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For climate adaptation and risk mitigation, decision makers in water management or
agriculture increasingly demand for regionalized weather and climate information. To
provide these, regional atmospheric models, such as the Weather Research and
Forecasting (WRF) model, need to be optimized in their physical setup to the region of
interest. The objective of this study is to evaluate four cumulus physics (CU), two
microphysics (MP), two planetary boundary layer physics (PBL), and two radiation
physics (RA) schemes in WRF according to their performance in dynamically
downscaling the precipitation over two typical South American regions: one
orographically complex area in Ecuador/Peru (horizontal resolution up to 9 and 3 km),
and one area of rolling hills in Northeast Brazil (up to 9 km). For this, an extensive ensemble
of 32 simulations over two continuous years was conducted. Including the reference
uncertainty of three high-resolution global datasets (CHIRPS, MSWEP, ERA5-Land), we
show that different parameterization setups can produce up to four times the monthly
reference precipitation. This underscores the urgent need to conduct parameterization
sensitivity studies before weather forecasts or input for impact modeling can be produced.
Contrarily to usual studies, we focus on distributional, temporal and spatial precipitation
patterns and evaluate these in an ensemble-tailored approach. These ensemble
characteristics such as ensemble Structure-, Amplitude-, and Location-error, allow us
to generalize the impacts of combining one parameterization scheme with others. We find
that varying the CU and RA schemes stronger affects the WRF performance than varying
the MP or PBL schemes. This effect is even present in the convection-resolving 3-km-
domain over Ecuador/Peru where CU schemes are only used in the parent domain of the
one-way nesting approach. The G3D CU physics ensemble best represents the CHIRPS
probability distribution in the 9-km-domains. However, spatial and temporal patterns of
CHIRPS are best captured by Tiedtke or BMJ CU schemes. Ecuadorian station data in the
3-km-domain is best simulated by the ensemble whose parent domains use the KF CU
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scheme. Accounting for all evaluation metrics, no general-purpose setup could be
identified, but suited parameterizations can be narrowed down according to final
application needs.

Keywords: weather research and forecasting (WRF) model, sensitivity, CHIRPS 2.0, northeast Brazil, Ecuador, Peru,
eSAL, parameterizations

1 INTRODUCTION

Increasing demands for water until 2050 will aggravate the
impacts of water scarcity on agricultural production and
livelihood activities (Food and Agriculture Organization of the
United Nations, 2015). To successfully deal with this projected
development, sustainable management of available water
resources is mandatory. For improved decision support in
regional water management or agriculture, high-quality
regionalized weather and climate forecasting increasingly
matters (Soares et al., 2012; Müller et al., 2016) and is a key
requirement for successful hydrological and crop impact
modeling (Decharme and Douville, 2006; Barbosa and
Lakshmi Kumar, 2016; Parkes et al., 2019). Especially in semi-
arid regions and areas affected by El-Niño-Southern-Oscillation
(ENSO) more profound knowledge of variations in seasonal
rainfall, estimated streamflow and crop yield from regionalized
model output, can help to better prepare against climate
extremes. Here, our focus is on the downscaling of global
hydrometeorological fields over two typical regions of South
America: one area of rolling hills in Northeast Brazil and one
orographically complex area in Ecuador/Peru. Hit by a multiyear
drought in the last decade (Marengo et al., 2018; Martins et al.,
2018) and strongly influenced by El Niño (Domínguez-Castro
et al., 2018), respectively, those regions are facing high climate
variability especially during their rainy seasons. Water availability
in those regions not only determines the production of rainfed
and irrigated agriculture, it also limits the hydroelectric energy
production in their highly managed river basins (von Sperling,
2012).

One way to achieve regionalized hydrometeorological
information is the application of regional atmospheric models,
such as the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008), to dynamically downscale coarse-
grained, large-scale fields over selected areas. The performance
of regional simulations highly depends on the used physical
parameterization model setup, and it may vary from region to
region. Therefore, these models need to be adapted in their
physical setting to the region of interest. Sub-grid scale
processes such as cloud microphysics (MP), cumulus
convection (CU), planetary boundary layer physics (PBL), and
radiation physics (RA) are parameterized in these models, and
their choice and combination highly influences the modeled
hydrometeorological variables (Flaounas et al., 2011; Crétat
et al., 2012; Yang et al., 2012; Zhang et al., 2012; Efstathiou
et al., 2013; Klein et al., 2015; Que et al., 2016; Gbode et al., 2019;
Yang et al., 2021). As precipitation amounts result from the
complex interaction of the applied physical schemes, they
combine all uncertainties due to the model setup and are a

major source of impact model uncertainty (e.g., Decharme and
Douville, 2006; Barbosa and Lakshmi Kumar, 2016; Parkes et al.,
2019). This study therefore focuses on the performance of the
WRF setup in terms of reproduction of precipitation patterns.

