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Several magmatic Cu–Ni sulfide deposits have recently been explored along the deep
Middle Kunlun fault related to the extension of the East Kunlun orogenic belt in Qinghai
Province, NW China. The Xiwanggou mafic–ultramafic rocks associated with Cu–Ni
sulfide mineralization are first to be dated as late Permian compared to most of the
deposits formed during late Silurian–early Devonian in this region. The Xiwanggou
complexes located in the junction area between the East Kunlun and West Qinling
belts, are composed of gabbros, olivine-gabbros, pyroxenites, olivine-pyroxenites, and
peridotites. The Cu–Ni mineralization are mainly hosted in the olivine-pyroxenites and
pyroxenites, whereas the sulfide-poor mineralization distributed in gabbros and olivine-
gabbros. Zircon LA-ICP-MS U–Pb dating of the gabbro and olivine-pyroxenite revealed
their crystallized ages of 250.8 ± 0.8 Ma and 257.3 ± 0.7 Ma, respectively. The
trace element characteristics of the Xiwanggou fertile mafic-ultramafic rocks shows
the enrichments in Sr, Rb, Th, Ba and light rare earth elements, and depletions in
Nb and Ta, which are associated with the slab derived fluid input and dehydration
melting of amphiboles. Meanwhile, Sr–Nd and Hf isotopic compositions of the gabbro
[εNd(t) = 0.66–1.18; εHf(t) = 5.2–12] and olivine-pyroxenite [εNd(t) = −1.09 – −0.43;
εHf(t) = 5.4–17.7] show that the magma was mainly derived from the metasomatized
portions of subcontinental lithospheric mantle (SCLM) source in the mantle wedge.
The magma primarily experienced dehydration melting processes of amphiboles
and subsequently underwent hydrated melting in the overlying mantle wedge and
relatively reduced background. The cool subduction process of the Anemaqen oceanic
lithosphere maybe trigger large melting in the mantle wedge resulting in a relative low-Ni
content in the melt. The transpressional windows formed by the right-lateral strike-slip
shearing action of the Wenquan and South Kunlun faults in the South Kunlun forearc
belt created a significant conduit for the magma ascending. The thermometer of Fe
and Ni exchange between coexisting olivine and sulfide melt indicates the magma
were yielded in a temperature range of ca. 1200–1300◦C and an oxygen fugacity
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range of ca. –10.57 to –8.98 (log unit), which suggested that the parental magma of
the Xiwanggou complex derived from a relatively reduced source favoring Ni relative to
Fe in the melt. The intermediate sulfide segregation from the melt resulted in a medium
tenor potential for the Xiwanggou complex.

Keywords: Xiwanggou, East Kunlun orogen, Cu-Ni sulfide deposit, late Permian, mafic–ultramafic rocks, zircon
U–Pb dating, Sr–Nd isotope, Fe–Ni exchange

INTRODUCTION

Several magmatic Cu–Ni sulfide deposits have recently been
explored along the deep Middle Kunlun fault paralleled to the
extension of the East Kunlun orogenic belt (EKOB), Qinghai
Province, NW China (Li et al., 2015; Song et al., 2016; Zhang
Z. W. et al., 2016; Li et al., 2018). The Xiariham deposit with
reserve of 1.16 Mt averaging grades of 0.65 wt% Ni, 0.14 wt% Cu,
and 0.013 wt% Co, and the Shitoukengde deposit with 0.15 Mt
averaging grades of 0.32% Ni were explored. And several new
middle – small scale deposits, comprising Langmuri, Gayahe,
Binggounan, and Xiwanggou mineralized locations have been
discovered (Figure 1A; Zhang et al., 2015; He et al., 2017;
Wang et al., 2020). The Xiwanggou mineralized mafic-ultramafic
complex is located in the east of the EKOB, the northern part of
the Qinghai-Tibet Plateau (Figure 1), which was first outlined by
a team from the Xi’an Center, China Geological Survey during
field mapping in 2015–2017. Several intrusions outcrop in the
Xiwanggou area but only the olivine pyroxenites have been found
to contain significant Ni–Cu sulfide mineralization.

Most of the world’s large magmatic sulfide deposits are
interpreted to have formed in continental rift settings (Maier and
Groves, 2011; Naldrett, 2013), where a mantle plume intersects
a continental rift, and provides a large volume of magma with
high metal content as a result of high degree partial melting
(Barnes and Lightfoot, 2005). Moreover, most of the super-large
magmatic sulfide deposits often occur in association with small
differentiated intrusions, and an open system of protracted-flow
magma conduits provides a significant space for ore reservoirs
in a extensional environment (Song et al., 2010; Maier and
Groves, 2011; Naldrett, 2013; Lightfoot and Evans-Lamswood,
2015; Barnes and Robertson, 2019). However, many magmatic
Ni–Cu sulfide deposits have recently been discovered in orogenic
settings or subduction-related magmatic arcs (Maier et al., 2008;
Sappin et al., 2011), and they have significantly contributed Ni
and Cu resources in China and the world. Examples of these
include the Early Permian Kalatongke (33 Mt at 0.8 wt% Ni
and 1.3 wt% Cu) (Song and Li, 2009; Li C. S. et al., 2012),
and Huangshan-Jing’erquan Ni–Cu belt (>50 Mt at an average
grade of 0.52 wt% Ni and 0.27 wt% Cu) in North Xinjiang (NW
China), and the Early Carboniferous Ni–Cu ore deposits (16 Mt
at 0.66 wt% Ni and 0.46% wt% Cu) hosted in the Aguablanca
intrusion in Spain (Piña et al., 2006). Therefore, a few significant
deposits are associated with the margins of large oceans or with
supra-subduction zone environments, possibly reflecting poor
preservation potential or, with the latter, limitations on plume
interaction with continental lithosphere (Begg et al., 2010).

It is generally accepted that an extension or thinning
environment including intracontinental rifting and post
collisional extension are optimal for the formation of
magmatic sulfide deposits in the EKOB magmatic Cu–Ni–
Co mineralization under the Proto- and Paleo-Tethys evolution
in the EKOB (Jiang et al., 2015; Zhang Z. W. et al., 2016; Zhang
et al., 2021). The mafic-ultramafic complexes show diverse
lithofacies with different formation ages, indicating the multiple
stages of long-lived Paleozoic mantle-derived magmatism (Song
et al., 2011; Wang et al., 2014; Peng et al., 2016), and most identify
the ore-forming period as Late Silurian to Early Devonian, such
as the Xiariham and Shitoukengde deposits (Wang et al., 2013;
Sun et al., 2014; Song et al., 2016). However, the association of
the Late Permian Xiwanggou mafic-ultramafic rocks with Cu–Ni
sulfide mineralization has significantly broken the previous
viewpoints and broadened the prospecting horizon.

The EKOB is generally considered to have been in an
oceanic lithosphere subduction environment during late Permian
(Zhang et al., 2012; Dong et al., 2018). At this point, we
compares contrasting geochemical trends exhibited between
fertile and barren late Permian basalts in the EKOB in terms
of major and trace elements, Sr–Nd isotopic ratios and zircon
Hf isotope to analyze the dynamic setting and ore-forming
potential of the Xiwanggou complex. In addition, it is significant
to know what the tectonic mechanism controls the conduit
formation for the Xiwanggou complexes in a compressional
subduction environment.

GEOLOGICAL SETTING

The EKOB is located in the western part of the central orogenic
belt (Figure 1A), which trends east-west and is approximately
1,500 km long and 50–200 km wide. The EKOB is generally
subdivided into four terranes from the north to the south:
the North Kunlun, South Kunlun, Muztagh-Anemaqen and
Hohxil-Bayanhar Terranes farthest south (Figure 1A; Yang
et al., 1986; Jiang, 1992; Luo et al., 1999; Yu et al., 2020),
which are bounded by the North Kunlun Fault (NKF), Middle
Kunlun Fault (MKF), South Kunlun Fault (SKF), and Muztagh-
Anemaqen Fault (MAF), respectively, from the north to the south
(Figure 1A). The orogen is bounded by the Altun Fault to the
west and Wenquan Fault to the east (Figure 1A). The NW-
trending Wenquan fault is the boundary between the EKOB and
the West Qinling orogenic belt (WQOB), and crosses the Elashan
Mountains (Figure 1A). The Elashan Mountain is located in
the easternmost segment of the EKOB, and in its eastern part,
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FIGURE 1 | (A) Sketch map showing the distribution of mafic–ultramafic complex and Cu–Ni sulfide mineralization in the East Kunlun Mountains, the northern part of
the Qinghai-Tibet Plateau (modified after Dong et al., 2018); LA-ICP MS zircon U–Pb ages from other studies are also shown in Dong et al. (2018) and Yu et al.
(2020). (B) Satellite map of the Xiwanggou area showing the fault syst. WQF, Wenquan fault; ELSF, Elashan fault; CWF, Chahanwusu fault; GLF, Gouli fault; MKLF,
Middle Kunlun fault; BLF, Boluoer fault; LKF, Longwakalu fault; SKLF, South Kunlun fault; AMF, Anemaqen Fault. (C) Simplified geological map of the Xiwanggou area
showing sample and trench localities. Modified after Kong et al. (2019a).

the metamorphic basement and Pre-Mesozoic sedimentary rocks
were uplifted due to the NE-dipping thrust fault systems and the
Wenquan dextral strike-slip fault (Jiang et al., 2008). Previous
studies suggested that the EKOB and WQOB were part of
a unified orogen before the Wenquan fault system developed
(Chen et al., 2015; Ren et al., 2016; Shao et al., 2017).

