaluated for non-glacierized
regions by evaluating it against twice-monthly manual SWE measurements at 44 sites in
the Swiss Alps. In such a setting, the Step-2 model showed an overall weaker correlation
(0.53) and a higher mean bias error (31 mm). On the other hand, negative variations of the
measured SWEwere removed because of the lower altitude of the sites, thereby leading to
more pronounced melting periods, which again increased the correlation values to 0.63
and reduced the mean bias error to 12 mm. Such results confirm the high potential of the
model for applications to other mountainous regions.
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1 INTRODUCTION

Knowledge of the spatio-temporal distribution of snow (snow
depth (SD) and snow water equivalent (SWE)) during winter in
high-mountain regions is essential to understand key processes of
hydrology (e.g., Kobold and Sušelj, 2005), glaciology (e.g., Zhang,
2005; Fujita, 2008), climatology (e.g., Salzmann et al., 2014),
climate-cryospheric interactions (e.g., Hock et al., 2017) and of
the related applied fields, such as natural hazard studies (e.g.,
Wood et al., 2016) or water resource studies. SD and SWE can be
measured in-situ or derived from precipitation observations,
although the relationship between (solid) precipitation and
ground snow cover is not straightforward. Accurate and
continuous spatial and temporal measurements for both
precipitation and snow, are challenging to obtain in high-
mountain regions, due to the difficulty of accessing such areas
and of technically maintaining the sensors, etc., which results in a
general high spatial and temporal scarcity of such data, and in
associated high uncertainties (e.g., Goodison et al., 1998;
Tapiador et al., 2012).

SD and SWE measurements are obtained annually in-situ on
many mountain glaciers during winter mass balance monitoring
(e.g., GLAMOS, 2018). These measurements are often the only
ones available in remote high-mountain regions, thus making
them an important source of data. However, these data usually
only provide measurements for single points once a year, that is,
at the end of the accumulation period (e.g., Huss et al., 2015). SD
and SWE measurements are obtained in-situ in non-glacierized
areas for the purpose of long-term climate monitoring (e.g., Seiz
et al., 2010), avalanche warning (e.g., Lehning et al., 1999) and/or
hydrological run off prediction. Unlike the measurements
conducted on glaciers, these measurements are taken more
frequently in time (twice a month in Switzerland), albeit at
lower altitudes (from 1,059m.a.s.l. to 2,626m.a.s.l. in the Swiss
Alps (cf. Jonas et al., 2009; Marty, 2017)).

Continuous temporal observations of SWE obtained with a
cosmic ray sensor (CRS) were recently evaluated with promising
results (e.g., Howat et al., 2018; Gugerli et al., 2019). The CRS
counts the number of fast neutrons per hour from the secondary
cascades of cosmic rays, which are attenuated by the hydrogen
atoms of the snowpack. The neutron counts need to be corrected
for changes in air pressure and the incoming cosmic ray flux and
are inversely proportional to the SWE (Gugerli et al., 2019). The
sensor can be deployed above or below the snowpack but in both
cases the SWE observations are known to be influenced by
changes in soil moisture through snow melt (e.g., Kodama,
1980; Sigouin and Si, 2016). These influences are limited if the
CRS is placed on an ice surface (Howat et al., 2018; Gugerli et al.,
2019).

Precipitation networks obtain observations at a much higher
spatio-temporal resolution than SD and SWE measurements.
Different techniques, which are also applied in mountain
regions, and include precipitation gauges and/or weather radar
estimates, are available to measure and estimate precipitation
amounts. Precipitation gauges provide temporally continuous
single point measurements, but are known to be heavily
affected by undercatch caused by wind (e.g., Goodison et al.,

1998; Sugiura et al., 2003; Fortin et al., 2008; Rasmussen et al.,
2012; Pollock et al., 2013; Wolff et al., 2013) and by evaporation
losses (e.g., Goodison et al., 1998). Kochendorfer et al. (2017)
concluded that an all-weather unshielded weighing precipitation
gauge measure less than 50% of the total amount of solid
precipitation when the wind speed is higher than 5ms.
Weather radars provide continuous spatial and temporal real-
time information on precipitation estimates, by converting the
backscattered pulses of hydrometeors within the atmosphere.
Ground echoes, caused by the presence of high mountains, and
the errors generated by beam shielding, beam broadening with
distance, wet radome attenuation and hardware instability, can
reduce accuracy of radar estimates considerably (e.g., Joss and
Waldvogel, 1990; Germann and Joss, 2004; Germann et al., 2006).
Therefore, radar-derived precipitation estimates are often
compared or combined with precipitation gauge observations
(e.g., Gabella et al., 2000; Gabella, 2004; Sideris et al., 2014;
Gabella et al., 2017). Dual-polarization information can help
the conversion of radar reflectivity into rainfall estimates.
However, it cannot resolve all the issues related to the
quantitative assessment of solid precipitation, because a unique
relationship between shape/orientation and snowflake size does
not exist. Further information on the challenges related to the
derivation of quantitative estimates of solid precipitation by
radars is provided by Saltikoff et al. (2015).

The possibility of exploiting weather radar precipitation
estimates to reproduce snow accumulation over different
glaciers in the Swiss Alps has recently been studied by Gugerli
et al. (2020). They compared SWE measurements, obtained on
several Swiss glaciers, with cumulative solid precipitation
amounts obtained from the CombiPrecip radar-gauge product
(MeteoSwiss, 2018) over four winter seasons. The observed
difference between the measured SWE and cumulative
precipitation showed large variations for different glaciers and,
on occasion, consistent differences during some winter seasons.

Numerical weather prediction (NWP) models are another
source of continuous temporal and spatial precipitation
estimates. Only a few studies have so far investigated the use
of NWP models for solid precipitation estimates in regions
characterized by complex topography (e.g., Egli et al., 2009;
Ikeda et al., 2010; Schirmer and Jamieson, 2015; Gugerli et al.,
2021).

Gugerli et al. (2021) presented a novel approach to assess the
performance of three spatio-temporally highly resolved gridded
precipitation products based on different data sources (gauge-
based, remotely sensed, and re-analyzed) with temporally
continuous SWE observations taken by CRS deployed on two
alpine glaciers (Plaine Morte and Findel) in Switzerland. They
found a large bias of all precipitation products at a monthly and
seasonal resolution. Moreover, they stated that the performance
of the precipitation products largely depends on in-situ wind
direction during snowfall events.

In addition to the challenges associated with measuring
precipitation and snow parameters in high-mountain regions,
the total seasonal amount and the spatio-temporal evolution of
SD and SWE are complicated by various interactions between the
local topography, solar radiation and weather conditions, which
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lead to high spatial variability, particularly for SWE (e.g., Rohrer
et al., 1994; Wastl and Zängl, 2008; Kerr et al., 2013; Grünewald
et al., 2014; Mott et al., 2014). Snow is re-distributed, for instance,
by avalanches (e.g., Kuhn, 1995; Mott et al., 2019), as well as by
creeping and sloughing as a result of the interplay between
topography and gravitation forces (e.g., Gruber, 2007;
Bernhardt and Schulz, 2010; Grünewald et al., 2014). The
annual course of solar radiation leads to an enhanced snow
melt, which affects SD and SWE during winter, especially
toward the end of the winter season (e.g., Cline et al., 1998;
Pohl et al., 2006; Mott et al., 2011; DeBeer and Pomeroy, 2017).
Among the most important variables that influence the
deposition and the redistribution of snow is wind (e.g.,
Pomeroy and Gray, 1995; Trujillo et al., 2007; Lehning et al.,
2008). Wind-driven processes dictate the spatial distribution of
snow accumulation at various magnitudes and at different spatial
scales (e.g., Mott et al., 2018). Moreover, they displace snow from
exposed to sheltered areas on the ground (e.g., Gauer, 2001; Mott
et al., 2010), and cause the advection of precipitation, which is
enhanced for snowfall because of the lower fall speed of
snowflakes than of rain drops (e.g., Colle, 2004). Dadic et al.
(2010) compared modeled wind fields of the ARPS mesoscale
atmospheric model with SD observations from high-resolution
lidar digital elevation models from a glacierized alpine catchment
area. Their results show high horizontal wind speeds along steep
slopes and ridges, and low wind speeds over flat areas, where
higher snow accumulations were found. Depending on the wind
direction, they observed erosion and reduced wind deposition on
the windward side of themountain ridges, while downward winds
led to increased deposition in the lee of the mountain ridges. In a
recent study, Gerber et al. (2019) have investigated the near-
surface pre-depositional precipitation processes that shape snow
accumulation in COSMO-WRF large-eddy simulations. They
concluded that a minimum horizontal grid of 50m is needed
to represent preferential deposition and local orographic
precipitation enhancement. Their study indicated that near-
surface preferential deposition can contribute by as much as
10% to the overall snow deposition. Cloud-dynamical processes
and the mean advection may enhance precipitation amounts by
as much as 20%. However, no clear relationship between wind
speed and advection distance was found.

Statistical models are often applied to reproduce the
distribution of snow by combining topographical parameters
with regression trees (e.g., Elder et al., 1998; Balk and Elder,
2000; Erxleben et al., 2002; Winstral et al., 2002; Anderton et al.,
2004; Molotch and Bales, 2005; López-Moreno and Nogués-
Bravo, 2006; Litaor et al., 2008) and with multiple linear
regressions (e.g., Elder et al., 1998; Jost et al., 2007). The most
frequently used parameters are: elevation, topographic position,
aspect, slope, and forest density. The statistical models of the
aforementioned studies were able to explain up to 90% of the
considered snow cover and SWE variability (Grünewald et al.,
2013). However, the quality, the scale and the density of data
should be considered to evaluate these results accurately. The
majority of the aforementioned studies were based on specific
sites with manual SD measurements available for a relatively

small number of samples. As a consequence, the generalization of
these models to other areas could not be proven consistently.

A study based on a large number of data and sites was carried
out by Grünewald et al. (2013). They applied multiple linear
regressions (MLR) to model SD distributions obtained from laser
scanning for several small and medium-sized catchment areas in
different mountain regions throughout the world. They built a
specific model for each catchment area, as well as a global model
that combined all the data from all the investigated sites. Their
models explain much of the SD variability, but only for spatially
aggregated data at scales of some hundreds of meters (smoothing
the large variability generated by drifting snow at small scales).
The most frequently used parameters in their models are:
elevation gradient, slope, an aspect-based parameter and a
wind-sheltering parameter. However, the coefficients and the
importance of the parameters in the MLRs differed from
catchment to catchment. Their models allowed 30–91% of the
variability observed over single catchments to be explained.
Moreover, the global model was able to explain 23% of the
spatial variability, which led to the conclusion that it is
difficult to generalize the relationship between topography and
snow distribution.