Comprehensive parameterization studies are common
practice to decide on the best-suited regional model setup
before conducting operational weather forecasts, long-term
climate projections or impact studies. Previous WRF
parameterization studies, relevant for our focus regions, did
not reach high resolutions below 10 km for regional
applications (e.g., 30 km in the Amazon basin; Fersch and
Kunstmann, 2014), chose a very limited domain (e.g., 15 km
resolution over a 225 × 225 km domain in Southern Ecuador;
Ochoa et al., 2016), included only parts of our study domains
(e.g., 40 km resolution over South America between −10° and
−50°S; Ruiz et al., 2010), did not pursue a full factorial
combination of applied physics schemes (e.g., high-resolution
runs at 18–6–3 km over the Peruvian Andes; Moya-Álvarez et al.,
2018) or studied only short-term events (e.g., high-resolution
runs at 25–5–1.66 km in Northeast Brazil for a 10-day period;
Comin et al., 2020). Ochoa et al. (2016) and Ruiz et al. (2010)
further lacked a profound analysis with respect to the effects of
different physics schemes on precipitation. Fersch and
Kunstmann (2014) already showed difficulties of the different
WRF setups in reproducing the observed precipitation. Our study
therefore aims at a detailed, multi-target evaluation tailored for
the use of ensembles (ensemble-tailored) of the conducted high-
resolution WRF physics ensemble runs including four CU, two
MP, two PBL, and two RA physics in a full-factorial combination
of physics schemes over a continuous 2-years period. With high-
resolution, daily, global gridded precipitation reference data
available, the regionalized WRF precipitation at target
resolutions of 9 and 3 km can be extensively validated:
gridpoint-based, domain-based and feature-based, allowing the
consideration of different aspects needed when used as input for
spatially distributed impact models or for running regional
climate projections or weather forecasts. We first demonstrate
the necessity of model parameterization studies in these regions
of South America, and then differentiate the impact of different
physical parameterization schemes on the distributional,
temporal and spatial patterns of the high-resolution
dynamically downscaled precipitation fields.

2 METHODS

2.1 WRF Model Configuration
The Weather Research and Forecasting (WRF) model is a
numerical weather prediction (NWP) model, used for both
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research and operational applications (Skamarock et al., 2008). In
this project, WRF Version 3.9.1 with the Advanced Research
WRF (ARW) solver was used for dynamical downscaling. Initial
and lateral boundary conditions for our simulations were used
from interpolated data of the European Center for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis (ERA) Interim
(Dee et al., 2011) with a spatial resolution of 79 km, 60 vertical
levels and a model top at 0.1 hPa. The initial and lateral boundary
conditions used in WRF are wind components, temperature,
water vapor, surface pressure, sea surface temperature (SST)
and soil moisture, all of them in different atmospheric and
soil height levels, respectively. The boundary conditions were
updated at every WRF model time step from the linearly
interpolated 6-hourly global fields.

The spatial setup of WRF consists of four domains, with the
first domain (SA27) representing the 27-km-resolution parent
domain with 288 × 206 grid points. In a 1-way nested approach
(no feedback), the horizontal grid resolution was stepwise
increased from 27 km (SA27) to 9 km (EP9 and NB9), and
finally to 3 km (EP3, Figure 1). This last step to 3 km was
only performed over the highly mountainous Ecuadorian-
Peruvian region to be able to represent topographically
induced processes. Over the topographically more
homogeneous Brazilian region, the final horizontal grid
resolution was 9 km. The simulated time step was 90 s for
SA27 with a parent time step ratio of 1:3. For some
simulations, the time step of SA27 needed to be reduced to
30 s for numerically stable simulations. In the vertical, the
domains consisted of 100 terrain-following hydrostatic
pressure levels with a model top at 10 hPa.