The tectonic evolution of the EKOB are closely associated
with the assembling and colliding history of variable terranes
in different era. The North Kunlun Terrane (NKT), as an
active continental margin, hosted a large amount of Precambrian
basement rock of Jinshuikou Group (Liu et al., 2005; He
et al., 2016), and late Ordovician-middle Silurian calc-alkaline
granitoids (Wu et al., 2012; Qi, 2015; Wang et al., 2016), which
are related to the subduction of back arc oceanic lithosphere
existed between the NKT and SKT at ca. 460 Ma causing the
late Ordovician-middle Silurian magmatism in the NKT and
thrusted basement rocks (Dong et al., 2018). The South Kunlun
Terrane (SKT), which developed as an inner-oceanic island arc,
consisted of the Wanbaogou Group basalts and large amounts
of multistage felsic magmatic rocks (Cai and Wei, 2007; Zhang
et al., 2010; Kong et al., 2014; Chen et al., 2016; Yu et al.,
2020). Xu et al. (2016) got a zircon SIMS dating age of 762 ± 2
Ma for the Wanbaogou basalts, and their geochemical features
are similar to those of oceanic island basalt. The Late Silurian
to Early Devonian granitoids display either peraluminous or
metaluminous features (Zhao et al., 2008; Shi et al., 2016), which

were possibly resulted from an transition from collisional to a
post-collisional environment between the NKT and SKT during
the Late Silurian-Middle Devonian (Long et al., 2006; Zhang D. X.
et al., 2016). The Muztagh-Anemaqen Terrane (MAT) developed
as a young island arc as a consequence of subduction of Proto-
Tethys Oceanic crust, which carried SSZ (supra-subduction
zone) type ophiolites (Wu et al., 2005; Li et al., 2017), together
with island arc tholeiite (IAT) and TTGs (trondhjemite-tonalite-
granodiorites) during the Early Paleozoic (Ren et al., 2012; Qi,
2015; Zhao et al., 2017). The collision between SKT and MAT
probably occurred after the middle Devonian, as evidenced from
the absence of the upper Devonian strata in the SKT (Ye et al.,
2004). A new subduction zone reconstructed along the south of
the MAT after the middle Permian, which resulted in extensive
development of calc-alkaline granitoids in the NKT, SKT, and
MAT (Zhang et al., 2006; Liu et al., 2015; Ma et al., 2015;
Dong et al., 2016). The final closure of the Anemaqen Ocean
might have occurred in the Late Triassic as indicated by dates
from the upper Triassic Babaoshan terrestrial molasse formation
(Wu et al., 2017).

The emplacement of mafic-ultramafic magma in the EKOB
can be separated into two stages (Yu et al., 2020): (1)
the first emplacement stage occurred primarily in the Late
Silurian–Early Devonian (ca. 393–427 Ma); (2) the second
stage occurred in the Middle-Late Permian. Previous studies
indicate that the first stage complexes were probably emplaced
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in a post-collisional extensional environment (Wang et al.,
2014), and their components are mainly gabbro, pyroxenite,
and peridotite facies rocks (Peng et al., 2016). In addition, the
first stage intrusions generally developed extensive Cu–Ni sulfide
mineralization that are mainly hosted in the pyroxenite and
peridotite outcrop in the Xiariham, Binggounan, Shitoukengde,
Akchucsai, and Langmuri areas (Sun et al., 2014; Li et al., 2015;
Song et al., 2016; He et al., 2017; Zhang et al., 2018). In the
second stage, the mafic-ultramafic complexes outcrop mainly
in the Jiadang, Bairiqili, and Xiwanggou areas (Xiong et al.,
2011a; Kong et al., 2018). In the first two areas, gabbro is the
dominant rock type, and no sulfide ore bodies have been found,
but the Xiwanggou mafic–ultramafic complex is first discovered
containing Cu–Ni sulfide mineralization including chalcopyrite,
pyrrhotite, and pentlandite, which predominantly are hosted in
the olivine gabbros and olivine pyroxenites.

PETROGRAPHY AND MINERALIZATION

The Xiwanggou mafic–ultramafic complex is mainly composed
of gabbro, olivine gabbro, and olivine pyroxenite facies rocks,
in which younger mafic gabbroic intrusions emplacing into
the older ultramafic bodies (Figures 1C, 2A), both of which
show strong differentiation. The complexes underwent extensive
alteration by serpentinization and amphibolization. The richest
ore bodies are hosted in the ultramafic rocks (Figures 2D–
G), while some lower grade ones are found in the mafic
rocks (Figures 2B,C). The olivine gabbro contains a few
disseminated sulfides (Figure 2C), and is mainly composed of
20–30% olivine, 30–40% clinopyroxene, and 20–30% labradorite,
in addition to a few hornblende and secondary chlorite
minerals (Figures 3a,b). The gabbro has an equigranular texture
that is characterized by euhedral pyroxenes and plagioclases
(Figure 2C), and is predominately composed of 20–30%
clinopyroxene, 50–60% plagioclase, and <10% hornblende
with accessory apatite and zircon (Figures 3c,d). Olivine
pyroxenite contains 40–50% olivine and 40% clinopyroxenes,
plus hornblende, biotite and sulfide. Pyroxenes commonly
occur as large oikocrysts enclosing olivine crystals to form
a poikilitic texture (Figures 3b,d). The sulfide assemblages
including pentlandite, pyrrhotite, and chalcopyrite occur in the
interstitial spaces of olivine or pyroxene cumulates (Figures 2D–
G, 3g,h). A gabbro vein intruded into the olivine pyroxenite
(Figure 2A), suggesting that the gabbro formed slightly later than
the olivine pyroxenite.

The intrusions were prominently controlled by the NEE
and EW fault systems, and extend 1.2 km along the NEE
direction with a 100–200 m width. The country rocks hosting
the complex are Baishahe Formation and are dominated by
Precambrian metamorphic rocks such as biotite schist, quartz-
rich schist, quartzite, marble, and gneiss. Small late Ordovician
tonalite stocks were cut by the Xiwanggou mafic–ultramafic
intrusive rocks in the area (Figure 1C). No ages for the
granodiorite stocks are currently available, but papers in
preparation will give zircon U–Pb ages for the quartz diorite and
granodiorite stocks.

The Xiwanggou mafic-ultramafic rocks have undergone
variable degrees of post emplacement hydrothermal alteration.
Olivine is partially altered to serpentine; clinopyroxene is
partially replaced by amphibole and calcite (Figures 3c,e,f);
plagioclase is partially replaced by chlorite (Figure 3a); and
secondary magnetite (Figure 3h) occurs in the micro-fractures
of base-metal sulfides and envelopes the sulfides. In the areas
not affected by faulting and deformation, alteration is weak
(30% collectively) but pervasive. In the areas affected by
faulting and deformation, alteration is far more intensive, up to
100% in places.

SAMPLING AND ANALYTICAL METHOD

All the samples used in this study were collected in the
exploratory trench in the central part of the Xiwanggou mafic–
ultramafic complexes where the best sulfide mineralization
develops (Figure 1C). Different types of sulfide mineralization
and host rocks were systematically sampled along the trench.
Highly altered and deformed outcrops were avoided. Zircon
crystals separated from the sulfide-poor gabbro samples (XW-07)
and sulfide-rich samples olivine pyroxenite (XW-09) were used
for zircon U–Pb dating. Six hand samples are made into polished
thin sections to observe the mineral components and be termed.
In addition, two samples are made into powder to analyze the
chemical and isotopic components.

Zircon LA–ICP–MS U–Pb Dating
Zircon selection and targeting, and transmission and reflected
light and cathode luminescence imaging works were conducted
at Beijing Zhongxing Meike Technology Co. Ltd. Zircon crystals
with various aspect ratios and colors were separated from the
samples and inlayed into an epoxy resin target and then polished,
cleaned and carbon coated. The cathode luminescence (CL)
and back-scatted electron images were photographed to identify
zoning patterns in zircons. Some of good patterns were chose
for further dating and Hf isotope analysis. The CL images were
conducted using a FEI Quanta450 electron microscope, and
back-scatted electron images were made with a Gatan MonoCL4,
with a voltage of 15 kV.