Motivated by the scarcity and uncertainty of spatio-
temporal observations of precipitation, SD and SWE in
high-mountain regions, this study introduces a novel two-
step statistical approach with low computational costs to
derive continuous spatio-temporal, alpine-wide SWE
estimates based on data from multiple sources. The
continuous spatial and temporal SWE estimates were
obtained by combining solid precipitation estimates with
high-resolution topographical parameters and
meteorological variables, including wind speed and
shortwave radiation. Firstly, we extrapolated SWE estimates
at a high spatio-temporal resolution over glacierized areas
with SWE data from temporally continuous CRS observations
and winter mass balance measurements, and then, we run the
model over non-glacierized areas in order to assess its limits of
applications.

The study sites and data are described in Section 2. Section 3
introduces the model and the procedures applied to derive and
select the model variables. The results are presented in Section 4,
and this is followed by a comprehensive evaluation and
discussion of the model in Section 5. The concluding remarks
and perspectives are provided in Section 6.

2 STUDY SITES AND DATA

The study was conducted in the Swiss Alps, according to a multi-
sources data approach (Figure 1). The study concentrated on the
Plaine Morte and Findel glaciers, where hourly SWE observations
were available from a CRS for between October 2016 and May
2020. SD and SWE measurements were also available for six
additional glaciers and 44 non-glacierized sites in the Swiss Alps.
The different data sources used in this study are described in
more detail in the following sections.
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2.1 Snow Water Equivalent Measurements
2.1.1 Cosmic Ray Sensor Observations
In October 2016, a CRS was installed on the ice surface of the
Plaine Morte glacier (46.38 N, 7.50 E, 2689 m.a.s.l.) in order to
assess its performance regarding the daily SWE observations. In
October 2018, another CRS was installed on the Findel glacier
(46.00 N, 7.87 E, 3116 m. a.s.l.). These automated SWE
observations were evaluated extensively against manual field
measurements (snow pits, snow cores) between 2016 and 2019
(Gugerli et al., 2019; Gugerli et al., 2020). The CRS observations
and 13 independent manual field measurements differ on average
by a factor of 1.00 ± 0.10 (Gugerli et al., 2020). In our study, we
used CRS observations from October 2016 to May 2020.

2.1.2 Manual In-Situ Measurements
The Swiss Glacier Monitoring Network (GLAMOS) observes
more than 100 glaciers in the Swiss Alps (GLAMOS, 2018).
SD and SWE are measured at single points, by means of snow
probes and snow pits, in spring, when the snowpack reaches its
maximum height (Huss et al., 2015; GLAMOS, 2018). In our
study, we included measurements from eight Swiss glaciers
(Rhone, Findel, Plaine Morte, Gries, Silvretta, Tsanfleuron,
Basòdino and Murtèl), where the mean elevation (based on
DHM25) of the eight glaciers varies between 2732 m. a.s.l

(Plaine Morte) and 3237 m. a.s.l (Findel) (see Table 1). The
SD measurements are spatially distributed across the glaciers.
SWE values are derived by including snow density information
from snow pits or snow cores (GLAMOS, 2018). An overall
uncertainty of about 5% is estimated for the bulk snow density
estimation (cf. López-Moreno et al., 2020). The areal SWE is then
determined by multiplying these mean density estimates with the
spatially scattered SD measurements (Huss et al., 2015). In
addition, since 2016 (2018), in-situ SWE measurements have
also been obtained directly, during the winter season, at the CRS
location on the PlaineMorte (Findel) glacier (Gugerli et al., 2019).

2.1.3 Manual Measurements in Non-Glacierized Sites
Manual SWE measurements were also available from 44 non-
glacierized sites, located at altitudes ranging from 1059 to
2626 m. a.s.l, and thus clearly at lower elevations than the
measurements on the glacier sites. The measurements are
made twice a month by the WSL Institute for Snow and
Avalanche Research in Switzerland (SLF) (cf. Jonas et al.,
2009; Marty, 2017). In our study, we used these data to test the
model for non-glacierized areas and lower altitudes of the
Swiss Alps. More detailed analyses are here provided for six of
these sites (cf. Table 1), which represent different altitudes
and regions in the Swiss Alps.

FIGURE 1 | Distribution of the RAD4Alp weather radars, the CRSs, the considered glaciers with the end-of-season in-situmeasurements and the non-glacierized
sites with twice-monthly SWE measurements.
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2.2 Precipitation Products
2.2.1 Weather Radar-Gauge Composites
(CombiPrecip)
The CombiPrecip operational product (cf. MeteoSwiss, 2018)
provides hourly precipitation sums over a 1 × 1 km2 grid in the
Swiss coordinate system. It combines real-time precipitation gauge
measurements with radar estimates by co-kriging with an external
drift (Sideris et al., 2014). The precipitation gauge measurements are
processed before being used to generate the CombiPrecip product
(e.g., Grüter et al., 2003). The quality of radar precipitation estimates
decreases with the distance from the radar and is influenced by the
Ear’s curvature, orographic partial beam shielding and the highly
variable vertical reflectivity profile (MeteoSwiss, 2018). In general,
the most reliable radar echoes originate in a surrounding distance of
3–60 km, and at altitudes at whichmainly liquid hydrometeors occur
(MeteoSwiss, 2018). Gugerli et al. (2020) evaluated the CombiPrecip
product against end-of-season winter mass balance measurements
from seven glaciers belonging to the GLAMOS network. In general,
CombiPrecip showed lower estimates, ranging between a mean
factor of 2.2 (Rhone) and 3.7 (Findel) over four winter seasons.
The factor varies according to the winter season and the glacier. The
largest underestimations of CombiPrecip were found on most
glaciers in winter 2016/17, which was a particular dry winter all
across Switzerland. However, a lower underestimation of
CombiPrecip was found for Plaine Morte glacier, during the
same winter.

2.2.2 Analysis of the Numerical Weather Prediction
Model (COSMO-1)
Weusthoff et al. (2010) evaluated the ability of numerical
weather prediction (NWP) models to represent precipitation
observations of polarimetric C- band doppler radars. Their
results show a better (or similar) performance of NWP models
with increasing spatial resolutions, in particular for COSMO-7
(at a 7 km res.) compared with COSMO-2 (2 km res.). Egli et al.
(2009), with reference to solid precipitation, included
forecasted precipitation sums from COSMO-7 to estimate
new daily SWE, and evaluated them against measurements

from various devices located at the Weissfluhjoch site
(Switzerland) at 2536 m a.s.l. Their results showed that
COSMO-7 underestimated twice-monthly SWE
measurements by 4%. Since 2016, the finer NWP model
COSMO-1 has been operated by MeteoSwiss (MeteoSwiss,
2016) at a horizontal grid resolution of 1.1 km and highest
model topography at 4268 m a.s.l. From the results of
Weusthoff et al. (2010), it would appear that the highly
resolved COSMO-1 model promises more accurate
estimates of solid precipitation fields than the older models.
In this study, we have used hourly precipitation and wind
speed estimates (10 from the ground) from COSMO-1 analyses
between October, 2016, and May, 2020. Station data,
radiosondes, aircraft measurements and radar measurement
fields are all assimilated in COSMO-1 analysis.

2.3 Additional Meteorological Data
2.3.1 Automatic Weather Station
An automatic weather station, which provides continuous
measurements on shortwave radiation, is deployed at the CRS
locations on the Plaine Morte and Findel glaciers. In this study,
we also used information about sunshine duration (in minutes
per hour) provided by MeteoSwiss automatic monitoring
network stations (SwissMetNet). We selected the station
closest to each glacier, considering the horizontal distance
from each glacier and the difference in elevation. The list of
the considered SwissMetNet stations is reported in Table 1.

2.3.2 Topographical Data
The topographical information used in this study (cf. Section 3) is
based on a digital elevation model, with a resolution of 25 × 25m2

(DHM25), provided by Swisstopo (cf. Swisstopo, 2004).

3 METHODS

The developed two-step statistical model, which allows spatio-
temporal SWE estimates across the Swiss Alps to be derived, is

TABLE 1 | Description of the glacier and non-glacierized sites.

Site (abbreviation) Extent [km2] Elevation
(mean ± std) [m]

Station with sunshine
duration info

Rhone (RHO) 15.3 2,891 ± 362 Grimsel Hospiz (GRH)
Findel (FIN) 12.7 3,237 ± 257 Monte Rosa-Plattje (MRP)
Plaine morte (PLM) 7.1 2,732 ± 48 Montana (MVE)
Gries (GRI) 4.3 2,846 ± 194 Ulrichen (ULR)
Silvretta (SIL) 2.6 2,785 ± 153 Naluns-Schlivera (NAS)
Tsanfleuron (TSA) 2.5 2,774 ± 86 Les Diablerets (DIA)
Basòdino (BAS) 1.8 2,905 ± 108 Robièi (ROE)
Murtèl (MUR) 0.9 3,168 ± 47 Piz Corvatsch (COV)

Schreckfeld (1GD) - 1,950 -
Braunwald (3BR) - 1,310 -
Egginer (4EG) - 2,620 -
Davos (5DF) - 1,560 -
Weissfluhjoch (5WJ) - 2,540 -
Corvatsch (7CO) - 2,697 -

The selected SwissMetNet stations that provide information on sunshine duration are also listed.
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presented hereafter. Step-1 was applied to obtain bias-corrected
precipitation estimates (independent of the end-of-season in-situ
SWE measurements) and to model the average hourly SWE
variations (in the absence of precipitation). Step-2 was necessary to
accurately increase the spatial resolution of the Step-1 estimates, using
information from several glacier sites. The resulting two-step model
combines data on precipitation, topography and wind speed (10 m
above the ground) from multiple sources. Figure 2 schematically
illustrates the two-step approach, which is briefly outlined hereafter,
and described in more detail in Sections 3.1 and 3.2.

3.1 Step-1: Adjustment of Precipitation
Estimates to CRS Observations
The aim of Step-1 was to adjust (bias-correct) the precipitation
data of CombiPrecip and COSMO-1 to the Plaine Morte
glacier site by referring to the continuous temporal CRS
data available there. Thus, the aim of the adjustment is to
correct for the bias caused by precipitation undercatch and

other systematic errors inherent in the single precipitation
products, but also to account for other processes influencing
the snow redistribution at the CRS location. For this purpose,
we applied an MLR model (cf. Eq. 1) using the hourly SWE
observation (CRS) as the response variable, and the
precipitation and wind speed from CombiPrecip and
COSMO-1 as the explanatory variables:

Step1i � 0.62 · PCOSMO1,i + 0.58 · PCPC,i + 0.065 ·WSCOSMO1,i − 0.25

(1)

Where PCPC,i is the hourly precipitation of CombiPrecip,
PCOSMO1,i is the hourly precipitation of COSMO-1 and
WSCOSMO1,i is the hourly wind speed of COSMO-1.