Simulations were continuously run over a period of
2.5 years (Jan 2006 to Jun 2008) to capture different wet
and dry conditions during the rainy and dry seasons of the

regions and including a 6-months spin-up for soil moisture
equilibrium adjustment. In their sensitivity study on the effect
of spin-up length to atmospheric variables like precipitation
and 2-m temperature, Jerez et al. (2020) recommend a six-
months spin-up period as the best compromise between
required computational expense and any remaining
imbalance of the soil subsystem. Analyzing the behavior of
relative soil moisture content in different parameterization
experiments for the 2.5 years simulation period suggests that a
6-months period is sufficient for obtaining the dynamical soil
moisture equilibrium in all domains (not shown). The time
period from Jan 2006 to Jun 2008 was chosen to obtain
continuous simulations of medium years in the domains
with respect to precipitation (Figure 2A). To allow for a
better representation of regionalized climatological
conditions, these years were further selected to be within
the period of maximum assimilated observations in the
atmospheric analysis component of ERA-Interim from 2002
till 2010 (Dee et al., 2011; Simmons et al., 2014). Ochoa et al.
(2016) further recommend to include ENSO neutral years for
physics parameterization studies, as high uncertainties can be
introduced by ENSO especially in the western coastal regions
of Ecuador and Peru. The inclusion of El-Niño-years would be
an additional research question and would require the
simulation of at least 10 years to average out the strong
effects of El Niño. This study focuses on years with typical
average climatological conditions. By excluding the spin-up
period, we focus our analysis on the period Jul 2006–Jun 2008.
For the validation against gridded reference data, theWRF grid
was bilinearly interpolated from 9 km to 0.1° for EP9 and NB9,
and from 3 km to 0.05° for EP3. For the comparison with
station observation data, the nearest grid cell to the station
location of the 3 km EP3 grid was used. The relaxation zones of
the nested domains were omitted for the analysis.

2.2 Tested WRF Physics Parameterization
Schemes
Testing all possible combinations of all available physics schemes
for several years is computationally too expensive. Therefore, we
chose a representative sample ofWRF physics schemes, including
different levels of complexity and formulation of particular
processes. For precipitation generation, the cumulus and
microphysics schemes are mainly responsible, representing
convective and non-convective precipitation, respectively.
Testing four different CU schemes, our main focus is on the
performance of CU schemes that are already reported to have
major impact on the simulated precipitation among the different
physics scheme groups (Crétat et al., 2012; Sikder and Hossain,
2016; Ochoa et al., 2016; Yang et al., 2021), particularly in regions
producing predominantly convective precipitation like in the
tropics. However, also different MP, PBL and RA schemes
largely contribute to precipitation uncertainties (Klein et al.,
2015; Ulate et al., 2014; Efstathiou et al., 2013; Flaounas et al.,
2011), especially for high spatial resolution <5 km for which
convective processes are expected to be captured and CU schemes
should not be used (Hsiao et al., 2013; Skamarock et al., 2008). For

FIGURE 1 | Regional dynamical downscaling over the Ecuadorian-
Peruvian and Brazilian domain. In a nested approach, the input data of the
ERA-Interim reanalyses is downscaled to 27 km (SA27), 9 km (EP9) and 3 km
(EP3) over Ecuador-Peru and to 9 km (NB9) over Northeast Brazil. The
dots in EP3 represent 106 selected precipitation gauges of the Ecuadorian
Weather Service INAMHI that have less than 5% of missing values during Jul
2006–Jun 2008.
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this reason, we also tested two different schemes each for MP,
PBL and RA. In total, 32 simulations from the full factorial
combination of the selected schemes were run (Table 1).
Regarding land surface physics parameterizations, we fixed the
Noah Land surface model (LSM; Chen and Dudhia, 2001), with
soil temperature and moisture in four levels, for all runs, as
previous studies (e.g., Crétat et al., 2012; Tariku and Gan, 2017)
found smaller effects of different LSMs over the amount of
precipitation compared to the other mentioned physics
parameterization groups. Using the nested approach, all study
domains (Figure 1) were run in one simulation at the same time
using the same physics setup. For the 3-km-domain, CU schemes
were not used, but explicitly resolved convection was assumed.