The U–Pb dating and rare element analyses of zircons
was conducted synchronously using laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) at the
Yanduzhongshi Geological Analysis Laboratories Ltd. Laser
Ablation System used was a New Wave UP213, and ICP-
MS was a Brooke M90. During the laser ablation process,
helium gas was the carrier gas and argon gas was used as
the compensation gas to adjust sensitivity, and the two
gases were mixed through a homogenizer before entering
the ICP-MS. The analysis of each sample point included
a blank signal of about 20∼30 s and a sample signal of
50 s. Both a 91500 zircon standard and Plešovice were used
as external standards for isotope fractionation correction
(Wiedenbeck et al., 1995; Sláma et al., 2008). The actual
diameter of LA denudation spots was 25 µm. Concordia
diagrams and weighted mean calculations were made using
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FIGURE 2 | Hand specimen photos of the Xiwanggou mafic-ultramafic rocks. (A) The intrusive contact relationship between olivine pyroxenite and gabbro; (B,C)
Disseminated Cu–Ni sulfide minerals developed in gabbro and olivine gabbro, respectively; (D–G) Disseminated Cu–Ni sulfide minerals in olivine pyroxenite.
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FIGURE 3 | Microphotographs of the Xiwanggou intrusions (a,b,f: plain polarized, c–e: cross polarized, g,h: reflected light). (a) some euhedral labradorite
clinopyroxene developed in an olivine gabbro sample; (b) Medium-grained and severely absorbed olivine surrounded by clinopyroxene in an olivine gabbro sample;
(c,d) Euhedral clinopyroxene and plagioclase showing equigranular texture filled by fine-grained and interstitial amphibole in a gabbro sample. (e) Severe carbonation
altered clinopyroxene in a gabbro sample; (f) Medium-grained and severely absorbed olivine surrounded by amphibole in an olivine pyroxenite sample; (g,h) the
pentlandite, pyrrhotite, and chalcopyrite in mineralized olivine gabbros and olivine pyroxenites, respectively; Amp, amphibole; Cpx, clinopyroxene; La, labradorite; Ol,
olivine; Pl, plagioclase; Pn, pentlandite; Po, pyrrhotite; Ccp, chalcopyrite; Mag, magnetite.

Frontiers in Earth Science | www.frontiersin.org 6 May 2021 | Volume 9 | Article 666967

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-666967 May 14, 2021 Time: 19:4 # 7

Zhang et al. Geodynamic Setting and Cu–Ni Potential

FIGURE 4 | Cathodoluminescence images of selected zircon crystals from the Xiwanggou (A) and gabbro (B). Circles are laser beam targets. The black numbers
are 206Pb/238U ages (Ma), and the red numbers are εHf(t) values.

ZSKits authorized by the Yanduzhongshi Geological Analysis
Laboratories Ltd.

In situ Hf Isotopic Analyses
In situ zircon Hf isotopic analyses were performed using a
Geolas Pro laser ablation system coupled to a Neptune multi-
collector ICP-MS at the Key Laboratory for the Study of Focused
Magmatism and Giant Ore Deposits, MLR, at the Xi’an Center
of Geological Survey, China Geological Survey. The detailed
instrumental conditions and data acquisition procedures are
similar to those described by Hou et al. (2007). A stationary
laser ablation spot with a beam diameter of 30 µm was used
for the analyses. The ablated aerosol was carried by helium
and combined with argon in a mixing chamber before being
introduced to the ICP-MS plasma. All of the Hf analyses
were performed on the same spots that underwent U–Pb laser
ablation analysis. The GJ-1 zircon standard was used as a
reference standard; during this study, it yielded a weighted mean
176Hf/177Hf ratio of 0.282030± 40 (2SE).

Electron Microprobe Analysis
In this study, olivine, pyroxene and sulfide hosted in the
mafic-ultramafic rocks were analyzed. EPMA X-ray elemental

analysis were conducted through a 4 WDS detector-equipped
Shimadzu EMPA-1720H (Tokyo, Japan) electron microprobe
at Key Laboratory of Metallogenic Prediction of Nonferrous
Metals and Geological Environment Monitoring (Central South
University), Ministry of Education. Operating conditions were
15 kV acceleration, 20 nA beam current, and 5 µm diameter
electron beam. Silicon, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr,
Co, and Ni were analyzed. The back-scatter electronic (BSE)
images were photographed under 15 Kv accelerating voltage and
0.5 nA current beam.

Whole-Rock Major and Trace Elements
The major and trace element analysis for the bulk rock
samples was mainly performed in the Yanduzhongshi Geological
Analysis Laboratories Ltd. Fresh samples were first broken to
centimeter sizes; only the fresh pieces were selected, washed with
deionized water, dried and then ground to less than 200 mesh
(0.5200 ± 0.0001 g) for geochemical analyses. Sample powders
were fluxed with Li2B4O7 (1:8) to make homogeneous glass disks
at 1250◦C using a V8C automatic fusion machine produced by
the Analymate Company in China. The bulk rock major elements
were analyzed using X-ray fluorescence spectrometry techniques
(Zetium, PANalytical). The analytical errors for major elements
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TABLE 1 | Concentrations of 238U and 232Th, and U–Pb isotopes of zircon from the Xiwanggou mafic–ultramafic complex.

Sample U238 (µ g/g) Th232 (µ g/g) U/Th Pb207/Pb206 1 σ Pb207/U235 1 σ Pb206/U238 1 σ Pb206/U238 (Ma) 1 σ

XW-07-02 256 250 1.02 0.05106 0.00164 0.28309 0.00959 0.04012 0.00066 253.6 4.1

XW-07-03 264 120 2.20 0.05165 0.00130 0.28016 0.00666 0.03952 0.00048 249.9 3.0

XW-07-04 663 573 1.16 0.05174 0.00082 0.28329 0.00437 0.03966 0.00039 250.7 2.4

XW-07-06 574 464 1.24 0.05072 0.00122 0.28271 0.00830 0.04025 0.00082 254.4 5.1

XW-07-07 225 95 2.38 0.05041 0.00143 0.28187 0.00772 0.04058 0.00050 256.4 3.1

XW-07-08 488 551 0.88 0.05218 0.00118 0.28319 0.00580 0.03953 0.00054 249.9 3.4

XW-07-09 124 139 0.89 0.05319 0.00203 0.28809 0.01189 0.03943 0.00077 249.3 4.8

XW-07-10 279 228 1.22 0.05063 0.00134 0.27222 0.00922 0.03891 0.00081 246.1 5.0

XW-07-11 156 132 1.18 0.05216 0.00165 0.28288 0.00812 0.03968 0.00065 250.8 4.0

XW-07-12 1231 1054 1.17 0.05128 0.00095 0.28395 0.00759 0.04002 0.00073 253.0 4.5

XW-07-13 517 700 0.74 0.05245 0.00145 0.28737 0.00939 0.03962 0.00068 250.5 4.2

XW-07-14 149 172 0.86 0.05248 0.00212 0.28432 0.01136 0.03942 0.00059 249.2 3.6

XW-07-15 247 350 0.71 0.05100 0.00178 0.27337 0.00986 0.03897 0.00067 246.4 4.1

XW-07-17 306 80 3.81 0.05138 0.00164 0.27926 0.00794 0.03968 0.00056 250.9 3.5

XW-07-19 427 287 1.49 0.05180 0.00108 0.28157 0.00640 0.03939 0.00039 249.1 2.4

XW-07-20 154 163 0.94 0.05163 0.00176 0.28131 0.01001 0.03963 0.00058 250.5 3.6

XW-07-21 475 271 1.75 0.05164 0.00179 0.28123 0.01018 0.03933 0.00058 248.7 3.6

XW-07-22 153 148 1.03 0.05249 0.00162 0.28139 0.00891 0.03929 0.00059 248.4 3.7

XW-07-23 302 193 1.56 0.05060 0.00121 0.27810 0.00684 0.03990 0.00046 252.2 2.8

XW-07-24 188 343 0.55 0.05194 0.00203 0.28378 0.01095 0.03983 0.00054 251.7 3.3

XW-09-01 2893 1674 1.78 0.05259 0.00096 0.29331 0.00530 0.04058 0.00069 256.4 4.3

XW-09-02 1612 0 0.00 0.05093 0.00141 0.28910 0.01086 0.04128 0.00092 260.8 5.7

XW-09-03 1227 884 1.42 0.05084 0.00120 0.28865 0.00627 0.04108 0.00035 259.5 2.2

XW-09-04 401 736 0.55 0.05104 0.00174 0.28848 0.01157 0.04103 0.00077 259.2 4.8

XW-09-05 1557 1483 1.05 0.05187 0.00106 0.28807 0.00592 0.04052 0.00079 256.1 4.9

XW-09-07 2649 1653 1.44 0.05105 0.00086 0.28523 0.00633 0.04065 0.00065 256.9 4.0

XW-09-08 5029 1293 1.76 0.05161 0.00082 0.28721 0.00372 0.04034 0.00035 255.0 2.2

XW-09-09 1616 1631 1.00 0.05150 0.00175 0.28910 0.00902 0.04090 0.00108 258.4 6.7

XW-09-10 560 365 1.58 0.05159 0.00129 0.29361 0.00709 0.04133 0.00047 261.1 2.9

XW-09-11 1739 351 5.23 0.05092 0.00081 0.28324 0.00413 0.04039 0.00046 255.2 2.9

XW-09-12 2101 1394 1.52 0.05165 0.00102 0.29100 0.00626 0.04099 0.00083 258.9 5.1

XW-09-13 488 268 1.92 0.05123 0.00141 0.28755 0.00777 0.04074 0.00039 257.4 2.4

XW-09-14 1890 337 5.69 0.05082 0.00062 0.28490 0.00393 0.04070 0.00050 257.2 3.1

XW-09-15 1445 266 5.55 0.05180 0.00090 0.29131 0.00717 0.04078 0.00075 257.7 4.6

XW-09-16 1260 615 1.48 0.05173 0.00108 0.28790 0.00590 0.04050 0.00071 255.9 4.4

XW-09-18 3083 1423 2.20 0.05116 0.00061 0.28721 0.00453 0.04067 0.00052 257.0 3.2

XW-09-19 262 169 1.56 0.05153 0.00206 0.29095 0.01264 0.04097 0.00076 258.9 4.7

XW-09-20 350 45 9.44 0.05162 0.00161 0.28719 0.00840 0.04052 0.00059 256.1 3.6

XW-09-23 669 816 0.83 0.05075 0.00095 0.28554 0.00603 0.04076 0.00047 257.5 2.9

XW-09-24 846 577 1.72 0.05161 0.00108 0.28775 0.00646 0.04036 0.00052 255.1 3.2

XW-09-25 363 518 0.69 0.05173 0.00148 0.28894 0.00803 0.04064 0.00059 256.8 3.6

were better than 1%. For trace element analysis, sample powders
were first dissolved using distilled HF + HNO3 in a screw-
top Teflon beaker for 4 days at 100◦C. Trace elements of those
samples were analyzed by inductively coupled mass spectrometry
(ICP-MS) at the Yanduzhongshi Geological Analysis Laboratories
Ltd. The analytical uncertainty of the elements examined was
better than 5% for ICP-MS analysis, except for a few samples with
low trace element content, for which the uncertainty was about
10%. The obtained trace element values in the GSR-2 standard
were all consistent with their recommended values.