TheMLR was only trained with the CRS observations of the Plaine
Morte glacier, and then tested with completely independent CRS
observations from the Findel glacier. Table 2 reports the
significance of the MLR variables and their coefficients to describe
the hourly variations of SWE observed by the CRS on Plaine Morte.
Since the variables are not standardized, their coefficients do not
indicate their importance in explaining the CRS observations.
Precipitation and wind speed are both positively correlated with the
observed SWE variations (as indicated by the positive sign). The
standard error (std err) shows the level of accuracy of the
coefficients. From a statistical point of view, all the selected
variables are highly significant, with a p-value <0.01 at a confidence
interval of between 0.025 and 0.975. Step-1 MLR also involves a
negative constant term,whichmodels the average SWEvariation in the
absence of precipitation (according to the CRS observations).
Therefore, in the case of dry conditions with no wind, the Step-1
model predicts a negative hourly SWE variation of 0.25 mm.

In order to better quantify the benefits provided by the Step-1
model, with respect to the precipitation products, we
independently adjusted the precipitation estimates of
CombiPrecip and COSMO-1. The adjustment coefficient was
derived by minimizing the mean squared error with respect to the
CRS observations on Plaine Morte (the same training data as
those used in the Step-1 model). Thus, we obtained: Adjusted
PCOSMO1 � 1.85 PCOSMO1 and Adjusted PCPC � 2.28 PCPC. The
performance of the Step-1 model in representing the end-of-
season in-situ SWE measurements distributed over the glacier
sites (see Section 4.1) was then compared with the performance
of the adjusted CombiPrecip and adjusted COSMO-1
precipitation products.

3.2 Step-2: Downscaling With
High-Resolution Topographical Parameters
In Step-2, the aim was to derive highly resolved spatial SWE
estimates for the entire areas of the eight selected Swiss glaciers.
For this purpose, we downscaled and further enhanced the Step-1
MLR model. We included topographical parameters and
information on solar radiation (cf. Eq. 8), which allowed
small-scale processes on the ground surface that influence the
spatio-temporal SWE distribution to be taken into consideration.
Therefore, the aim of the Step-2 model, was to model the
processes of the following equation:

FIGURE 2 | Flowchart showing the main assimilation, processing
modeling and validation steps. The color of the boxes matches the color of the
lines in the different plots in the paper.
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∑


SWE � ∑


Precipitation ± ∑


Snow drift −∑


Snowmelt (2)

3.2.1 Downscaling
In order to produce smoother precipitation fields over the
glaciers, we first downscaled the cumulative precipitation grids
of Step-1 MLR from the 1 × 1 km2 grid to the 25 × 25 m2 grid of
the DHM25 grid. We did this by resorting to an inverse distance
weighting (IDW) function of the four nearest grid cells of the
precipitation data. We then compared the generated 25 × 25 m2

fields with the spatially scattered end-of-season in-situ snow
accumulation measurements over eight glaciers. The observed
differences were reduced by including the high-resolution

topographical parameters in Step-2 MLR (minimizing the
mean squared error between the Step-2 model and the in-situ
measurements).

3.2.2 Topographical Parameters
The topographical parameters were derived from DHM25 and
included the slope, aspect, topographic position index (TPI),
East-West and North-South directional derivatives, maximum
slope in the wind direction (Sx) and a solar radiation parameter
(SR). TPI is defined as the difference in elevation between the
central grid cell and the mean of the neighboring grid cells, and it
allows terrain concavity (negative values) and convexity (positive
values) to be represented. The Sx parameter was first introduced

TABLE 2 | Significance of the variables and models.

Variables coef std err t p-value [0.025 0.975]

PCOSMO1 0.6222 0.114 5.472 <0.01 0.399 0.845
Step-1 MLR PCPC 0.5783 0.121 4.768 <0.01 0.341 0.816
nobs: 15279 WSCOSMO1 0.0648 0.011 5.702 <0.01 0.043 0.087

Constant −0.2459 0.079 −3.095 0.002 −0.402 −0.090

Step-1 MLR 0.4644 0.018 25.744 <0.01 0.429 0.500
PCOSMO1 1.1628 0.036 31.919 <0.01 1.091 1.234
SR225 −0.0003 1.54e−05 −20.227 <0.01 −0.000 −0.000

Step-2 MLR TPI225 −0.0067 0.001 −12.349 <0.01 −0.008 −0.006
TPI525 0.0015 0.000 5.626 <0.01 0.001 0.002
TPI1025 −0.0014 0.000 −12.163 <0.01 −0.002 −0.001
TPI2025 0.0005 2.883−05 16.430 <0.01 0.000 0.001

No. Observations 4951 Adj. R-squared 0.950

The coefficient (coef) and the related standard error (std err), t-statistic (t), significance level (p-value) and confidence interval (2.5 and 97.5 percentiles) are reported for each variable
included in the Step-1 and Step-2MLRs.

FIGURE 3 | Example of the topographical parameters derived from DHM25 (A) for Findel glacier (glacier outline shown with the dashed line) including elevation
contours (solid lines). The TPIs computed with a 225×225 m2 and 1025×1025 m2 moving window, respectively, are shown in (B,C). The slope and aspect computed
with a 225×225 m2moving window are shown in (D,E) (F) presents the sum of the modeled solar radiation computed with a 225×225 m2 moving window, for the 2019/
20 winter season.
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by Winstral et al. (2002) to model wind-redistributed snow. The
relationship between Sx, TPI and wind error has already been
investigated by Winstral et al. (2017) for COSMO-2 and
COSMO-7 (which have a coarser spatial resolution than
COSMO-1) and they observed a negative correlation between
the mean wind speed and TPI. Here, we have computed each
parameter with squared moving windows of various sizes,
ranging from 75 × 75 to 2,025 × 2,025 m. A subset for Findel
is reported in Figure 3. The SR parameter was obtained as a
function of the derived slope, aspect and the relative Sun position
for each hour of the day, and for each day of the year, neglecting
atmospheric attenuation, and is described by the following
equations:

δ � 23.45 · sin(360 · (284 + jjj)/365) (3)

In � Isc · (1 + 0.033 · cos(360 · jjj/365)) (4)

β � arcsin(sin(δ)sin(ϕ) + cos(δ)cos(ϕ)cos(ω)) (5)

ψ � arcsin(cos(δ)sin(ω)/cos(β)) (6)

I0 � In · cos(β)cos(ψ − ASP)sin(SLP) + sin(β)cos(SLP) (7)

Where ASP is the aspect, SLP the slope, δ the solar declination,
jjj the day of the year; In the solar irradiance at the top of the
atmosphere, Isc the solar constant approximated to 1,361 W/m2

(cf. Kopp and Lean, 2011); β the solar height, ϕ the latitude (46.4

for Switzerland), ω the hourly angle; ψ the solar azimuth; I0 the
solar intensity, which depends on the angle of incidence. We
evaluated the quality of I0 by comparing it with the shortwave
radiation measurements of the AWS located on the Plaine Morte
glacier (cf. Figure 4). We then improved our I0 parameter with
Eq. 8, by including information on sunshine duration (in minutes
per hour), as obtained from the closest SwissMetNet station.

SR � I0 · (1 − f · (1 − Smin,i

60
)) (8)

Where f is 0.33 and corresponds to the optimal value that
minimizes the mean squared error of SR with respect to the
shortwave radiation measured by the AWS on Plaine Morte
and Smin,i is the sunshine duration, in minutes, measured
during the specific hour. The sum of the modeled radiation
received over the Findel glacier during the 2018–2019 winter is
shown in Figure 3F, where the hourly estimates were validated
at the CRS location (see Figure 4). Findel is an independent
test site and it is evident that this coefficient also improves the
estimated shortwave radiation for Findel, as it increases the
correlation from 0.94 to 0.96 and reduces the mean bias error
from 25.32 to −6.72 mm. Without the sunshine duration
information from the nearby station, the intensity of the
received solar radiation would be overestimated in many
cases. Figure 3F and Figure 3G show that south oriented
slopes in general receive more shortwave incoming radiation.
This most likely influences the total amount of snow present at
the end of the winter season.

3.2.3 Feature Selection
In order to only include significant explanatory variables in the
Step-2 MLR model, we applied a stepwise feature forward
selection, which automatically includes, one by one, the
variable that explains the most significant part of the variance
of the response variable (in-situ SWE measurements). The
selection stops when no more variables are able to explain a
significant part of the variance. The selected variables are
introduced in the following order: Step-1 MLR, COSMO-1
precipitation, modeled solar radiation based on aspect and
slope derived with a 225 × 225 m2 square moving window
(SR225), TPI for 225 × 225, 525 × 525, 1025 × 1025 and
2025 × 2025 m2 moving windows (TPI225, TPI525, TPI1025 and
TPI2025). Details of the significance and importance of the
variables for Step-2 MLR to explain the end-of-season SWE
are reported in Table 2. The intercept term in Step-2 MLR is
set to 0, and the variables are not standardized. As all the variables
are highly significant, and the confidence interval of their
coefficients is relatively small, the robustness of MLR is
enhanced. Step-2 MLR was tested using a “leave-one glacier-
out” cross validation strategy, that is, the coefficients were
determined for seven glaciers and the resulting regression
model was compared with the end-of-season in-situ
measurements of the remaining glacier.

The final equation of Step-2 MLR involved the use of Eq. 9,
where the topographical parameters were multiplied by the
number of hours of each specific winter season to facilitate the
application of Step-2 MLR to smaller temporal scales. Equation 10

FIGURE 4 | Scatterplot in which the modeled solar radiation (I0, 225) and
measured shortwave radiation, measured by the AWS located on Plaine
Morte (A) and on Findel (B) are compared (C) compares the solar radiation
adjusted with cloud cover information (SR225) on Plaine Morte by
minimizing the mean squared error of (A) (D) compares adjusted solar
radiation with cloud cover information on Findel, using the correction factor
obtained from Plaine Morte. The correlations (CORR) and mean bias errors
(MBE) are reported on the graphs.
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was used to produce MLR estimates at hourly timescales and the
resulting time series were re-evaluated with CRS observations and
field measurements over the Plaine Morte and the Findel glaciers.