The cumulus physics schemes manage subgrid-scale
convection processes and shallow clouds. The timing and
location of cumulus convection is controlled by a trigger
function, and the adjustment method controls how profiles of
temperature and moisture are modified according to the
triggering in the convection scheme. The used schemes of

Grell-3 (improved Grell-Devenyi scheme; G3D, Grell and
Dévényi, 2002; Skamarock et al., 2008), New Tiedtke (Tiedtke,
Zhang andWang, 2017) and the modified version of Kain-Fritsch
(KF, Kain and Fritsch, 1990; Kain, 2004) are mass-flux schemes.
Mass-flux schemes have explicit updrafts to transport air from the
updraft source layer upwards while reducing the convective
available potential energy (CAPE). They also include
compensating environmental subsidence, i.e., downdrafts,
around clouds. Among the mass-flux schemes, G3D produces
an ensemble of triggers and closures (determines cloud strength)
and feeds back the ensemble mean to the model. G3D is especially
suitable for small grid sizes as it allows the spreading of
subsidence effects to neighboring grid columns (Skamarock
et al., 2008). However, this subsidence spreading is only
recommended for grid sizes ≤5 km (Skamarock et al., 2008;
Grell and Freitas, 2014) and is therefore not used for the 9 km
domain. For G3D, also the shallow convection (“ishallow”),
i.e., an additional scheme for non-precipitating shallow clouds
by enhanced mass-flux, is used. In contrast to the other schemes,

FIGURE 2 | (A) Annual domain-averaged precipitation anomalies (mm a−1) of CHIRPS for EP9 (upper), EP3 (middle) and NB9 (lower) with respect to the
climatological mean from 1981 to 2016. Simulated years of 2006–2008 are marked with black. (B) CHIRPS timeseries and 1981–2016 climatology, together with WRF
ensemble uncertainty of monthly domain-averaged precipitation (mm d−1) for Jul 2006 till Jun 2008 for EP9 (upper), EP3 (middle) and NB9 (lower). The uncertainty in
the reference data by including MSWEP and ERA5-Land for EP9 and NB9 is depicted by shaded areas.
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Tiedtke is able to include momentum transport. The fourth used
scheme of Betts–Miller–Janjic (BMJ, Janjic, 1994; Janjic, 2000) is
based on convective adjustment of atmospheric profiles to post-
convective (mixed) soundings and does not have explicit updrafts
or downdrafts. In contrast to the others, BMJ also does not
include cloud and ice detrainment at the cloud top.

Microphysics schemes produce clouds by resolved-scale
radiative, dynamical or convective processes. They include
latent heat release, cloud and precipitation processes and
different particle types associated with the phase changes of
water between the vapor, liquid and solid phases (Skamarock
et al., 2008). The microphysics therewith provide atmospheric
heat and moisture tendencies, as well as resolved-scale surface
precipitation. The conditions at grid cells, e.g., supersaturation or
temperature below 0°C, −40°C, determine the distribution of
water among the represented species. For our study, we chose
the WRF single moment 3-class simple ice scheme (WSM3) and
the more complex WRF single moment 6-class (WSM6) scheme.
WSM3 (Hong et al., 2004) includes simulated mixing ratios for
water vapor (Qv), cloud ice crystals (Qi), and snow (Qs) and their
interactions below 0°C, as well as water vapor (Qv), cloud liquid
water (Qc), and rain liquid water (Qr) and their interactions
above 0°C. Compared to WSM3, WSM6 (Hong and Lim, 2006)
also represents graupel (Qg) and more interactions between the

classes. Both WSM3 and WSM6 do not include hail (frozen
drops, Qh) and do not predict number concentrations of species
like double moment schemes.

Planetary boundary layer physics schemes control sub-grid-
scale vertical fluxes of heat, momentum and other quantities like
moisture via eddy transports in the whole atmospheric column.
To obtain turbulent fluxes, a closure scheme is needed to relate
the unknown turbulent flux terms in the equations to known
variables like mean state or gradients. Whether fluxes depend on
local or nonlocal values and gradients defines if mixing with
nearby (local) or distant (nonlocal) grid cells is allowed. The two
selected schemes of Yonsei University (YSU, Hong et al., 2006)
and Asymmetrical Convective Model version 2 (ACM2, Pleim,
2007) are both first-order closures. YSU is a nonlocal closure
scheme and explicitly treats the entrainment layer at the PBL top
based on results from large-eddy simulations. As a hybrid local-
nonlocal scheme, ACM2 combines explicit nonlocal exchange of
the surface layer to all layers above with local eddy diffusion
between the other layers and the immediately next layer above,
together better representing the effect of diurnal heating (Pleim,
2007).