Sr–Nd Isotope Analysis
Main analysis process is as follows: a 0.25 g sample was
placed in a Teflon stewing pot; 0.5 ml HNO3 and 1.5 ml
of HF were added, and the container was closed; the
sample underwent heating digestion for 48 h at 190◦C;
HF was expelled at 160◦C, and 3 ml 1:1 HNO3 was added
at 150◦C; the container was closed and the temperature
was maintained at 150◦C for 6 h, and leaving constant
mass to 25 g. Extraction of Sr was performed by spinning
the appropriate solution in a centrifuge, and drying the
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FIGURE 5 | Zircon U–Pb age diagrams of gabbros (A,C) and olivine-pyroxenites (B,D) in the Xiwanggou mafic–ultramafic complex.

supernatant; the acidity was adjusted; Sr was separated
and purified using SR special resin. Extraction of Nd was
similar to the extraction of Sr, but LN specific resin was
used to separate and purify Nd. The 87Sr/86Sr ratios were
measured on a Thermo Fisher Scientific multi-receiver ICP-
MS and the and 143Nd/144Nd ratios were measured on a
Neptune Plus Mc-ICP-MS in the Yanduzhongshi Geological
Analysis Laboratories Ltd. The measured 88Sr/86Sr and
143Nd/144Nd ratios were normalized for mass fractionation
using 88Sr/86Sr = 8.373209 and 143Nd/144Nd = 0.7218
respectively.

ANALYTICAL RESULTS

Zircon U–Pb Isotope Age
Cathode luminescence images of the selected zircon crystals
from the Xiwanggou sulfide bearing gabbro and olivine-
pyroxenite are shown in Figure 4. They are mostly wide
stubby and columnar with a clear stripped texture at the
edge. The long axis of the zircons from XW-07 (gabbro)
are variable, from 50 to 250 µm, and those from XW-09

(olivine pyroxenite) range between 50 and 150 µm. The length-
width ratios are between 1:1 and 2:1. Most of zircons show
oscillatory zoning and inherited cores, but internally a few
zircons are texturally homogeneous. These features indicate
the selected zircons are of a magmatic origin from the mafic-
ultramafic complexes.

The analytical results of the U–Pb isotopic dating are listed
in Table 1. The zircon grains have 45–1653 µg/g Th, 124–
5029 µg/g U, and U/Th ratios of 0.63–9.44. The U/Th ratio
of magmatic zircons is generally less than 10; whereas the
U/Th of metamorphic zircons is greater than 10 (Rubatto and
Gebauer, 2000). This is consistent with our interpretation that
all the grains are from magmatic zircons. The concordia plots
of the analyses are shown in Figures 5A,B, and the average
age plots are shown in the Figures 5C,D. The concordia plot
shows a zircon U–Pb isotope age for the Xiwanggou sulfide-
poor garbbo of 250.8 ± 0.77 Ma (Figure 5A), and its weighted
age is 250.7 ± 1.5 Ma (Figure 5C). The concordia plot shows a
zircon U–Pb isotope age for the sulfide-rich olivine-pyroxenite of
257.3 ± 0.72 Ma (Figure 5B), and its weighted age is 257.3 ± 1.4
Ma (Figure 5D). The results show that there is a large age
gap of ∼ 7 Ma between the mafic and ultramafic associated
with mineralization.
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TABLE 2 | MC-ICP-MS zircon Lu–Hf isotopic compositions from the Xiwanggou mafic–ultramafic complex.

Sample age 176Yb/177Hf(corr) 2σ 176Lu/177Hf(corr) 2σ 176Hf/177Hf(corr) 2σ eHf (T) TDM TDMC fs

XW-07-02 250.8 0.065209 0.000353 0.001776 0.000011 0.282958 0.000023 11.8 426 525 –0.95

XW-07-03 250.8 0.018209 0.000423 0.000529 0.000011 0.282866 0.000027 8.8 540 719 –0.98

XW-07-04 250.8 0.074527 0.000435 0.002079 0.000010 0.282901 0.000031 9.7 512 656 –0.94

XW-07-06 250.8 0.069588 0.000391 0.001956 0.000017 0.282915 0.000026 10.2 490 624 –0.94

XW-07-07 250.8 0.024615 0.000438 0.000690 0.000014 0.282843 0.000021 7.9 576 774 –0.98

XW-07-08 250.8 0.054090 0.000389 0.001607 0.000009 0.282971 0.000030 12.3 404 492 –0.95

XW-07-09 250.8 0.040387 0.000520 0.001128 0.000011 0.282908 0.000023 10.2 489 630 –0.97

XW-07-10 250.8 0.033413 0.000658 0.000961 0.000015 0.282931 0.000024 11.0 455 577 –0.97

XW-07-11 250.8 0.024161 0.000428 0.000709 0.000008 0.282960 0.000022 12.0 411 509 –0.98

XW-07-12 250.8 0.055200 0.001563 0.001590 0.000041 0.282828 0.000023 7.2 610 816 –0.95

XW-07-13 250.8 0.015963 0.000137 0.000450 0.000002 0.282933 0.000023 11.1 445 566 –0.99

XW-07-14 250.8 0.100246 0.003047 0.002631 0.000088 0.282881 0.000028 8.9 549 707 –0.92

XW-07-15 250.8 0.088039 0.000546 0.002463 0.000014 0.282867 0.000024 8.5 567 737 –0.93

XW-07-17 250.8 0.036838 0.001071 0.001005 0.000028 0.282837 0.000028 7.7 588 789 –0.97

XW-07-19 250.8 0.073293 0.000361 0.002041 0.000009 0.282773 0.000028 5.2 698 946 –0.94

XW-07-20 250.8 0.025506 0.000324 0.000734 0.000010 0.282897 0.000026 9.8 500 652 –0.98

XW-07-21 250.8 0.044156 0.000413 0.001221 0.000012 0.282868 0.000023 8.7 547 721 –0.96

XW-07-22 250.8 0.056651 0.000331 0.001431 0.000009 0.282922 0.000023 10.6 474 603 –0.96

XW-07-23 250.8 0.050193 0.002320 0.001435 0.000065 0.282909 0.000023 10.1 492 631 –0.96

XW-07-24 250.8 0.034403 0.000689 0.000904 0.000012 0.282862 0.000027 8.5 552 733 –0.97

XW-09-01 257.3 0.023660 0.000205 0.000609 0.000006 0.282838 0.000024 7.9 580 779 –0.98

XW-09-02 257.3 0.015845 0.000051 0.000502 0.000002 0.282826 0.000035 7.5 595 805 –0.98

XW-09-03 257.3 0.022233 0.000143 0.000563 0.000003 0.282816 0.000026 7.1 611 830 –0.98

XW-09-04 257.3 0.002906 0.000060 0.000076 0.000002 0.282857 0.000028 8.6 547 731 –1.00

XW-09-05 257.3 0.006253 0.000057 0.000174 0.000001 0.282844 0.000030 8.2 565 760 –0.99

XW-09-07 257.3 0.011385 0.000064 0.000259 0.000002 0.282810 0.000019 7.0 614 839 –0.99

XW-09-08 257.3 0.013233 0.000105 0.000401 0.000004 0.282870 0.000025 9.1 533 705 –0.99

XW-09-09 257.3 0.002606 0.000063 0.000062 0.000001 0.282846 0.000019 8.3 561 755 –1.00

XW-09-10 257.3 0.005199 0.000034 0.000154 0.000002 0.282941 0.000024 11.6 431 542 –1.00

XW-09-11 257.3 0.028089 0.000257 0.000812 0.000008 0.282825 0.000026 7.4 602 810 –0.98

XW-09-12 257.3 0.076114 0.000234 0.002547 0.000007 0.283125 0.000057 17.7 186 149 –0.92

XW-09-13 257.3 0.020316 0.000632 0.000393 0.000012 0.282852 0.000024 8.4 559 747 –0.99

XW-09-14 257.3 0.012864 0.000306 0.000327 0.000012 0.282810 0.000025 7.0 615 839 –0.99

XW-09-15 257.3 0.004513 0.000042 0.000114 0.000001 0.282843 0.000026 8.2 566 762 –1.00

XW-09-16 257.3 0.007368 0.000306 0.000256 0.000010 0.282800 0.000025 6.6 629 863 –0.99

XW-09-18 257.3 0.017092 0.000551 0.000373 0.000010 0.282825 0.000023 7.5 596 807 –0.99

XW-09-19 257.3 0.002477 0.000051 0.000069 0.000002 0.282828 0.000029 7.6 586 796 –1.00

XW-09-20 257.3 0.002330 0.000067 0.000081 0.000003 0.282766 0.000028 5.4 672 937 –1.00

XW-09-23 257.3 0.008891 0.000027 0.000213 0.000002 0.282881 0.000023 9.5 515 679 –0.99

XW-09-24 257.3 0.008955 0.000119 0.000245 0.000003 0.282786 0.000027 6.1 648 894 –0.99

Hf Isotope
The Lu–Hf isotopes of the selected zircon crystals from the
Xiwanggou mafic-ultramafic rocks are listed in Table 2. The
calculated εHf(t) values of these zircon crystals are all positive
varying from 5.2 to 12 for gabbro and 5.4 to 17.7 for olivine
pyroxenite, respectively. A comparison of these values with
those for depleted mantle, a potential contaminant, and the
Precambrian granitic gneiss which is exposed in the Xiariham
and Bokalike areas in the western part of the EKOB (data from
Gan, 2014; He et al., 2016) is shown in Figure 6.