∑
nh

i�0
SWEi � 4.5 · 10−1 ∑

nh

i�0
Step1i + 1.2∑

nh

i�0
PCOSMO1,i

− 3.0 · 10−4 ∑
nh

i�0
SR225,i − 6.7 · 10−3nh · TPI225

+ 1.5 · 10−3nh · TPI525 − 1.4 · 10−3nh · TPI1025
+5.1 · 10−4nh · TPI2025

(9)

ΔSWEi �4.5 · 10−1Step1i + 1.2PCOSMO1,i − 3.0 · 10−4SR225,i

− 6.7 · 10−3TPI225 + 1.5 · 10−4TPI525
− 1.4 · 10−3TPI1025 + 5.1 · 10−4TPI2025

(10)

In order to analyze the variance explained by the variables
included in Step-2 MLR in more detail, we built a simple linear
regression to correct the bias between the Step-1 MLR estimates
and the end-of-season in-situ measurements of the eight glaciers
(SLR � 0.97 Step-1 MLR). We then computed the difference
between the in-situ measurements and SLR in order to calculate
the residuals. The residuals are compared with TPI225 in
Figure 5A, and with the modeled radiation SR225 in Figure 5B.
Both figures show negative correlations, and the inclusion of TPI225
and SR225 in the Step-2 model should therefore allow the Step-1
MLR estimates to be improved. It is in particular possible to notice
that the Step-1 MLR model underestimates in-situ measurements
for negative TPIs (concavities) and overestimates them for areas
affected by strong radiation.

3.3 Performance Assessment
We computed the ratio shown in Eq. 11 to evaluate the glacier-
wide cumulative estimates of the precipitation products (over the
winter season) and the Step-1 and Step-2 MLR models against the
end-of-season in-situ SWE measurements (cf. Section 4.1). The
ratio was weighted with the number of in-situ measurements
performed within the 1 × 1 km2 grid of the CombiPrecip,
COSMO-1 and Step-1 MLR or the 25 × 25 m2 grid of Step-2 MLR.

ratio � ∑ m
i�1niPi/∑m

i�1ni

mean(SWEin−situ) (11)

Where Pi corresponds to the precipitation or model estimate
in a single m grid cell, and ni to the number of in-situ
measurements in the same m grid cell.

4 RESULTS

The intermediate and final results of the Step-1 and Step-2 MLR
models used over the considered glaciers are presented hereafter.
The performance is assessed by evaluating the results against
independent spatially scattered end-of-season in-situ SWE
measurements (Section 4.1) and temporally continuous CRS
observations (Section 4.2). An evaluation of non-glacierized
sites in the Swiss Alps is also presented (Section 4.3) using the
independent twice-monthly manual SWE measurements.

4.1 Spatial Distribution of the Cumulative
Precipitations and Total SWE
Figure 6 shows the resulting cumulative precipitation and total
SWE between October 2018 and April 2019 for the Findel glacier.
The results of all the other glaciers considered in our study are
reported in the Supplementary Material Section S1. Figures
6A–C provide (intermediate) results on the precipitation
estimates for the adjusted CombiPrecip product, the adjusted
COSMO-1 model and the Step-1 MLR model, and 6D shows the
(final) Step-2 MLRmodel. Figure 6A shows a much larger spatial
variability of the in-situ SWE estimates than of the adjusted
CombiPrecip estimates, which is obviously due to the spatial
resolution of the data. Moreover, the minima of the adjusted
CombiPrecip is clearly located at a higher altitude (south-east),
and thus exactly where the largest SWE amounts are found for the
in-situ measurements. A similar spatial variability pattern can be
observed for the comparison against COSMO-1 (Figure 6B),
where a much larger spatial variability is again observed for the
in-situmeasurements. However, COSMO-1 agrees better with the
in-situmeasurements than CombiPrecip. Looking at the results of
Step-1 MLR (Figure 6C), it is possible to see a larger spatial
variability, with smaller estimates at lower altitudes and larger
estimates at higher altitudes. This effect is a result of considering
the wind speed in the model. In fact, COSMO-1 wind speeds
usually become stronger over Findel as the altitudes increase.
Finally, the local variability improves with the inclusion of high-
resolution topographical parameters in Step-2 MLR (Figure 6D),
as indicated by the higher correlation with the in-situ SWE
measurements (0.73 compared to 0.66). Moreover, local SWE
maxima are estimated where the TPI225 is negative.

The good overall performance of Step-1 MLR is confirmed in
Figure 7, which shows the ratios between the cumulative
precipitation and the end-of-season in-situ SWE for each
winter season and each glacier (cf. Eq. 11). The ratios between
Step-1 MLR and in-situ SWE are close to 1 for all the glaciers, and
this pattern remains consistent for the Step-2 MLR results. In
general, an increase in the ratios can be observed from the 2016/
2017 winter to the 2019/2020 one, especially for CombiPrecip.
However, when analyzing the CombiPrecip ratio over the
different winter seasons, it is important to note that only three
radars (Monte Lema, Albis and La Dôle) were operational in
2012. The Rad4Alp network was extended in 2014 with the
addition of a weather radar station on the Pointe de la Plaine
Morte, and in 2016 with a radar at Weissfluh. However, since
COSMO-1 data have only been available to us from 2016, the
Step-2 model only covers the years since then.

The scatterplots in Figure 8 compare the cumulative
precipitation with in-situ SWE measurements of the four
winter seasons and the eight glaciers. Figure 8B shows in-situ
SWE measurements compared with the adjusted CombiPrecip
and adjusted COSMO-1 precipitation (Figure 8C). A significant
higher correlation may be noted for the adjusted COSMO-1
estimates (0.67) than for the adjusted CombiPrecip ones (0.48).
Figures 8E,F show the correlation for Step-1 MLR (0.74) and
Step-2 MLR (0.78). The comparison of the Findel glacier is
highlighted with colored dots. The correlation of CombiPrecip
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with the in-situ SWEmeasurements is negative for all the investigated
winter seasons, while it is positive for the adjusted COSMO-1
precipitation estimates. Step-1 MLR and Step-2 MLR both show
an improvement. However, the higher spatial resolution of Step-2
further improves the continuity of the SWE estimates over the glacier
sites. The good performance of Step-2 MLR indicates the power of
the model to take into account the specific topographical
characteristics of each glacier site and thus to improve confidence
in distributed modeling across the Alps. The boxplots shown in
Figure 8A indicate the distribution of all in-situ measurements (of
the eight glaciers) and the distribution of the in-situ measurements
for individual years of the Findel glacier. Figure 8D shows the
distribution of CombiPrecip and COSMO-1 estimates and
Figure 8G the distribution of Step-1 and Step-2 MLRs estimates.
Observing the interquartile ranges, it is clear that for individual years,
the spatial variability over the glacier area of Step-1 MLR and Step-2
MLR is much larger than the spatial variability of CombiPrecip and
COSMO-1 and is closer to the spatial variability of the in-situ
measurements. Finally, Table 4 reports the performance of both
models and all the precipitation products, for each glacier and each
winter season. In general, Step-2 MLR achieves higher correlation

values, except for Plaine Morte and Gries. This is due, at Plaine
Morte, to the very low spatial variability of SWE and, at Gries, to the
small number of available in-situmeasurements, in particular for the
2016/2017 and 2017/2018 seasons.

4.2 Temporal Evolution of the Modeled SWE
Figure 9 shows the temporal evolution of themodeled SWE for Step-
1 and Step-2 MLR compared with CRS observations and field
measurements on Plaine Morte (2016–2020) and Findel
(2018–2020), and the cumulative precipitation of CombiPrecip and
COSMO-1. An overall quantitative assessment on the differences
between CombiPrecip, COSMO-1 precipitation, Step-1 MLR, Step-2
MLR and CRS observations and manual measurements is also
provided in Table 3, which reports the mean bias errors. The
data used for the evaluation are completely independent of the
training data for Findel and partly dependent for the Plaine Morte
glacier, as Step-1MLR was trained with CRS observations from Plaine
Morte. Step-1 and Step-2 MLRs overestimate the two first manual
measurements for PlaineMorte in December and January in the 2016/
2017 season (Figure 9A), while the cumulative estimates agree well
with the field measurements in March. The estimates of the
models match well with the first SWE measured in the field at the
beginning of the 2017/2018winter season (Figure 9B), even though no
CRS observation was available until December. The last field
measurement of the season is significantly higher than the estimates
of the MLRs and the observations of the CRS. The CRS observations
andMLRs estimates agreemuch betterwith thefieldmeasurements for
the 2018/2019 season (Figure 9C). Finally, during the 2019/2020
season (Figure 9D), the MLRs match very well with the field
measurement made early on in the season, but are clearly higher at
the end of the season, compared with the CRS observations.

Lower values can be observed for the CRS observations for Findel,
which is a completely independent testing site for the models, than for
the fieldmeasurements in the 2018/2019winter (Figure 9E). However,
the cumulative estimates of the MLR models, agree well with the
manual SWE measurements. The Step-1 and Step-2 MLR models
show higher values than CRS in the 2019/2020 season (Figure 9F),
starting from December, because of the large amount of precipitation
estimated by COSMO-1. In fact, the difference between the CRS
observations and the COSMO-1 estimates is reduced to a great extent
on Findel, compared with the Plaine Morte glacier.

4.3 SWE Estimates in Non-glacierized Sites
The glacier sites in our study, and glacier sites in general, show
certain analogies regarding their mean altitude and the relative
morphology of the terrain, which typically result in higher
accumulations of precipitation than in the surrounding areas. In
order to evaluate the possibility of applying Step-2MLR tomountain
ranges, the model was also compared with SWE measurements
taken manually twice a month at non-glacierized sites in the Swiss
Alps. Generally, these non-glacierized sites are located at lower
elevations, whichmeans they are also influencedmore by snowmelt.