Radiation physics schemes are used to describe longwave and
shortwave radiation processes, including absorption, reflection,
and scattering, and they determine the heating of the ground and
the atmosphere. We tested the combination of the rapid radiative
transfer model (RRTM, Mlawer et al., 1997) for longwave
radiation and the Dudhia shortwave scheme (Dudhia, 1989),
and the rapid radiative transfer model for general circulation
models (RRTMG, Iacono et al., 2008) for both longwave and
shortwave radiation. Whereas shortwave Dudhia only performs
downward integration of the solar flux per column, shortwave
RRTMG considers both downward and upward (reflected) fluxes.
In contrast to shortwave RRTMG, Dudhia has no ozone effect
that would maintain a warm stratosphere. Both shortwave
Dudhia and longwave RRTM work with a binary cloud
fraction (0/1), whereas RRTMG includes subgrid-scale cloud
variability with a statistical method of maximum-random
cloud overlap in different layers. Longwave RRTMG uses the
same basic physics and absorption coefficients as longwave
RRTM, but includes some modifications to improve
computational efficiency.

2.3 Validation Reference Datasets
For the validation of simulated WRF precipitation, the steady
decrease in the number of precipitation gauges and the lack of a
consistently best-performing global dataset (Lorenz et al., 2014)
has to be kept in mind. Especially in Northeast Brazil and coastal
Ecuador-Peru, the number of rain gauges dramatically decreased
between 1980 and 2009 (Lorenz et al., 2014). Hence, for the
validation of WRF precipitation, we focus on global publicly
available daily datasets of different observational origin, that are
natively provided at roughly the horizontal resolution of theWRF
domains of 9 and 3 km. We use 1) blended gauge-satellite
precipitation estimates of the Climate Hazards Group Infrared
Precipitation with Stations version 2.0 (CHIRPS, Funk et al.,
2015), 2) merged precipitation estimates from satellite and
reanalysis data of the Multi-Source Weighted-Ensemble

TABLE 1 | Tested 32WRF setups of parameterization combinations of 4 cumulus
convection (CU), 2microphysics (MP), 2 planetary boundary layer (PBL), and 2
radiation (RA) physics schemes.

Run # CU MP PBL RA
1 G3D + shallow WSM3 YSU RRTMG
2 G3D + shallow WSM3 YSU RRTM + Dudhia
3 G3D + shallow WSM3 ACM2 RRTMG
4 G3D + shallow WSM3 ACM2 RRTM + Dudhia
5 G3D + shallow WSM6 YSU RRTMG
6 G3D + shallow WSM6 YSU RRTM + Dudhia
7 G3D + shallow WSM6 ACM2 RRTMG
8 G3D + shallow WSM6 ACM2 RRTM + Dudhia
9 Tiedtke WSM3 YSU RRTMG
10 Tiedtke WSM3 YSU RRTM + Dudhia
11 Tiedtke WSM3 ACM2 RRTMG
12 Tiedtke WSM3 ACM2 RRTM + Dudhia
13 Tiedtke WSM6 YSU RRTMG
14 Tiedtke WSM6 YSU RRTM + Dudhia
15 Tiedtke WSM6 ACM2 RRTMG
16 Tiedtke WSM6 ACM2 RRTM + Dudhia
17 BMJ WSM3 YSU RRTMG
18 BMJ WSM3 YSU RRTM + Dudhia
19 BMJ WSM3 ACM2 RRTMG
20 BMJ WSM3 ACM2 RRTM + Dudhia
21 BMJ WSM6 YSU RRTMG
22 BMJ WSM6 YSU RRTM + Dudhia
23 BMJ WSM6 ACM2 RRTMG
24 BMJ WSM6 ACM2 RRTM + Dudhia
25 KF WSM3 YSU RRTMG
26 KF WSM3 YSU RRTM + Dudhia
27 KF WSM3 ACM2 RRTMG
28 KF WSM3 ACM2 RRTM + Dudhia
29 KF WSM6 YSU RRTMG
30 KF WSM6 YSU RRTM + Dudhia
31 KF WSM6 ACM2 RRTMG
32 KF WSM6 ACM2 RRTM + Dudhia
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Precipitation version 2.1 (MSWEP, Beck et al., 2019), and 3) a
pure reanalysis product of a land component replay of the
ECMWF ERA5 (Hersbach et al., 2020) climate reanalysis
(ERA5-Land, ECMWF, 2019).