Mineral Compositions
The compositions of important rock-forming minerals such
as olivine and pyroxenes are listed in Tables 3, 4. Olivine
occurs as a cumulate phase in olivine gabbro, and commonly
encloses chromite with olive crystals and exhibits a reactional
rim in contacts with other silicate crystals. Minor amounts of
olivine grains are encapsulated by pyroxene with olivine texture
and serpentinization. The interiors of subhedral and euhedral
olivine grains are often intersected by some serpentine veins.
The composition of major elements has little change in the
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FIGURE 6 | (A) Zircon εHf(t) value versus zircon U–Pb isotope age for the
Xiwanggou mafic–ultramafic rocks. (B) The statistical histogram of zircon εHf(t)
values from the Xiwanggou complex. The Hf isotope evolution of the
Precambrian granitic gneiss from East Kunlun orogen is calculated using the
parameters for the upper crust given by Gan (2014) and He et al. (2016). The
comparison of the late Silurian-Early Devonian mafic–ultramafic intrusions are
based on the data from Xiarihamu and Yuejinshan areas (Liu et al., 2012;
Wang et al., 2014; Li et al., 2015; Peng et al., 2016), and the Late Permian
Bairiqili gabbro-diabase are based on Xiong et al. (2011b).

samples (Table 3) with MgO = 44.34–45.13 wt.%, FeO = 14.61–
15.43 wt.%, SiO2 = 39.36–40.42 wt.%, NiO = 0.12–0.25 wt.%,
Cr2O3 = 0–0.06 wt.% and a corresponding Fo value of 83.45–
84.51 with an average of 84.08, which corresponds to chrysolite
(Figures 7A–F). The good negative linear relationship between
MgO (wt.%) and FeO (wt.%) in olivine indicates that there was a
substitution between MgO (wt.%) and FeO (wt.%) (Figure 7A).
Olivine contains 83.45–84.51 mol% Fo with an average of
84.08 mol% (which is the value for chrysolite), and it is
depleted in Mn and Ca.

Pyroxene is mostly euhedral and subhedral grains, from
a cumulate phase with olivine or olivine inclusions forming
olivine texture. Serpentinization, chloritization, talcification,
and fibrillation are common. Pyroxene consists mainly of
clinopyroxene with SiO2 content of 52.38–52.45 wt.%, TiO2
content of 0.18–0.7 wt.%, Al2O3 content of 2.87–3.13 wt.%, FeO
content of 4.13–4.26 wt.%, MgO content of 16.85–17wt.%, CaO
content of 22.97–23.01 wt.%, Cr2O3 content of 1.13–1.34, and
NiO content of 0–0.05 (Figures 7A–F).

Whole Rock Major and Trace Elements
The concentrations of major and trace elements in the samples
from the Xiwanggou mafic–ultramafic intrusions are given as

Supplementary Table 1. In this study, the Xiwanggou samples
can be geochemically divided into two groups based on the
variability of SiO2 and (K2O + Na2O) contents: 46.62–49.51
wt.% SiO2 and 2.46–3.0 wt.% (K2O + Na2O) for gabbro; and
41.35–42.49 wt.% SiO2 and 1.06–1.61 wt.% (K2O + Na2O) for
olivine pyroxenites. The corresponding Mg# of two groups are
77.76–82.04 and 88.10–88.22, respectively (Figure 8). The TiO2
contents of all samples are very low, ranging from 0.16 wt.% to
0.74 wt.% (ave. 0.38 wt.%), which is significantly lower than that
of oceanic tholeiite (2.63 wt.%), intraplate basalt (2.23 wt.%), but
more similar to that of island arc basalt (0.98 wt.%). In summary,
the gabbro in the Xiwanggou area is characterized by low Si and
Ti, high Mg, and depleted alkali.

Primitive mantle-normalized diagrams for incompatible
elements also exhibit nearly identical element concentrations,
reflecting a similar abundance and composition for mafic–
ultramafic rocks (Figure 9A). The abundances of more
incompatible large ion lithophile elements (LILE) are greater than
those of the high field strength elements (HFSE). This is typical of
the mantel magmas proposed to possess a large lithospheric crust
component. Other notable features include the depletion of Nb
and Ta relative to La and U, enrichment of Sr relative to Pr and
Nd, and slight depletion of Ba relative to Rb and Th. Such trace
element patterns are clearly similar to those of island arc sulfide-
bearing mafic intrusive rocks in the Tati and Selebi-Phikwe belts,
eastern Botswana (Maier et al., 2008).

Almost all samples are uniformly enriched in LREE relative
to HREE with (La/Sm)N of 1.43–2.38, and show flat HREE
chondrite-normalized patterns with (Gd/Yb)N = 1.31–1.52
(Figure 9B). The gabbro has relatively higher total REE
content (6REE = 20.46–42.76 ppm) and lower (La/Yb)N
ratios [(La/Yb)N = 2.82–3.17] than that of olivine pyroxenite
[6REE = 15.45–24.92 ppm; (La/Yb)N = 3.63–4.8]. Most of the
samples have slightly negative Eu anomalies (Eu/Eu∗ = 0.80–
0.95).

Sr–Nd Isotopes
The Rb–Sr and Sm–Nd isotope data for the Xiwanggou mafic-
ultramafic rocks are given in Table 5. The initial isotopic ratios
for the olivine pyroxenite and gabbro were calculated using
the zircon U–Pb ages of 257.3 and 250.8 Ma for these two
different intrusive phases, respectively. The olivine pyroxenite
and gabbro samples have distinctive 147Sm/144Nd ratio range
of 0.15406–0.158684 and 0.170205–0.17175, respectively. The
olivine pyroxenites have slightly lower initial 143Nd/144Nd ratios
varying narrowly between 0.512251 and 0.51285 than that of
gabbros varying from 0.512629 to 0.512655. The (87Sr/86Sr)i
ratios of the olivine pyroxenite range from 0.705535 to 0.706133,
and the gabbro has a ratio (87Sr/86Sr)i of 0.705905–0.706620
(Figure 10A). In addition, the (87Sr/86Sr)i values of the
Xiwanggou complex almost keep invariable with varying SiO2
contents (Figure 10A). However, the (87Sr/86Sr)i values of the
late Permian Bairiqili non-mineralization gabbro increase with
raising SiO2 contents (Figure 10A). The εNd(t) values of the
olivine pyroxenite and gabbro are from −1.09 to −0.43 and 0.66
to 1.18, respectively (Figure 10B).
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TABLE 3 | The composition of microprobe analysis of olivine in olivine gabbro from the Xiwanggou deposit.

Sample (wt.%) X20111 x105.1 x10121 x10101 x109.1 X6011.1 X609.1 X608.3 X603.1 X602.1 X601.3 X902.1 Oli03 Oli Oli Oli

SiO2 40.34 39.82 39.65 39.53 38.84 39.70 39.92 40.40 39.77 40.51 40.37 40.34 40.92 40.66 40.48 40.67

TiO2 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.04 0.01 0.05 0.00 0.03 0.00 0.01 0.03 0.03

Al2O3 0.01 0.04 0.02 0.01 0.02 0.03 0.02 0.03 0.03 0.01 0.02 0.01 0.01 0.03 0.00 0.00

FeO 15.36 12.92 14.32 15.14 15.26 14.81 14.85 14.59 14.91 14.78 15.08 14.75 14.58 15.25 15.09 15.14

MnO 0.24 0.24 0.23 0.21 0.23 0.25 0.22 0.21 0.23 0.20 0.23 0.21 0.23 0.25 0.24 0.23

MgO 45.22 46.41 45.23 45.15 44.35 45.41 45.12 44.89 44.87 45.31 44.87 45.37 44.13 44.08 44.64 44.40

CaO 0.03 0.05 0.04 0.05 0.04 0.05 0.06 0.06 0.05 0.04 0.06 0.08 0.06 0.05 0.07 0.13

Na2O 0.01 0.02 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

K2O 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.06 0.00 0.00

NiO 0.12 0.16 0.20 0.23 0.22 0.22 0.21 0.22 0.20 0.24 0.25 0.13 0.18 0.14 0.17 0.15

Total 101.25 99.51 99.50 100.11 98.77 100.25 100.22 100.22 99.87 100.89 100.62 100.81 99.93 100.35 100.54 100.60

Mg × 100/(Mg + Fe) 74.64 78.22 75.96 74.89 74.40 75.41 75.23 75.47 75.05 75.41 74.85 75.47 75.17 74.30 74.73 74.58