Figure 10 compares the SWE measurements and the cumulative
precipitation of CombiPrecip, COSMO-1, Step-1 and Step-2 MLRs.
The overall correlations for CombiPrecip, COSMO-1, Step-1MLR and
Step-2 MLR are 0.60, 0.52, 0.45 and 0.53, respectively, while the mean
bias errors are 22, 25, 8, and 31 mm. Melt can cause negative SWE

FIGURE 5 | (A) shows the relationship between the residuals (SWEend-of-
season−SWE0.97 Step-1) and TPI225, while (B) describes the relationship
between the residuals and sum of SR225 for the entire winter seasons. All the
measurements of all the glaciers and winter seasons are considered. The
bars indicate the number of ground measurements related to the specific
interval of the TPI225 (and the SR225) values.
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variations, which cannot be represented by cumulative
precipitation. Moreover, the MLR models were not trained to
predict high negative SWE variations, because the snow melt is
usually negligible during winter at glacier site altitudes. When the
negative variations of the measured SWE are removed, the
CombiPrecip, COSMO-1, Step1 MLR and Step-2 MLR correlation
increase to 0.60, 0.65, 0.59, and 0.63, respectively, while the mean bias
errors decrease to −5, −1, −16, and 12 mm. The poor performance of
the Step-1model indicates that it is not suitable for non-glacierized sites.
A more detailed analysis is provided in Figure 11 for the six sites
reported in Table 1. Here, the Step-1 and Step-2 estimates and
cumulative precipitations are compared with the twice-monthly
SWE measurements over the four winter seasons (see the
Supplementary Material for the time series of the other stations).
Step-1 MLR often results in lower values than thus of the manual
measurements, while the Step-2MLR estimates agreemuchmore.Only
for the Egginer station during the 2016/2017 season and partly in the
2017/2018 season, can we observe lower values. The COSMO-1 and
CombiPrecip discrepancies, with respect to the manual measurements,
are reduced, compared to the glacier sites in our study, and this often
leads to generally higher values from the MLRs models than from
manual measurements (e.g. the Weissflujoch, Figure 11E).

5 DISCUSSION

Our results have demonstrated the good performance of the
developed two-step MLR model for spatio-temporal precipitation
and SWE modeling in high-mountain regions, where no or only a
few observations are usually available. Moreover, our study confirms
the importance of topographical information to understand spatio-
temporal snow patterns, already shown in previous studies (e.g.,
Winstral et al., 2002; Jost et al., 2007; Litaor et al., 2008; Kerr et al.,
2013; Mott et al., 2014). A comprehensive discussion on the
approach presented in this study is provided hereafter.

5.1 Aspects Pertaining to the Model
Performance Analyses
The intermediate and final results obtained from theMLRmodels
were evaluated by comparing them with in-situ SWE
measurements. In this way, it is possible to see the step-
by-step improvement of the final results by first combining
different precipitation products, and then downscaling and
including additional topographic parameters. Model
evaluation data are generally scarce when working in high-

FIGURE 6 | Cumulative precipitation maps (colored grid cells) and in-situ measurements (colored dots) over the Findel glacier at the end of the 2018/19 winter
season (24.10.18–17.04.19). The glacier outline is shown with the dashed line and elevation contours are shown with solid lines (A,B) show precipitation estimates of
adjusted CombiPrecip and adjusted COSMO-1 (C,D) show the model outputs of Step-1 MLR and Step-2 MLR.
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mountain regions. As a consequence, our assessments of the
models’ performance had to rely on different types of SWE
measurements of different quality, which influenced our
analyses in several ways. For instance, our study has highlighted
some discrepancies between precipitation data and SWE
measurements over the considered Swiss glaciers. An inverse
trend of cumulative adjusted CombiPrecip estimates, compared
to in-situ measurements over the Findel glacier, can in fact be
observed in Figure 6 for the 2018/2019 season. This inverse trend
can be explained by considering the poor radar visibility and the
relative residual clutter removal due to beam shielding (Germann
and Joss, 2004), since local minima are regularly observed in the
South-East part of the glacier for different periods of time (cf.
Gugerli et al., 2020). Limited radar visibility generally negatively
influences the accuracy of precipitation estimates over remote
areas, such as glacier sites, and in our case, this was in
particular noted for the Gries, Basòdino, Rhone and Silvretta
glaciers (cf. Table 4).

In addition, the small surface extent of the Basòdino and
Silvretta glaciers, that is, of 1.8 and 2.6 km2, respectively, also
influences the results, as these glaciers are only covered by a few
original CombiPrecip or COSMO-1 data grid cells. Furthermore,
no correlation was computed for Murtèl, because the glacier is
only represented by one single grid cell (i.e., there is no spatial
variability). Figure 7 further highlights the great underestimation
of the precipitation products, where, in addition to the radar
visibility, other effects also need to be considered.

5.2 The Importance of and Dependency on
the CRS Data
Step-1 MLR was trained using Plaine Morte CRS data and
cannot therefore be considered independent of direct field

measurements. On the other hand, Step-2 MLR was built
completely according to a “leave-one-glacier-out” cross-
validation process. The Step-1 MLR estimates that were re-
adjusted in Step-2 MLR thus only consider measurements
from the other seven glaciers and the relative local
topography. The final results of Step-2 MLR are therefore
independent of any direct in-situ measurements. As shown
in Figure 9, the resulting SWE estimates from Step-2 MLR
agree well with the CRS observations and field measurements
of Plaine Morte and Findel (Findel is a completely independent
test site for Step-1 MLR too) for most of the winter seasons.
This implies that our model is suitable for applications at
smaller timescales than seasonal, without any evident loss in
performance.

5.3 Wind and Radiation Components
Glaciers only form where snow can survive for several summer
seasons, together with an above-average precipitation catch,
due to topographic-meteorologic interactions and/or
additional snow accumulation resulting from the re-
distribution of snow by avalanches or wind (e.g., Kuhn,
1995; Trujillo et al., 2007; Lehning et al., 2008; Mott et al.,
2019). These processes cannot be represented by simply
accumulating the observed precipitations over the glacier
area. Given the multiple issues involved in determining
precipitation amounts at these high altitudes, our approach
is not able to link advection distances with wind speed.
Nevertheless, including the wind speed variable in Step-1
MLR allowed the correlation with ground measurements to
be greatly improved for most glaciers (cf. Table 4 positive
correlation was estimated over the Gries glacier for all the
winter seasons, when the spatial distribution of both
cumulative COSMO-1 and CombiPrecip was negatively

FIGURE 7 |Ratio of the cumulative precipitation of the precipitation products to theSWEs, as estimatedwith the differentmodels, and the end-of-seasonglacier-widewinter
mass balance. *The 19/20 ratio for the Plaine Morte glacier was derived considering the CRS observations as no manual measurement were conducted in this winter season.
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correlated with the in-situ SWE measurements. Our result
confirms that high horizontal wind speeds at mountain
crests play a key role in the final distribution of snowfall
and snow deposition. In fact, such winds influence the
advection of falling snow particles downstream (e.g., Colle,
2004; Zängl, 2008; Mott et al., 2014). Dadic et al. (2010) found
that downward winds cause an increased deposition in the lee
of mountain ridges, where winds are usually stronger than over

the flatter areas of a glacier. This could further explain our results,
which indicate a positive correlation between wind speed and SWE.
Snow melt and sublimation are other processes that modify a
snowpack, and higher temperatures in early spring further reduce
the SWE measured at the end of the season (e.g., Pohl et al., 2006;
Mott et al., 2011; DeBeer and Pomeroy, 2017) and thus could
partially explain the increase in the ratios between the cumulative
estimates of all the considered precipitation products and the ground

FIGURE 8 | Scatterplots of the in-situ SWE measurements and cumulative precipitation and the total SWEs estimated by the different products and models for all
the glaciers. The colored dots are related to the Findel glacier estimates and the different colors indicate different winter seasons (B): Adjusted CombiPrecip (C): Adjusted
COSMO-1 (E): Step-1 (F): Step-2 cross validation. The correlations (CORR) and mean bias errors (MBE) with all in-situmeasurements are reported on the graphs. The
boxplots shown in (A) represent the distribution of all in-situmeasurements (of the eight glaciers) and the distribution of the in-situmeasurements for individual years
of the Findel glacier (D) shows the distribution of CombiPrecip and COSMO-1 estimates and (G) shows the distribution of Step-1 and Step-2MLRs estimates.
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measurements from 2017/2018 to 2019/2020 (cf. Figure 7).
Moreover, the ratio that is constantly around 1 in the same
figure confirms the general validity of Step-1 MLR given by

Eq. 1 for all eight glaciers considered in this study, although
based only on CRS observations from the Plaine Morte glacier.
Step-2 MLR shows very similar ratios.

FIGURE 9 | Time series of the Step-1 and Step-2 estimates, as obtained from theMLRmodels with SWE observations from the CRS, manual SWEmeasurements,
CombiPrecip and COSMO-1 precipitation estimates (A): Plaine Morte 16/17 (B): Plaine Morte 17/18 (C): Plaine Morte 18/19 (D): Plaine Morte 19/20 (E): Findel
18/19 (F): Findel 19/20.
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5.4 Influence of the Local Topography on
the SWE Distribution
Previous studies have demonstrated that high-resolution
topographical parameters are necessary to represent the small-
scale snow distribution. In fact, Molotch and Bales (2005)
analyzed the spatial distribution of SWE within grid elements
of various resolutions (16, 4, and 1 km2) surrounding some snow
telemetry (SNOTEL) sites in the Rio Grande headwaters in the
United States. In some cases, SNOTEL SWE values were 200%
greater than the mean SWE grid value. To analyze the
relationships between topographical parameters and snow
accumulation on specific sites, several studies used statistical
models such as regression trees and MLR (e.g., Elder et al.,
1998; Balk and Elder, 2000; Erxleben et al., 2002; Winstral
et al., 2002; Anderton et al., 2004; Jost et al., 2007; Litaor
et al., 2008; Grünewald et al., 2013).

In our study, we compare the variability of point-scale in-situ
SWE measurements with the variability of the gridded
precipitation products CombiPrecip and COSMO-1, and with
the variability of the two-step MLR model, which only uses
topographical parameters in order to increase its applicability
to independent sites. The boxplots shown in Figures 8A,D,G
indicate that CombiPrecip and COSMO-1 precipitation estimates
do not represent the larger spatial variability of the in-situ SWE
measurements over the glacier area of Findel glacier. The
coefficients of variation reported in Table 4 indicate that the
reduced spatial variability of the cumulative precipitation of
CombiPrecip and COSMO-1, compared with the variability of
the in-situ SWEmeasurements, is also observed for other glaciers.
The variability of the in-situ SWE measurements at a higher
spatial resolution than 1 × 1 km2 can partially be explained by
Step-2 MLR, as a result of including the topographical
parameters. In fact, the correlation scores in Table 4 and
Figure 8 indicate that Step-2 MLR results in higher spatial
correlations with in-situ SWEmeasurements. Our results are in
line with observed snow accumulation processes in mountain
topography, where precipitation patterns at the mountain-
ridge scale are mainly dominated by terrain and wind-driven
processes acting at a small scale (Gerber et al., 2018; Mott et al.,
2018). Scipión et al. (2013) compared the variability of

continuous small-scale precipitation observations of a
polarimetric X-band radar with local measurements of snow
accumulation, collected by means of airborne laser-scanning.
They also concluded that the variability of snow accumulation,
at smaller scales than a few kilometers, is affected by snow
redistribution processes, and that topographically induced
wind patterns have a great influence on snow accumulation.
The importance of the inclusion of the topographical
parameters in Step-2 MLR is further highlighted in
Figure 5, which shows that when such parameters are not
involved (Step-1 MLR), the model underestimates the ground
measurements for negative TPI225 values (concave areas). This
is a result of increased snow accumulating in concave areas,
which has been shown in previous studies (e.g., Revuelto et al.,
2014; Schöber et al., 2014). Our Step-2 MLR uses TPI
parameters that are also representative of larger spatial
scales (derived from square moving windows of 525 × 525,
1,025 × 1,025, and 2,025 × 2,025 m sizes). However, their
inclusion in Step-2 MLR may also be due to the relationship
between TPI and COSMO-1 wind field errors. In fact, in this
regard, Winstral et al. (2017) found that COSMO-2 and
COSMO-7 (2 and 7 km of horizontal resolution)
overestimated the measured wind speed in valleys and
overestimated it over upper slopes and ridges.