The CHIRPS dataset is quasi-global (50°S–50°N) and has a
spatial resolution of 0.05°. It is available from 1981 to near
present, as a daily, pentadal and monthly precipitation dataset
(Funk et al., 2015). In their final product, best available
precipitation gauge data are blended with high resolution cold-
cloud-duration-based rainfall estimates producing precipitation
fields that are, as a monthly product, similar to gridded monthly
station data of those like Global Precipitation Climatology Center
(GPCC, Becker et al., 2013) or University of Eeast Anglia’s
Climate Research Unit (CRU, Harris et al., 2014).

The MSWEP dataset wants to take full advantage of the
complementary strengths of gauge, satellite and reanalysis data
(Beck et al., 2017, 2019). Applying weighted averages of
precipitation anomalies of gauge observations, satellite
remote sensing and atmospheric model reanalyses, MSWEP
provides reliable global 3-hourly precipitation estimates at a
horizontal resolution of 0.1° from 1979 to 2017 (Beck et al.,
2019).

ERA5-Land (ECMWF, 2019) provides hourly data at a
horizontal resolution of 0.1° from 1981 to 2–3 months before
the present. Despite no direct usage of observations in the
production of ERA5-Land, the assimilation of observations in
the ERA5 atmospheric forcing as well as the lapse rate correction
of input air temperature, air humidity and pressure in the
interpolation step ensure a high quality and high resolution
information of surface variables.

For the comparison with the high resolution domain EP3,
precipitation station data was provided by the national
weather service of Ecuador (INAMHI) for the coastal and
Andes region of Southern Ecuador. For our analysis, we
included up to 132 stations having less than 5% of missing
values during the WRF simulation period. Precipitation was
measured from 07 to 07 am local time (12–12 UTC). The usage
of local station data, though only for a limited part of the
domain, should provide an indication for the robustness of
obtained results.

2.4 Analysis Methods
For the performance analysis of the WRF ensemble, the WRF
runs are grouped according to their applied physics
parameterization schemes (similar to Klein et al., 2015).
This ensemble approach generalizes the impact of and
allows to identify the uncertainties introduced by
individual physics schemes. For the four cumulus physics
groups, each ensemble consists of eight members using the
respective scheme. The two microphysics, two planetary
boundary layer and two radiation physics groups have 16
members each.

For the validation of timeseries of domain average
precipitation, we use the Taylor diagram (Taylor, 2001) which
allows to compare the standard deviation, Pearson correlation
coefficient and root mean square difference (RMSD) of the
simulations and the reference in a single plot.

For the spatial verification of the simulated precipitation fields,
we apply the ensemble Structure-Amplitude-Location (eSAL)
analysis (Radanovics et al., 2018; Wernli et al., 2008, 2009) to
daily precipitation fields of each domain. This feature-based
method compares the simulated ensemble with a reference
field in terms of amplitude A, i.e., the total precipitation of the
domain, location L, i.e., the location of the center of mass of the
total domain and the location of the centers of mass of individual
precipitation features, and structure S, i.e., the size and shape, or
volume, of the precipitation features. Any contiguous gridpoints
of precipitation above a given threshold are defined as a
precipitation feature or object. This threshold is independently
calculated for the simulation ensemble and the reference field as
R95 × f, with R95 being the 95th percentile of all nonzero gridpoint
values in the domain for the current timestep (Radanovics et al.,
2018). For the simulations, R95

sim is defined by all nonzero
gridpoint values of all relevant ensemble members together. f
is a threshold factor, for daily values determined as

f � max⎛⎝ 1
15
,
0.01 mm
R95
sim

,
0.01 mm

R95
ref

⎞⎠. (1)

f is thus always set to 1/15, except if this resulted in a threshold
below the minimum reasonable nonzero value of 0.01 mm in the
data (Radanovics et al., 2018). Both S and L depend on this
threshold. In general, eSAL is only defined for nonzero
precipitation fields in both the reference field and in at least
one ensemble member of the simulations.