Si 1.000 0.995 0.997 0.992 0.989 0.993 0.998 1.007 0.998 1.004 1.005 1.002 1.022 1.015 1.008 1.013

Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.001

Al 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

Fe 0.318 0.269 0.300 0.317 0.324 0.309 0.310 0.304 0.312 0.306 0.313 0.306 0.304 0.317 0.314 0.314

Mn 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.005 0.005

Mg 1.671 1.729 1.695 1.688 1.684 1.693 1.682 1.669 1.679 1.674 1.665 1.680 1.642 1.640 1.658 1.648

Ca 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.003

Na 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

K 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

Ni 0.002 0.003 0.004 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.005 0.003 0.004 0.003 0.003 0.003

Mole percent (mol%)

Forsterite 83.81 86.30 84.74 84.01 83.64 84.34 84.24 84.42 84.11 84.39 83.97 84.42 84.18 83.55 83.88 83.77

Tephroite 0.25 0.25 0.24 0.23 0.25 0.26 0.23 0.23 0.24 0.21 0.24 0.22 0.25 0.27 0.25 0.24

Fayalite 15.94 13.45 15.01 15.77 16.11 15.40 15.52 15.36 15.65 15.40 15.79 15.36 15.57 16.17 15.87 15.98
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TABLE 4 | The composition of microprobe analysis of pyroxene in olivine gabbro from the Xiwanggou deposit.

Sample (wt.%) X6-11.2 X6-9.2 X6-8.2 X6-8.1 X6-7.2 X6-7.1 X6-3.2 X6-1.3 X6-1.2 X6-1.2 X6-1.1

SiO2 51.33 50.99 50.77 50.82 52.19 51.83 51.53 51.38 51.37 51.90 51.27

TiO2 0.50 0.41 0.52 0.51 0.53 0.45 0.49 0.55 0.54 0.53 0.51

Al2O3 3.65 3.12 3.05 3.37 3.07 3.23 2.83 3.52 3.05 3.01 3.41

FeO 4.06 4.06 4.34 3.91 4.06 4.08 4.70 4.04 4.60 4.23 3.96

MnO 0.11 0.14 0.11 0.10 0.13 0.11 0.13 0.11 0.14 0.14 0.11

MgO 17.00 17.21 17.24 17.74 16.89 16.89 17.07 16.93 17.62 17.41 16.72

CaO 21.35 21.49 21.28 20.54 21.98 21.39 21.02 21.30 20.29 21.07 21.80

Na2O 0.33 0.36 0.40 0.32 0.41 0.38 0.35 0.35 0.36 0.34 0.37

K2O 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Cr2O3 1.34 1.20 1.13 1.30 1.29 1.32 1.17 1.34 1.22 1.14 1.32

NiO 0.05 0.02 0.00 0.04 0.03 0.00 0.02 0.01 0.01 0.03 0.01

Total 99.73 99.02 98.86 98.66 100.58 99.70 99.35 99.52 99.20 99.79 99.49

Mg*100/(Fe + Mg) 80.7 80.9 79.9 81.9 80.6 80.6 78.4 80.7 79.3 80.4 80.8

Si 1.903 1.904 1.900 1.900 1.919 1.919 1.919 1.907 1.911 1.917 1.906

Al(IV) 0.062 0.042 0.035 0.048 0.051 0.060 0.043 0.061 0.045 0.048 0.056

Al(VI) 0.097 0.096 0.100 0.100 0.081 0.081 0.081 0.093 0.089 0.083 0.094

Ti 0.014 0.012 0.015 0.014 0.015 0.013 0.014 0.015 0.015 0.015 0.014

Fe3+ 0.018 0.020 0.022 0.018 0.022 0.020 0.019 0.019 0.019 0.018 0.020

Fe2+ 0.108 0.107 0.114 0.104 0.102 0.106 0.127 0.106 0.124 0.112 0.103

Mn 0.003 0.005 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.004

Mg 0.939 0.958 0.962 0.989 0.926 0.933 0.948 0.937 0.978 0.959 0.927

Ca 0.848 0.860 0.853 0.823 0.866 0.849 0.839 0.847 0.809 0.834 0.868

Na 0.006 0.006 0.007 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.007

K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cr 0.039 0.035 0.033 0.038 0.038 0.039 0.034 0.039 0.036 0.033 0.039

Ni 0.002 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000

Mol.%

Enstatite 49.48 49.67 49.77 51.54 48.78 49.33 49.43 49.48 51.07 50.22 48.74

Ferrosilite 5.67 5.54 5.89 5.42 5.38 5.59 6.62 5.60 6.45 5.88 5.41

Wollastonite 44.67 44.56 44.16 42.88 45.62 44.89 43.74 44.74 42.25 43.67 45.66

DISCUSSION

Sources and Geodynamics of Late
Permian Mafic–Ultramafic Rocks
The zircon U–Pb ages of gabbro and olivine pyroxenite are
250.8 ± 0.8 Ma and 257.3 ± 0.7 Ma, respectively. These ages are
consistent with field observations that mafic gabbro intersected
the ultramafic olivine pyroxenite. In addition, the Paleo-Tethyan
Anemaqen Ocean in EKOB are considered to begin northward
subduction in the Late Permian before 260 Ma, and closed at the
Middle Triassic (Mo et al., 2007; Li R. B. et al., 2012; Yang et al.,
2013; Chen et al., 2017); and yet other scholars have proposed
that the subduction of the Paleo-Tethys Ocean began at the Early
Permian (Liu, 2014; Xiong et al., 2014; Chen et al., 2015), and
closed in the Middle and Late Triassic as indicated by the deposit
of a typical Upper Triassic Babaoshan molasse formation at that
time (Wu et al., 2017). Therefore, the Xiwanggou complexes are
believed to be formed in a subduction environment from Late
Permian to Middle Triassic.

The trace element patterns of the Xiwanggou mafic-ultramafic
intrusions are characterized by the depletion of HREE, Nb and
Ta, and enrichment of Sr, Rb, Ba, and LREE (Figure 9), which

are clearly similar to those of island arc sulfide-bearing mafic
intrusive rocks in the Tati and Selebi-Phikwe belts, eastern
Botswana (Maier et al., 2008). In addition, the Late Permian-
Early Triassic gabbroic and dioritic dykes from the EKOB display
similar distribution patterns that are enriched in LILEs and
depleted in HFSEs (Xiong et al., 2011a; Ding et al., 2014),
which generally indicates a metasomatized mantle source in a
subduction environment (Jiang et al., 2015; Kong et al., 2018).
Therefore, the geochemical and geochronological data of the
Xiwanggou complexes, together with the regional considerations,
suggest that they record a northward subduction of the Paleo
Tethys Ocean during Late Permian to Early Triassic (Mo et al.,
2007; Xiong et al., 2011a; Zhang et al., 2012).

The AFC processes tend to obscure the potential distinctions
of primary chemical signatures between the fertile and barren
basalts. In this study, we calculated the AFC processes involved
in the magma evolution controlled by the partition coefficient
of minerals. In the conceptual model (Figures 11A,B), the
geochemical evolution of the middle-late Permian rocks show
different paths via two different mechanisms. This further
indicates that some of the Late Permian mafic–ultrmafic magma
first probably experienced dehydration partial melting controlled
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FIGURE 7 | Geochemical diagrams of olivine (A,B) and pyroxene (C–F) compositions. The blue circles are from the Xiwanggou mafic-ultramafic rocks, and the gray
ones from the Xiarihamu and Shitoukengde basic–ultrabasic complexes.
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FIGURE 8 | Mg# vs. SiO2 plots for the Xiwanggou mafic–ultramafic rocks.
Gray circle data for Permian mafic–ultramafic intrusions are from Jiadang and
Bairiqili areas (Xiong et al., 2011b; Kong et al., 2018).

by breakdown of amphibole in the mantle wedge, which usually
occurs between ∼825 and 1000◦C at pressures between 0.5
and 2.0–2.5 GPa (Peacock et al., 1994). However, some other
underwent an assimilation and fractional crystallization (AFC)
process jointly controlled by 70% clinopyroxene (Cpx) and
30% garnet (Grt), and tended from lower crust to upper crust
composition (Figures 11A,B).

The remarkable distinctions between contemporary fertile
and barren rocks convey significant information on εNd(t) and
(87Sr/86Sr)i values. The Xiwanggou ore-bearing intrusions with
lower contents of SiO2 and (87Sr/86Sr)i are believed to be less
contaminated by crustal materials (Figure 10A; Arndt et al.,
2005). However, the Bairiqili barren mafic-ultramafic intrusive
rocks with relative high contents of SiO2 and (87Sr/86Sr)i
maybe indicate a mixing magma source between depleted
subcontinental lithospheric mantle (SCLM) and lower crustal
materials (Figure 10A; Xiong et al., 2011a; Liu et al., 2012). As the
mafic microgranular enclaves (MMEs) captured by the Triassic
granitoids in EKOB with similar SiO2 contents and medium
(87Sr/86Sr)i values are generally considered to be sourced from
a mixing of subcontinental lithospheric mantle (SCLM) with
EMII type mantle as well as felsic magma yielded by the partial
melting of lower crust materials (Gao et al., 2015). Furthermore,
the late Permian mafic-ultramafic rocks have similar trend
paralleling to the EMII (enriched mantle II) features evolved from
depleted mantle to lower crustal materials of basement, indicating
a partial melting process of intensively depleted lithospheric
mantle wedge above subducted slab as a consequence of injection
of subduction-related fluid (Figure 10B). but the εNd(t) values
of the Xiwanggou complex are close to zero and much more
depleted than the contemporary barren mafic rocks in the

FIGURE 9 | Primitive mantle-normalized trace element patterns (A) and
chondrite-normalized REE patterns (B). Olivine gabbro normalizing values
after Sun and McDonough (1989). The gray shadows show the spectrum of
trace and REE elements from the Middle-Late Permian mafic–ultramafic
intrusions developed in the East Kunlun Orogen (Xiong et al., 2011a; Kong
et al., 2018).