5.5 Non-glacierized Areas
Our Step-2 model has been shown to provide reliable
temporal and spatial SWE estimates over Swiss glaciers,
and it is thus supposed it will provide comparable
performance for regions with similar topographical
characteristics. However, the application of Step-2 MLR to
lower elevations and non-glacierized mountain areas, remains
a challenging task. The morphology of the terrain around the
non-glacierized sites is in general more complex (e.g., narrow
valleys, close to ridges) than at the glacier sites (training data),
which in turn leads to extrapolation problems of linear
regressions. The majority of the non-glacierized sites in our
study are also located at lower elevation than the average
altitude of the eight glaciers, which leads to an earlier onset of
snow melt and/or midwinter ablation events due to higher air
temperatures. Moreover, the observed positive correlation
between wind and snow amounts over glaciers is not
transferable to each and every location in the Swiss Alps,
because some more exposed areas may lose snow as a result of
wind drift processes. Furthermore, precipitation-only
products perform better in non-glacierized areas than in
the glacier areas analyzed in this study. The overall higher
values of COSMO-1 and CombiPrecip than of the field
measurements (cf. Figure 10 and Figure 11) may suggest
that our MLR models generally lead to too high values, since
the precipitation estimates are scaled (and increased) by the
coefficients of the MLRs. The reduced ratio between ground
observations and precipitation may be explained by the SWE
decrease caused by sublimation, melt and sometimes rain
events, which increase the cumulative precipitation, but not
the SWE. This is probably also the case for low elevated sites
(e.g., Supplementary Figure S8A (17/18), Supplementary

TABLE 3 | CombiPrecip, COSMO-1 precipitation, Step-1 MLR and Step-2 MLR
mean bias errors [mm] with respect to CRS observations and manual
measurements performed during the winter seasons on the Plaine Morte and
Findel glaciers.

PLM FIN

16/17 17/18 18/19 19/20 18/19 19/20

PCPC, CRS −236 −875 −566 −528 −473 −341
PCOSMO1, CRS −153 −793 −442 −434 −183 −93
Step-1 MLR, CRS 177 −257 −9 172 100 287
Step-2 MLR, CRS 122 −200 −51 124 206 320

PCPC, manual −312 −766 −898 −479 −940 −716
PCOSMO1, manual −228 −689 −700 −393 −542 −298
Step-1 MLR, manual 129 −199 −142 137 −132 367
Step-2 MLR, manual 70 −144 −153 91 −25 334
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Figures S9B,S9D (19/20) and Supplementary Figure S12C).
However, rain or meltwater would refreeze in a sufficiently
deep snowpack, without any additional runoff, thus
increasing the SWE. The high values observed for
Weissfluhjoch (Figure 11E) may be caused by the fact that
this station is located within a distance of less than 1 km from
the major ridge, where the COSMO-1 wind is strong and the
model therefore produces too much snow.

A great advantage of Step-2 MLR, compared to precipitation-
only products, is thus its ability to model negative variations given
by the negative correlation with certain topographical parameters
and the negative constant included in Step-1 MLR. However, the
negative constant, combined with weak winds at low stations, can
also lead to frequent underestimations, as can clearly be seen for
the Step-1 estimates in Figures 11A,D. In fact, Eq. 1 implies that
if no precipitation occurs and the hourly wind speed is lower than
4.17 ms, Step-1 MLR would predict a loss of SWE. Discrepancies

between Step-1 and Step-2MLRs are related to the influence of the
local topography, but also to the greater weight of the COSMO-1
estimates in Step-2 MLR (cf. Eq. 9) and to the consequent lower
weight given to the wind speed.

In general, we to conclude that even though the majority of
non-glacierized sites are located at lower elevations, Step-2 MLR
still produces good estimates with a performance that is
comparable with that of COSMO-1 and CombiPrecip.
However, the MLR models are not able to predict marked
SWE losses, because they are calibrated with snow
measurements over glaciers, where the snow melt is weaker
than on low elevated sites.

5.6 Overall Analyses of the Model Approach
5.6.1 Step-1 Model
The choice of using Plaine Morte instead of Findel as the
reference glacier and thus as the model training site was based

TABLE 4 | CombiPrecip, COSMO-1 precipitation, Step-1 model (MLR1) and Step-2 model (MLR2) correlations with respect to end-of-season in-situmeasurements, for all
the glaciers and all the winter seasons.

Correlation [−] Coefficient of variation [%] n

PCPC PCOSMO1 MLR1 MLR2 PCPC PCOSMO1 MLR1 MLR2 Obs Obs

RHO 16/17 −0.67 0.66 0.71 0.78 6.5 7.2 30.7 23.1 36.3 303
17/18 −0.71 0.75 0.68 0.79 8.3 9.8 32.1 23.4 39.1 200
18/19 −0.50 0.48 0.42 0.50 11.0 5.6 22.7 15.5 37.8 283
19/20 −0.70 0.68 0.64 0.71 6.7 8.8 35.1 24.9 49.3 273

FIN 16/17 −0.28 0.51 0.71 0.74 11.0 8.6 46.8 43.9 38.6 361
17/18 −0.43 0.55 0.67 0.74 9.2 8.8 39.2 26.2 29.8 515
18/19 −0.26 0.64 0.66 0.73 7.2 9.1 34.7 25.8 29.9 306
19/20 −0.04 0.73 0.75 0.79 8.4 11.2 40.0 35.7 44.0 221

PLM 16/17 0.17 0.06 −0.13 0.38 2.4 1.8 5.4 7.5 10.5 130
17/18 0.49 −0.46 0.37 −0.20 2.3 3.1 3.7 2.5 5.7 72
18/19 0.06 0.02 −0.01 −0.18 0.9 2.9 5.0 5.0 8.5 90
19/20 - - - - - - - - - 0

GRI 16/17 −0.79 −0.61 0.60 0.42 5.9 3.2 13.6 14.2 18.0 18
17/18 −0.91 −0.80 0.73 0.58 4.5 3.5 12.7 8.4 17.5 18
18/19 −0.66 −0.60 0.61 0.63 3.5 4.8 10.2 9.7 20.9 115
19/20 −0.20 −0.41 0.63 0.59 2.7 2.8 14.4 11.0 28.6 102

SIL 16/17 −0.45 0.42 0.43 0.61 10.3 1.6 13.9 17.2 12.8 208
17/18 −0.55 0.56 0.51 0.60 8.6 1.1 10.6 12.8 14.6 167
18/19 −0.18 0.23 0.16 0.11 8.6 1.5 8.7 11.8 12.1 134
19/20 −0.37 0.42 0.40 0.62 7.7 1.9 8.3 11.8 15.1 172

TSA 16/17 −0.04 0.00 0.22 0.39 7.5 1.1 6.6 7.1 9.0 83
17/18 0.26 0.19 0.28 0.38 8.3 1.7 6.6 4.5 16.3 395
18/19 0.15 −0.26 0.20 −0.03 7.3 1.4 6.6 5.1 12.8 71
19/20 0.17 0.12 0.17 0.08 8.7 2.0 7.4 3.8 14.7 60

BAS 16/17 0.40 0.30 −0.46 0.34 6.7 3.2 17.5 6.2 14.4 107
17/18 0.06 −0.27 −0.26 0.27 5.3 3.2 21.6 3.8 8.4 250
18/19 −0.11 −0.15 0.03 0.21 6.0 2.7 14.2 3.5 6.3 32
19/20 −0.18 −0.42 0.22 0.07 20.0 3.2 16.3 5.0 12.4 122

MUR 16/17 - - - 0.67 - - - 43.9 48.0 121
17/18 - - - 0.63 - - - 21.0 28.5 84
18/19 - - - 0.57 - - - 18.0 34.9 65
19/20 - - - 0.73 - - - 17.1 28.5 98

The correlation for the 2019/20 winter season for the Plaine Morte glacier was not derived as no end-of-season measurement was performed. The coefficient of variation is defined as the
ratio of the standard deviation to the mean. The number of in-situ measurements performed over the glacier area is indicated in the “n obs” column.
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on the longer CRS time series, the very good radar visibility due to
a weather radar being located directly on the Pointe de la Plaine
Morte (Gugerli et al., 2020) and the topographic characteristic of
the glacier, with nearly no elevation gradients (2,470 m.a.s.l. to
2,828 m.a.s.l.). Thus, we assumed that the amount of SWE is
mostly due to direct snowfall and only marginally influenced by
other snow accumulation processes, such as snow drift or
avalanches. More complex model setups were tested for Step-1
MLR. For instance, we considered COSMO-1 temperatures (2
and 10 m from the ground), but their inclusion in the statistical
model led to large errors when the model was applied to the test
site (Findel). Our resulting Step-1 MLR model (cf. Eq. 1)
indicates that COSMO-1 and CombiPrecip estimates are
combined, with more weight being assigned to COSMO-1
precipitation estimates. The fact that the standard error and
the confidence interval in Table 2 are quite large for both
COSMO-1 precipitation and CombiPrecip indicates that the
model is challenged to find an optimal balance between these
two precipitation estimates, as they are closely correlated with
each other. However, including both variables in the MLR led to
better results. The positive coefficient of the wind speed
component suggests that stronger winds over the Plaine
Morte glacier result in higher precipitation on the glacier
being transferred from the surrounding area and/or snow
being moved to the CRS location by snow drift processes. In
addition, the model involves a negative constant term, which
regroups all the processes that cannot be modeled with our
explaining variables (such as SWE losses, but also the average
noise within the CRS observations (cf. Gugerli et al., 2019)),
thereby resulting in an average negative variation of SWE.