The ensemble amplitude error is defined as the relative
difference of the ensemble mean (〈〉) of domain average
precipitation (rr) in the simulation ensemble and the
reference field:

eA � 〈rrsim〉 − 〈rrref〉
0.5(〈rrsim〉 + rrref). (2)

eA ranges from −2 to 2, with perfect agreement for eA � 0, too
little simulated precipitation for eA < 0 and too high simulated
precipitation for eA > 0. The ensemble structure error (eS)
determines the relative difference of the ensemble mean (〈〉)
of weighted averaged scaled precipitation volumes (V) in the
simulation ensemble and the reference field:

eS � 〈Vsim〉 − Vref

0.5(〈Vsim〉 + Vref), (3)

with

V �
∑
i
(rri rri

rrmax
i
)

∑
i
rri

. (4)

Here, rri is the precipitation sum of all connected gridpoints in
feature i and rrmax

i the maximum gridpoint precipitation of this
feature. eS thus indicates if the ensemble as a whole is able to
simulate, on average, the right scaled precipitation volumes.
Similar to eA, eS ranges from −2 to 2, with equally average
scaled volumes for eS � 0, too small or too peaked simulated
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features for eS < 0 and too large or too flat simulated features for
eS > 0.

The ensemble location error (eL) consists of two parts, relating
to both the entire domain (eL1) and individual features (eL2):

eL � eL1 + eL2. (5)

eL1 is defined as the relative distance of the ensemble mean (〈〉)
centers of mass in the simulation ensemble and the reference
field:

eL1 �
∣∣∣∣∣〈x(rrsim)〉 − x(rrref)∣∣∣∣∣

d
, (6)

where d is the largest distance between two domain borders and
x(rr) is the coordinate vector of the center of mass of all
precipitation in the domain. eL2 is finally specified as twice the
squared distance between the cumulative distribution functions
P, i.e., the continuous ranked probability score (CRPS, Hersbach,
2000), of the relative weighted average distances between the
centers of mass of individual features and the total center of mass
in the simulation ensemble and in the reference field:

eL2 � 2 × CRPS[P(rsim
d
), P(rref

d
)], (7)

with

r �
∑
i
rri|xi − x|
∑
i
rri

, (8)

and

CRPS(Psim, Pref) � ∫∞

−∞
[Psim(x) − Pref(x)]2dx. (9)

Here, xi is the coordinate vector of the center of mass of
precipitation in the feature i. For the reference field, the
cumulative distribution function Pref is a step-function. Both
L1 and L2 range between 0 and 1. A value of L � 0 defines a
perfect ensemble in terms of location. L � 2 would be found for
total centers of mass located at the opposite domain border (eL1
close to 1) and for contrarily organized features, e.g., far from
each other in one field and close to each other in the other field
(eL2 close to 1).

2.5 Climatological Domain Characteristics
According to CHIRPS, the 9-km-Ecuador-Peru (EP9) domain
that includes parts of Brazil, Colombia and Venezuela, has a mean
annual precipitation of 2,455 mm. The smaller 3-km-Ecuador-
Peru (EP3) domain shows a long-term mean of 1597 mm a−1.
With 1266 mm a−1, the 9-km-Northeast-Brazil (NB9) domain
exhibits the lowest value. Yearly precipitation anomalies for EP9
and EP3 reach up to ±200 and ±300 mm a−1, respectively, and for
NB9 even up to ±400 mm a−1 (Figure 2A). In most years, annual
domain-averaged precipitation anomalies of EP9 and EP3 have
the same sign, but with different magnitudes. The years
2006–2008 are characterized by small positive precipitation
anomalies around 50 mm a−1 for EP9. In the smaller domain
EP3, the conditions in 2006 and 2007 roughly correspond to the

long-termmean value, and the year 2008 is wetter by 100 mm a−1.
For NB9 a wet year in 2006 alternates with a dry year in 2007 and
another wet year in 2008 with anomalies up to ±140 mm a−1. In
sum, the selected years 2006–2008 are a continuous period of
mean precipitation conditions in the domains well suited for the
WRF physics ensemble simulations.

Most of South America is dominated by a monsoon-like
seasonal cycle of precipitation, with strongly contrasting
conditions during austral winter and summer (Grimm, 2003;
Gan et al., 2004). Correspondingly, NB9 has a distinct wet and dry
season in austral summer and winter, respectively, with mean-
monthly precipitation ranging between 0 and 6 mm d−1 for
CHIRPS (Figure 2B). EP9 and EP3 show a less pronounced
seasonal cycle with a range between 5 and 9 mm d−1, and 3 and
7 mm d−1, respectively, which seems to be related to the spatial
average over different precipitation regimes (Grimm, 2003;
Celleri et al., 2007). Maximum domain-averaged monthly
mean precipitation in EP9 is found between March and May,
in EP3 between February and April, and in NB9 between January
and March (Figure 2B). The observational uncertainty when
further includingMSWEP and ERA5-Land as reference data is up
to 2 mm d−1 for EP9 and up to 0.5 mm d−1 for NB9. For the
analysis period of Jul 2006–Jun 2008, major deviations from the
climatological mean are evident for February 2007 for all
domains, with drier conditions in EP9 and EP3, and wetter
conditions in NB9. For March 2007, anomalies reverse for
EP9 and NB9 with wetter and drier conditions, respectively.
Distinct positive anomalies are further found for NB9 in
March and April 2008.