Bairiqili, which may be related to a relatively low assimilation–
fractional crystallization (AFC) degree of lower crustal materials.
This is consistent with the indication between varying Mg# and
SiO2 values (Figure 8). Nevertheless, the εNd(t) values of the
contemporary barren mafic rocks show a similar spectrum to
those of MMEs (Figure 10B), which further indicate that the
magma are much more possible yielded by a partial melting
process of metasomatized SCLM above subducted slab (Xiong
et al., 2011a; Jiang et al., 2015; Peng et al., 2016; Li et al., 2018).

Many recent papers have proposed that the metasomatized
portions of the SCLM are enriched in chalcophile and highly
siderophile elements, and that partial melting of this part of the
mantle are particularly capable of forming magmatic ore deposits
(Fiorentini and Beresford, 2008; Richardson and Shirey, 2008;
Zhang et al., 2008; Arndt, 2013). The contrasting geochemical
signatures between fertile and barren may be attributed not only
to the heterogeneity of SCLM sources, but also to the complexity
of AFC processes during the interaction between SCLM and
overlying crustal materials. The εHf(t) values of zircon crystals
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from the Bairiqili and Yuejinshan non-mineralized mafic–
ultramafic rocks are also consistent with crustal contamination
of the parental magma to various degrees (Figure 6; Li et al.,
2015, 2018). However, the εHf(t) values of the Xiwanggou are all
positive between MORB and CHUR (Figure 6), which probably
indicates a simple depleted mantle source with very slight
mix. Apparently, the bulk-rock Nd and zircon Hf isotopes are
decoupled in the Xiwanggou complex, in which the discrepancy
between the extremely depleted Hf isotopes of zircons and the
slight enriched Nd isotopes of bulk rocks demonstrate that
zircons do not always capture the full history of magmatic
system (Huang et al., 2019). In addition, the participation of
amphibole and garnet in the melt producing processes maybe
result in isotopic discrepancy between zircon and bulk-rocks
(Huang et al., 2017, 2019).

The Xiwanggou fertile melts mainly experienced high degree
partial melting of depleted SCLM controlled by amphibole
dehydration, which can evolve with time to produce relatively low
εNb(t) values at a high εHf(t) value. In addition, the slight right-
dipping REE distribution patterns without obvious Eu anomalies
and very low La/Yb ratios of bulk compositions indicates
that the Xiwanggou basaltic magma probably experienced
amphibole fractionation without garnet incorporation (Çoban,
2007; Dessimoz et al., 2012). Therefore, the favored interpretation
may be that the Late Permian basalts was primarily yielded
by the dehydration partial melting of amphibole above a
subduction zone, and some melts would have directly arisen
to a surficial depth along deep faults, e.g., Xiwanggou fertile
complex; but some metasomatized melts would be detained
at lower crust depth and further produced relatively siliceous
magma due to fractional crystallization of Grt and Cpx, e.g.,
Bairiqili barren diabase-gabbros (Figure 12). The garnet-bearing
residues after melt extraction were then transformed into juvenile
lower crust materials, and evolved with time to produce high
εHf(t) at a low εNd(t) value with elevation of Lu/Hf ratios
(Huang et al., 2019).

The experimental petrologic evidence confirmed that the
thermal and petrologic evolution of a mantle plume with
time shows that the residues after liquidus extraction at the
base of the lithosphere will contain garnet peridotite melt,
as the following possible garnet-bearing residuum assemblages
(Herzberg and O’Hara, 1998). Moreover, the pressure of garnet-
bearing assemblages are reported at 1.9 to 2.8 GPa (Kinzler,
1997). Therefore, at pressures in the garnet peridotite stability
field, pressure expands the stability field of garnet at the
expense of all other crystalline phases, and the Al2O3 and HFSE
content of magmas is reduced. There is evidence shows that
the compositions of liquids produced by progressive equilibrium
(batch) partial melting of a fertile mantle peridotite will have
a wide range, and the first disappearance of aluminous garnet
phase is usually the one leading to subsequent liquid evolution
in [Lq + Ol + Opx + Cpx] by advanced melting, from 1 atm to
about 3.0 GPa. Therefore, the middle-late Permian rocks record
a complete geochemical trace from subduction to modification,
indicating that the Middle-Late Permian rocks are much more
likely influenced by the subduction environment. Such processes
are most similar to that of the arc-related Ural-Alaska type TA
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FIGURE 10 | Plots of whole rock (87Sr/86Sr)i vs. SiO2 (A) andεNd(t) vs.
(87Sr/86Sr)i (B) for the Xiwanggou mafic-ultramafic rocks. The depleted and
oceanic mantle (plume) plots are from White and Hofmann (1982); the Sr–Nd
isotope data for enriched mantle (EM) source from Menzies and Murthy
(1980); the values of mafic micro enclaves (MME) hosted in the Triassic
granitoid intrusions from are Kaerqueka, Xiangride, and Balong, respectively
(Zhang et al., 2012; Xiong et al., 2014; Gao et al., 2015). Comparison data
from Xiarihamu for Cu-Ni sulfide mineralized mafic-ultramafic complex (Sun
et al., 2014; Li et al., 2015; Song et al., 2016; He et al., 2017; Zhang et al.,
2018), and barren mafic-ultramafic intrusions from Bairiqili and Yuejinshan
(Xiong et al., 2011b; Liu et al., 2012), in the Eastern Kunlun Orogen. The late
Permian mafic-ultramafic rocks show similar evolution trends along mixing line
from oceanic mantle to lower crustal materials of basement À; The isotopic
components of Triassic MME hosted in the felsic intrusions shows a mixing
evolution path Á that lies between a lithospheric mantle source magma and a
partial melting of lower crust source (Gao et al., 2015); Evolution path Â starts
at EM with elevating (87Sr/86Sr)i values, which is a trend similar to the EMII;
Mixing line Ã shows an initial mantle evolution from a depleted to an enriched
mantle.

complexes in Tianshan Orogen, which were produced by a high-
degree of differentiation of the SCLM that was metasomatized by
melts and/or fluids from the subduction (Su et al., 2012, 2014).

FIGURE 11 | Nb/Y vs. La/Yb (A) and Ta/Yb vs. Th/Yb (B) diagrams of the
middle-late Permian mafic-ultramafic rocks from the East Kunlun Orogen. It
plots in the field around primary mantle (PM), lower crust (LC) and upper crust
(UC) composition points. AFC, assimilation and fractional crystallization; Amp,
amphibole; Bt, biotite; Cpx, clinopyroxene; Grt, garnet. The upper (UC) and
lower crustal (LC) components are based on Taylor and Mclennan (1995). The
partial melting starting material was an average composition of primary mantle
based on Sun and McDonough (1989). The partitioning coefficients for
different mafic–ultramafic rock-forming minerals from Keskin (1994) are used
in the melting and crystallization fractionation model. Tick marks explain the
fraction of partial melting versus various minerals calculated using the
petromodeler software (Ersoy, 2013). The data of the Xiwanggou fertile rocks
are from this study and Kong et al. (2019b), and those of the barren rocks are
from Jiadang (Xiong et al., 2011a; Kong et al., 2018), Bairiqili (Xiong et al.,
2011b), and Langmuri (in published) areas.

Olivine Fo value can be used as indicator of oxygen fugacity
and temperature of hosted melt, which accounts to the activities
of metallic Fe controlled by reducing conditions, and ferric
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FIGURE 12 | Schematic diagram showing the tectonic evolutionary history of the Permian ultramafic–mafic complex and the corresponding mineralization of the
East Kunlun Orogenic Belt. For explanation see text.

iron controlled by oxidizing conditions (Zhou et al., 2018).
In addition, the exchange of Fe and Ni between olivine
and sulfide melt is significantly controlled by the complex
of temperature, sulfur fugacity, oxygen fugacity and nickel
contents of sulfide melt (Brenan, 2003; Zhou et al., 2018),
which is probably occurred in the deep continental lithosphere
as mantle sulfide is likely molten in much of there (Zhou
and Hirschmann, 2016). Although compositions of ascending
mantle melt will be significantly affected by AFC processes,
the Xiwanggou complex is justified to be slightly influenced
in this study. Therefore, the olivine compositions from the
Xiwanggou complex can be used to estimate the metling
conditions of its mantle source. Compilation from previously
published olivine-sulfide melt equilibration experiments (Fleet
and Macrae, 1988; Gaetani and Grove, 1997; Brenan, 2003;
Zhou et al., 2018), olivine Fo values and Ni contents show
contrast relationships elevate with decreasing f O2 at different
temperatures (Figures 13a,b). On basis of the linear regressions,
the moderate Fo values from this study suggests log f O2 range
of –10.57 ± 0.06 to –8.98 ± 0.07 between 1200 and 1300◦C
(Figure 13a), and the Ni contents give a similar logf O2 range
of –10.19 ± 0.28 to –9.02 ± 0.19 at a temperature range
of 1200–1300◦C (Figure 13b). Generally, the temperature of
the hottest part of mantle wedge can reach ∼1200–1350◦C in
continental magmatic arcs; and the crust-mantle boundary are
typically at ∼1 GPa and 1100◦C (Grove et al., 2012). Moreover,
the oxygen fugacity in Earth’s mantle decrease with depth, within
temperature range of 800–1400◦C (Frost et al., 2004; Frost
and Mccammon, 2008). Therefore, the parental magma of the

Xiwanggou complex derived from a dehydration partial melting
of upper mantle wedge (1FMQ = –2 – 0 log units) rather than
transition zone (1IW = 0) or deeper mantle (1IW = –1.4 log
units and temperature above 1350◦C), which was controlled
by the breakdown of amphibole between the 1200 and 1300◦C
isotherms at relative shallow depths of 45–60 km (Peacock et al.,
1994; Grove et al., 2012). The relatively reduced source may favor
Ni relative to Fe in the melt owing to the great stability of the
Ni3S2 species with greater metal/anion ratios [(Fe + Ni)/(S + O)]
(Brenan and Caciagli, 2000; Kress, 2007).