5.6.2 Step-2 Model
Problems of extrapolating Step-2 MLR to regions characterized by a
topography that is very different from the topography of the glaciers,

such as the non-glacierized sites considered in this study, may
arise. In particular, because of the overall limited heterogeneity
of topography of glaciers, only a few measurements are available
for glacier areas with a lower TPI225 than −15 and higher than 15
m (see Figure 5), consequently, the extrapolation of the
observed linear relation to larger absolute TPI225 values could
lead to large errors. In order to partially solve such extrapolation
issues, it would be possible to flatten the regression from defined
thresholds, depending on the training data. Moreover, the
exposition of terrain to the Sun allows the precipitation
estimates to be corrected as snow melt processes can be
taken into consideration. However, snow melt processes are
probably more important at the lower elevated non-glacierized
sites (test data) than at the glacier sites (training and validation
data). Furthermore, our model cannot account for strong snow
melt processes occurring during rain-on-snow events, caused by
the effects of turbulent heat fluxes (e.g., Schlögl et al., 2018).
Other studies have included such indicators as elevation or
wind-sheltering parameters in their statistical models (Winstral
et al., 2002; Molotch and Bales, 2005; Grünewald et al., 2013). In
our case, we could not use such parameters because they would
have negatively affected the possibility of generalizing the
MLR model.

It would of course be possible to build more complex and
specific models, adapted to each different glacier, similarly to
what Grünewald et al. (2013) did. However, our goal was to
extrapolate the new SWE estimates to regions with no ground
observations, and we therefore built a single model with good
generalization scores.

5.6.3 Limits of the Overall Approach
More advanced machine learning models that allow modeling
non-linear relationships, could lead to an even better
performance of the model. We made a tentative experiment to
create a more accurate universal model by building a model tree,
which combined decision trees with MLRs. Such a model tree
minimizes the mean squared error with respect to the
measurements, and thus builds a tree composed of a different
MLR at the end of each branch.

In our case, only topographical parameters were considered as
decision variables, while dynamical variables such as precipitation,
wind and temperature, were combined with different MLRs. Such
advanced models can also be trained and applied at different
timescales, with the advantage of being able to model non-linear
relationships by dividing the data according to their characteristics
(topographical), and to create a different MLR for each data subset.
However, we were not able to build a universal model that provided
very good performance on both glaciers and lower elevated non-
glacierized sites. The main reason for this is related to the different
topographies and altitudes of the two datasets: on the one hand,
glaciers are located at higher altitudes and the model tree was not
able to create anMLR that could be adapted to lower altitudes and to
the more complex topography of the non-glacierized sites, and on
the other hand, the absence of several stations at very high altitudes
with similar topographical characteristics to glaciers, did not allow us
to create a model tree based on the twice-monthly manual
measurements, and then apply it over glacier areas with

FIGURE 10 | The twice-monthly SWE measurements on 44 non-
glacierized sites and four winter seasons compared with (A): CombiPrecip (B):
COSMO-1 (C): Step-1 MLR (D): Step-2 MLR.
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FIGURE 11 | The twice-monthly SWEmeasurements of six stations compared with the cumulative precipitation and MLR estimates for the four winter seasons (A):
Schreckfeld (elevation: 1,950 m) (B): Braunwald (1,310 m) (C): Egginer (2,620 m) (D): Davos (1,560 m) (E): Weissfluhjoch (2,540 m) (F): Corvatsch (2,697 m).
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satisfactory results. This was further complicated by the different
temporal scales between the measurements performed at the
glacierized sites (seasonal) and non-glacierized sites (twice a
month). In order to create a universal model, a more
topographically diversified dataset with proportionate
measurements, would thus be needed.

6 CONCLUSION

Our statistically based model, built with multiple data sources,
has allowed spatial and temporal highly resolved SWE estimates
to be estimated in remote high-mountain regions, with a good
agreement with manual in-situ measurements. The use of such
statistical models as MLRs has proven to be particularly
appropriate to combine different types of data from distinct
sources and with various spatio-temporal resolutions. However,
end-of-season scattered SWE measurements, used to model the
overall processes, and the availability of evenly distributed
measurements, carried out at shorter time distances, would
make it possible to conduct more detailed analyses. In fact,
the use of cumulative values for each variable does not allow
complex processes (e.g., wind driven), acting at small spatial and
temporal scales, as described by Mott et al. (2018), to be clearly
identified and modeled.

This study confirms the importance of high-resolution
topographical information to explain preferential deposition
processes at small spatial scales. In our approach, the use of
high-resolution topography was necessary to relate the
precipitation over a squared km with the point SWE
measurements on the ground. Moreover, TPI was an
important parameter to overcome the differences between
precipitation estimates and ground SWE measurements over
glaciers, and larger accumulations were identified in concavities
compared to terrain convexities. Furthermore, our solar
radiation parameter allowed us to take into account that a
snowpack is affected less by melting and sublimation
processes in more shaded areas. Finally, larger precipitation
amounts on the glacier surface appear to be related to stronger
winds. This could be due to downward winds, which cause an
increased deposition in the lee of mountain ridges, where winds
are usually stronger than at lower elevations of glaciers.
However, this relationship was not always confirmed for
non-glacierized sites located in areas characterized by a
different terrain morphology (e.g., Comola et al., 2019).

The good performance of the model shown in this study, and
its proven application to glaciers without any input data and
even for non-glacierized sites, makes our approach a promising
tool for advances in glaciology, hydrology, and generally in the
evaluation of precipitation products. The continuous, highly
resolved evolution of snow accumulation over glaciers is
currently rarely studied, as observations are usually only
available at a seasonal resolution (e.g., Dadic et al., 2010;
Helfricht et al., 2014; Gugerli et al., 2019). Our approach
enables the understanding of the temporal evolution of snow
accumulation and its impacts on glacier dynamics to be
improved.

Currently, the model can be applied to the entire Swiss
Alps with a spatial resolution of 25 × 25 m2 and improved
estimates on glacier areas. However, its application to lower
elevated non-glacierized sites remains limited by the more
complex topography and by strong melt events reducing the
SWE during the winter season. In order to extend it to
regions outside the Swiss boundaries, high-resolution
topography and spatio-temporally resolved precipitation
and wind speed estimates are needed from any target
regions.

In general, our approach can be further developed and
could be integrated with other precipitation products. For
instance, the adjustment of global precipitation data could be
used to improve high-altitude precipitation estimates over
regions with very scarce data availability, like Central Asia
and the Himalayas. Results generated by our model could also
directly be used as a reference for the post-processing of
global circulation models, thus allowing future scenarios to
be re-evaluated and consistently improving our knowledge
about precipitations and their evolution at very high
altitudes.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. The analyzed
CombiPrecip and COSMO-1 data are available from MeteoSwiss,
while the CRS observations will soon be available in a repository. The
glaciological end-of-season surveys of GLAMOS are freely available
at https://www.glamos.ch/en/. The twice-monthly SWE
measurements of 11 SLF stations (non-glacierized sites) can be
downloaded free of charge at https://www.envidat.ch/dataset/gcos-
swe-data.

AUTHOR CONTRIBUTIONS

MGu wrote the article, conducted the data analysis and modeling
and defined the details of the concept of the study; RG and NS
established the first guidelines of the study and helped with
continuous discussions concerning the results; MGa
contributed to the analysis of radar-composite estimates; CM
prepared the non-glacierized sites data and contributed to the
evaluation of the related results; all the authors contributed to
improving the article.

FUNDING

The study is part of the High-SPA 200021_178963 project, which
is funded by the Swiss National Science Foundation (SNSF).

ACKNOWLEDGMENTS

Special thanks are due to MeteoSwiss, GLAMOS and SLF for
providing their data, in particular to Daniel Wolfensberger

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 66464819

Guidicelli et al. Statistical SWE Modeling on Glaciers

https://www.glamos.ch/en/
https://www.envidat.ch/dataset/gcos-swe-data
https://www.envidat.ch/dataset/gcos-swe-data
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


(MeteoSwiss) for supporting in preparing the CombiPrecip data,
Daniel Leuenberger (MeteoSwiss) for supporting in preparing the
COSMO-1 data and Matthias Huss (GLAMOS) for providing the
end-of-season in-situ measurements data of the eight glaciers
considered in this study.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2021.664648/
full#supplementary-material

REFERENCES

Anderton, S. P., White, S. M., and Alvera, B. (2004). Evaluation of Spatial
Variability in Snow Water Equivalent for a High Mountain Catchment.
Hydrological Process. 18, 435–453. doi:10.1002/hyp.1319

Balk, B., and Elder, K. (2000). Combining Binary Decision Tree and Geostatistical
Methods to Estimate Snow Distribution in a Mountain Watershed. Water
Resour. Res. 36, 13–26. doi:10.1002/hyp.1319

Bernhardt, M., and Schulz, K. (2010). SnowSlide: A Simple Routine for Calculating
Gravitational Snow Transport. Geophys. Res. Lett. 37, L11502. doi:10.1029/
2010GL043086

Cline, D., Elder, K., and Bales, R. (1998). Scale Effects in a Distributed SnowWater
Equivalence and Snowmelt Model for Mountain Basins. Hydrological Process.
12, 1527–1536. doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1527::AID-
HYP678>3.0.CO;2-E

Colle, B. A. (2004). Sensitivity of Orographic Precipitation to Changing Ambient
Conditions and Terrain Geometries: An Idealized Modeling Perspective.
J. Atmos. Sci. 61, 588–606. doi:10.1175/1520-0469(2004)061<0588:
SOOPTC>2.0.CO;2

Comola, F., Giometto, M. G., Salesky, S. T., Parlange, M. B., and Lehning, M.
(2019). Preferential Deposition of Snow and Dust Over Hills: Governing
Processes and Relevant Scales. J. Geophys. Res. Atmospheres 124, 7951–7974.
doi:10.1029/2018JD029614

Dadic, R., Mott, R., Lehning, M., and Burlando, P. (2010). Wind Influence on Snow
Depth Distribution and Accumulation over Glaciers. J. Geophys. Res. Earth
Surf. 115, 587–601. doi:10.1029/2009JF001261

DeBeer, C. M., and Pomeroy, J. W. (2017). Influence of Snowpack and Melt Energy
Heterogeneity on Snow Cover Depletion and Snowmelt Runoff Simulation in a
Cold Mountain Environment. J. Hydrol. 553, 199–213. doi:10.1016/j.jhydrol.
2017.07.051

Egli, L., Jonas, T., and Meister, R. (2009). Comparison of Different Automatic
Methods for Estimating Snow Water Equivalent. Cold Regions Sci. Tech. 57,
107–115. doi:10.1016/j.coldregions.2009.02.008

Elder, K., Rosenthal, W., and Davis, R. E. (1998). Estimating the Spatial
Distribution of Snow Water Equivalence in a Montane Watershed.
Hydrological Process. 12, 1793–1808. doi:10.1002/(SICI)1099-1085(199808/
09)12:10/11<1793::AID-HYP695>3.0.CO;2-K

Erxleben, J., Elder, K., and Davis, R. (2002). Comparison of Spatial Interpolation
Methods for Estimating Snow Distribution in the Colorado Rocky Mountains.
Hydrological Process. 16, 3627–3649. doi:10.1002/hyp.1239

Fortin, V., Therrien, C., and Anctil, F. (2008). Correcting Wind–Induced Bias in
Solid Precipitation Measurements in Case of Limited and Uncertain Data.
Hydrological Process. 22, 3393–3402. doi:10.1002/hyp.6959

Fujita, K. (2008). Effect of Precipitation Seasonality on Climatic Sensitivity of
Glacier Mass Balance. Earth Planet. Sci. Lett. 276, 14–19. doi:10.1016/j.epsl.
2008.08.028

Gabella, M. (2004). Improving Operational Measurement of Precipitation
Using Radar in Mountainous Terrain-Part II: Verification and
Applications. IEEE Geosci. Remote Sensing Lett. 1, 84–89. doi:10.1109/
LGRS.2003.823294

Gabella, M., Joss, J., and Perona, G. (2000). Optimizing Quantitative
Precipitation Estimates Using a Noncoherent and a Coherent Radar
Operating on the Same Area. J. Geophys. Res. Atmospheres 105,
2237–2245. doi:10.1029/1999JD900420

Gabella, M., Speirs, P., Hamann, U., Germann, U., and Berne, A. (2017).
Measurement of Precipitation in the Alps Using Dual-Polarization C-Band
Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges.
Remote Sensing 9, 1147. doi:10.3390/rs9111147

Gauer, P. (2001). Numerical Modeling of Blowing and Drifting Snow in Alpine
Terrain. J. Glaciology 47, 97–100. doi:10.3189/172756501781832476

Gerber, F., Besic, N., Sharma, V., Mott, R., Daniels, M., Gabella, M., et al. (2018).
Spatial Variability in Snow Precipitation and Accumulation in COSMO–WRF
Simulations and Radar Estimations over Complex Terrain. Cryosphere 12,
3137–3160. doi:10.5194/tc-12-3137-2018

Gerber, F., Mott, R., and Lehning, M. (2019). The Importance of Near-Surface
Winter Precipitation Processes in Complex Alpine Terrain.
J. Hydrometeorology 20, 77–96. doi:10.1175/JHM-D-18-0055.1

Germann, U., Galli, G., Boscacci, M., and Bolliger, M. (2006). Radar Precipitation
Measurement in a Mountainous Region. Q. J. od R. Meteorol. Soc. 132,
1669–1692. doi:10.1256/qj.05.190

Germann, U., and Joss, J. (2004). “Operational Measurement of Precipitation in
Mountainous Terrain,” in Weather Radar. Physics of Earth and Space
Environments. Editor P. Meischner (Berlin: Springer), 52–77. doi:10.1007/
978-3-662-05202-0_2

GLAMOS (2018). The Swiss Glaciers 2015/16 and 2016/17: Glaciological Report
No. 137/138. “Yearbooks Of the Cryospheric Commission Of the Swiss
Academy Of Sciences (SCNAT),” published since 1964 by VAW/ETH
Zurich. doi:10.18752/glrep_137-13

Goodison, B. E., Louie, P. Y. T., and Yang, D. (1998). WMO Solid Precipitation
Measurement Intercomparison Final Report. World Meteorol. Organ. WMO/
Tech. 872, 212, Available at: https://www.wmo.int/pages/prog/www/IMOP/
publications/IOM-67-solid-precip/WMOtd872.pdfr

Gruber, S. (2007). A Mass–Conserving Fast Algorithm to Parameterize
Gravitational Transport and Deposition Using Digital Elevation Models.
Water Resour. Res. 43, W06412. doi:10.1029/2006wr004868

Grünewald, T., Bühler, Y., and Lehning, M. (2014). Elevation Dependency of
Mountain Snow Depth. The Cryosphere 8, 2381–2394. doi:10.5194/tc-8-2381-
2014

Grünewald, T., Stötter, J., Pomeroy, J. W., Dadic, R., Baños, I. M., Marturià, J.,
et al. (2013). Statistical Modelling of the Snow Depth Distribution in Open
Alpine Terrain. Hydrol. Earth Syst. Sci. 17, 3005–3021. doi:10.5194/hess-17-
3005-2013

Grüter, E., Abbt, M., Häberli, C., Häller, E., Küng, U., Musa, M., et al. (2003).
Quality Control Tools for Meteorological Data in the MeteoSwiss Data
Warehouse System. Internal Report. MeteoSwiss.

Gugerli, R., Gabella, M., Huss, M., and Salzmann, N. (2020). Can Weather Radars
Be Used to Estimate Snow Accumulation on Alpine Glaciers? - an Evaluation
Based on Glaciological Surveys. J. Hydrometeorology 21, 2943–2962. doi:10.
1175/JHM-D-20-0112.1

Gugerli, R., Guidicelli, M., Gabella, M., Huss, M., and Salzmann, N. (2021). Multi-
sensor Analysis of Monthly Gridded Snow Precipitation on Alpine Glaciers.
Adv. Sci. Res. 18, 7–20. doi:10.5194/asr-18-7-2021

Gugerli, R., Salzmann, N., Huss, M., and Desilets, D. (2019). Continuous and
Autonomous SnowWater EquivalentMeasurements by a Cosmic Ray Sensor on an
Alpine Glacier. The Cryosphere 13, 3413–3434. doi:10.5194/tc-13-3413-2019

Helfricht, K., Kuhn, M., Keuschnig, M., and Heilig, A. (2014). Lidar Snow Cover
Studies on Glaciers in the Ötztal Alps (Austria): Comparison with Snow Depths
Calculated from GPR Measurements. The Cryosphere 8, 41–57. doi:10.5194/tc-
8-41-2014

Hock, R., Hutchings, J. K., and Lehning, M. (2017). Grand Challenges in
Cryospheric Sciences: Toward Better Predictability of Glaciers, Snow and
Sea Ice. Front. Earth Sci. 5, 64. doi:10.3389/feart.2017.00064

Howat, I. M., de la Peña, S., Desilets, D., and Womack, G. (2018). Autonomous Ice
Sheet Surface Mass Balance Measurements from Cosmic Rays. The Cryosphere
12, 2099–2108. doi:10.5194/tc-12-2099-2018

Huss, M., Dhulst, L., and Bauder, A. (2015). New Long-Term Mass-Balance Series
for the Swiss Alps. J. Glaciology 61, 551–562. doi:10.3189/2015JoG15J015

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 66464820

Guidicelli et al. Statistical SWE Modeling on Glaciers

https://www.frontiersin.org/articles/10.3389/feart.2021.664648/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2021.664648/full#supplementary-material
https://doi.org/10.1002/hyp.1319
https://doi.org/10.1002/hyp.1319
https://doi.org/10.1029/2010GL043086
https://doi.org/10.1029/2010GL043086
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1527::AID-HYP678>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1527::AID-HYP678>3.0.CO;2-E
https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2
https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2
https://doi.org/10.1029/2018JD029614
https://doi.org/10.1029/2009JF001261
https://doi.org/10.1016/j.jhydrol.2017.07.051
https://doi.org/10.1016/j.jhydrol.2017.07.051
https://doi.org/10.1016/j.coldregions.2009.02.008
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K
https://doi.org/10.1002/hyp.1239
https://doi.org/10.1002/hyp.6959
https://doi.org/10.1016/j.epsl.2008.08.028
https://doi.org/10.1016/j.epsl.2008.08.028
https://doi.org/10.1109/LGRS.2003.823294
https://doi.org/10.1109/LGRS.2003.823294
https://doi.org/10.1029/1999JD900420
https://doi.org/10.3390/rs9111147
https://doi.org/10.3189/172756501781832476
https://doi.org/10.5194/tc-12-3137-2018
https://doi.org/10.1175/JHM-D-18-0055.1
https://doi.org/10.1256/qj.05.190
https://doi.org/10.1007/978-3-662-05202-0_2
https://doi.org/10.1007/978-3-662-05202-0_2
https://doi.org/10.18752/glrep_137-13
https://doi.org/10.18752/glrep_137-13
https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf
https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf
https://doi.org/10.1029/2006wr004868
https://doi.org/10.5194/tc-8-2381-2014
https://doi.org/10.5194/tc-8-2381-2014
https://doi.org/10.5194/hess-17-3005-2013
https://doi.org/10.5194/hess-17-3005-2013
https://doi.org/10.1175/JHM-D-20-0112.1
https://doi.org/10.1175/JHM-D-20-0112.1
https://doi.org/10.5194/asr-18-7-2021
https://doi.org/10.5194/tc-13-3413-2019
https://doi.org/10.5194/tc-8-41-2014
https://doi.org/10.5194/tc-8-41-2014
https://doi.org/10.3389/feart.2017.00064
https://doi.org/10.5194/tc-12-2099-2018
https://doi.org/10.3189/2015JoG15J015
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Ikeda, K., Rasmussena, R., Liu, C., Gochis, D., Yates, D., Chen, F., et al. (2010).
Simulation of Seasonal Snowfall over Colorado. Atmos. Res. 97, 462–477.
doi:10.1016/j.atmosres.2010.04.010

Jonas, T., Marty, C., and Magnusson, J. (2009). Estimating the Snow Water
Equivalent from Snow Depth Measurements in the Swiss Alps. J. Hydrol.
378, 161–167. doi:10.1016/j.jhydrol.2009.09.021

Joss, J., andWaldvogel, A. (1990). in “Precipitation Measurements and Hydrology,”
in Radar in Meteorology. Editor D. Atlas (Boston, MA: American
Meteorological Society), 577–606. doi:10.1007/978-1-935704-15-7–39

Jost, G., Weiler, M., Gluns, D. R., and Alila, Y. (2007). The Influence of Forest and
Topography on Snow Accumulation and Melt at the Watershed-Scale.
J. Hydrol. 347, 101–115. doi:10.1016/j.jhydrol.2007.09.006

Kerr, T., Clark, M., Hendrikx, J., and Anderson, B. (2013). Snow Distribution in a
Steep Mid-latitude Alpine Catchment. Adv. Water Resour. 55, 17–24. doi:10.
1016/j.advwatres.2012.12.010
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