Ore-Forming Potential of Xiwanggou
Mafic–Ultramafic Magma
Several critical aspects for the genesis of the large and super-
large magmatic sulfide ore deposits have been identified (Lambert
et al., 1998; Naldrett, 1999; Mao et al., 2008; Song et al., 2011),
and upgrading concentration and segregation of sulfide liquid
from Ni-rich parent magma to an economic level is an imperative
precondition (Li and Naldrett, 1999; Li et al., 2007; Mao et al.,
2018). Generally, the mechanism of sulfide segregation affect
subsolidus Fe–Ni exchange reaction between olivine and a sulfide
liquid (Li et al., 2007; Mao et al., 2018). Olivines in contact
with sulfide melt would react with sulfides, exchanging Ni and
Fe (Li and Naldrett, 1999), which is an important mechanism
for producing high Ni sulfide for picritic and basaltic magmas
(relatively Ni-rich) (Brenan and Caciagli, 2000; Mao et al., 2018).
The Fo values of the olivine from the Xiwanggou complex are
covered by those of medium-Ni tenor deposit, and much lower
than those from high tenor deposits, such as the Jinchuan and
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FIGURE 13 | Fo values (mol% MgO/[MgO + FeO]) (A) and Ni contents of
olivines coexisting with sulfide melts (B) show relations to the variable oxygen
fugacities and temperatures from various studies. Data sources of different
temperatures are: 1200◦C from Brenan (2003); 1300◦C and 1307◦C and from
Fleet and Macrae (1988) and Brenan (2003); 1350◦C from Gaetani and Grove
(1997); 1395◦C and 1400◦C from Fleet and Macrae (1988) and Zhou et al.
(2018).

Xiariham deposits (Figure 14A; Zhang Z. W. et al., 2016; Zhou
et al., 2016). In addition, the Xiwanggou complex shows a positive
Fo-Ni correlation in olivines as a consequence of abundant Ni
absorbed by olivine from sulfide and decreasing Fe contents in
olivine affected by sulfide segregation (Figure 14A). Therefore,
a strong sulfide segregation scale resulted in a medium tenor
potential of the Xiwanggou deposit, whereas magmatic rebalance
between olivine and melt will result in a low-Ni tenor deposit.

Ni and MgO contents in melt are significantly related to the
ratios between olivine and sulfide segregation, and decrease with
increasing fractionated degrees (Figure 14B). The Xiwanggou
complex shows very low ratios of olivine and sulfide segregation
that are mainly concentrated between 0.1 and 0.5 (Figure 14B).

FIGURE 14 | (A) Olivine Ni vs. Fo (mol% MgO/[MgO + FeO]) diagram
indicating different processes in forming high-Ni, medium-Ni and low-Ni tenor
magmatic Ni–Cu deposits (on basis of Mao et al., 2018); (B) MgO (wt.%)-Ni
(ppm) diagram of bulk compositions. The curves in the figure are computer
simulations of the fractionation of a komatiite magma containing 32 wt% MgO
as a consequence of the separation of olivine (unsaturated) or a mixture of
different proportions of olivine + sulfide. The numbers indicate the weight ratio
between olivine and sulfide segregation.

The Ni and MgO contents of the Xiwanggou gabbro are
obviously lower than the olivine pyroxenites, which accounts
to the increasing melt fraction from olivine pyroxenites to
gabbro (Figure 14B). Clinopyroxenes in the Xiwanggou olivine
pyroxenites contain extremely high Cr2O3 contents and very
low SiO2 contents, which further indicates that the Xiwanggou
complexes underwent relatively low degree fractionation in
mantle, and would need more sulfur contents to achieve sulfur
saturation (Liu et al., 2007).

The thermal structure of subduction zone was modeled to
discuss the ore forming potential of the Xiwanggou mafic–
ultramafic magma, as compare to those of the Ural–Alaska
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type mafic–ultramafic intrusions in arc environments (Su
et al., 2012; Figure 12). The subduction of oceanic slab
continues from the Middle Permian to early Late Triassic
in the EKOB (Yu et al., 2020), in which old and cool
oceanic crust (<45 Ma) is subducted with a high angle,
representing a rapid convergence (Peacock and Wang, 1999).
Yao et al. (2018) suggested that the melting in cooler
subduction zones is usually triggered and enhanced by the
continuous addition of slab-derived fluids or melts, resulting
in a relative low-Ni content in the melt, but warm subduction
may produce melts with high Ni abundance. Therefore, we
supposed that the Xiwanggou host rocks may reach medium
potential for Cu–Ni sulfide mineralization, although its scientific
significance are valuable.

Tectonic Control of Magmatic Conduit
Most economic magmatic Ni–Cu–(PGE) deposits have been
interpreted to have formed indynamic lava channels or magma
conduits (Zhou et al., 2004; Begg et al., 2010), which provide rapid
and efficient magma transport to the crust without significant
early sulfide segregation (Barnes and Lightfoot, 2005). Therefore,
it is important to know the tectonic mechanism of the conduits
for middle-late Permian mafic–ultramafic magmas in the EKOB
as potential exploration targets.

In addition to the Xiwanggou complex, abundant similar
types of the Late Permian- Middle Triassic mafic–ultramafic
intrusions have been brought close to the surface as a
result of more significant uplifting in the EKOB (Xiong
et al., 2011a; Kong et al., 2018). All of these intrusions are
located in the junction area between the EKOB and WQOB.
Tectonic and geochronological constraints indicates that the
subduction of the Paleo Tethys oceanic slab started during
the Late Permian along the southern most Anemaqen fault
(Figure 1), which resulted in large amounts of magmatism
formed in the continental arc belt. Although the EKOB
was in a suppressed setting as the subduction environment,
significant local transpressional windows caused by the right-
lateral strike-slip shearing action of the Wenquan (WQF) and
South Kunlun faults (SKF) and a series of the secondary faults
like the Longwakalu fault and bending Boluoer fault were
formed in the South Kunlun forearc belt (Figure 12), which
provided significant conduits for the large-scale magmatism
and related magmatic metallogenesis (Begg et al., 2010). In
addition, crustal deep faults have clearly played an important
role in providing zones of weakness up which magma has
ascended into crustal material. The characteristics of the
tectonic setting are similar to those of the Early Permian
Huangshan-Jing’erquan Ni–Cu belt in North Xinjiang (NW
China), in which the right-lateral wrench tectonics characterized
by crustal-scale shear zones most likely controlled and focused
the intrusion of parent magmas (Branquet et al., 2012; Wu
et al., 2018). It is therefore that the secondary tensional
structures formed by large-scale regional shearing stress most
likely provide a channel for the ascending of mantle-derived
magma and also create a space for the formation of magma
chambers in the crust. Furthermore, local transtensional-
rifted spaces caused by large scale strike-slip shearing along

suture zones provide settings where deep, Moho-penetrating
faults are available for reactivation, and accessing any dense
mafic underplated material that might be residing at the
base of the crust (Lightfoot and Evans-Lamswood, 2015;
Barnes et al., 2016).

CONCLUSION

(1) The EKOB is characterized by two-stages of mafic–
ultramafic magmatic activities associated with copper–
nickel sulfide mineralization in the Late Silurian-Early
Devonian and Middle-Late Permian;

(2) The late Permian Xiwanggou Ni–Cu-bearing mafic-
ultramafic complexes are sheeted intrusions emplaced by
injection of successive mafic-ultramafic magma batches.

(3) The parental magma of the Xiwanggou mafic–ultramafic
complex derived from a source of SCLM in a cool
subduction zone, which primarily experienced dehydration
melting processes of amphiboles and subsequently
underwent hydrated melting in the overlying mantle wedge
and relatively reduced background.

(4) The Fe–Ni exchange between olivine and melt is
significantly associated with the temperature and oxygen
fugacity, which indicates that the magma were yielded in
a temperature range of ca. 1200–1300◦C and an oxygen
fugacity range of ca. –10.57 to –8.98 (log unit).

(5) The transpressional windows as a consequence of Late
Permian regional scale dextral strike-shearing activities,
is considered as a conduit for the syn kinematic
sheeted intrusion.
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