3 RESULTS

3.1 Necessity of Model Parameterization
Studies
For the selected 2-years analysis period, the simulated WRF
ensemble uncertainty in domain-averaged monthly mean
precipitation is shown in the boxplots of Figure 2B. Among
differently parameterized simulations, the simulated
precipitation can deviate by up to 20 mm d−1 when the
respective reference precipitation is around 6 mm d−1. Both
too dry and too wet WRF simulations are possible, though
with an overall tendency of overestimation in all three
domains. By demonstrating this large ensemble spread of
simulated precipitation over EP9, EP3 and NB9, the necessity
for the present model parameterization study becomes evident.
The ensemble spread is by far higher than the uncertainty
introduced by the different reference datasets that range
between 1 and 2 mm d−1 for EP9 and around 0.5 mm d−1 for
NB9. A remarkably lower WRF ensemble spread (<5 mm d−1) is
only found for the distinct dry season of the Northeast Brazil
domain (NB9) and for the anomalously dry February 2007 in the
9-km-Ecuador-Peru- domain (EP9).

To further demonstrate the necessity of model
parameterization studies based on a spatial pattern evaluation,
the WRF-simulated precipitation is compared against gridded
observations from CHIRPS. This is shown exemplary for the

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6694277

Portele et al. Ensemble-Tailored Precipitation Pattern Analysis

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


three-months season of JFM within the rainy season in 2007
(Figures 3–5) in which largest interannual variability was evident
for all three domains (Figure 2B). For CHIRPS, the JFM season is
characterized by mean precipitationmainly above 4 mm d−1 in all
three domains (Figures 3–5 CHIRPS). In EP9 (Figure 3A
CHIRPS), high precipitation values >10 mm d−1 are evident
especially in the Amazon region of West Brazil, Southeast
Bolivia, at the Border of Ecuador–Peru (also for EP3,
Figure 5A CHIRPS) and in the Andes region of North
Ecuador, Bolivia and Peru. Values below 4 mm d−1 are found
in the northern domain borders of Bolivia and Venezuela, as well
as at the Peruvian coast and in the lee of the Ecuadorian Andes
(also for EP3, Figure 5A CHIRPS). In NB9 (Figure 4A CHIRPS),
values above 10 mm d−1 concentrate at the northwestern domain
border, whereas low precipitation amounts of <4 mm d are found
in the easternmost region and in the core of Northeast Brazil
around 10°S and 40°W.

To also provide a spatial overview of reference uncertainty,
fields of precipitation (Figures 3A, 4A) and biases against
CHIRPS (Figures 3B, 4B) of MSWEP and ERA5-Land are

presented for EP9 and NB9. For EP3, precipitation of
INAMHI stations is shown along with CHIRPS
(Figure 5A). Whereas only small and little structured
deviations around ±2 mm d−1 against CHIRPS can be
observed for MSWEP and ERA5-Land in NB9 (Figure 4B),
larger bias of MSWEP or ERA5-Land against CHIRPS,
i.e., larger reference uncertainty, is found for EP9
(Figure 3B). Here, ERA5-Land shows wetter conditions
especially for the mountainous Andes region, in parts by
more than 10 mm d−1. Drier conditions by around
4 mm d−1 are found for the Amazon region in West Brazil
and Southeast Colombia. MSWEP is rather drier than CHIRPS
by around 4 mm d−1, only the Amazon region in Northeast
Peru shows wetter conditions. INAMHI station data and
CHIRPS generally coincide for Southwest Ecuador in EP3,
only some stations deviate from CHIRPS where both higher
and lower values of mean precipitation are possible.

In all three domains, the WRF ensemble median (WRFENS)
shows an overall positive bias against CHIRPS, especially for the
mountainous regions with more than 10 mm d−1 (Figures 3–5

FIGURE 3 | (A) Observed and simulated mean precipitation in JFM 2007 of CHIRPS, MSWEP, ERA5-Land and WRF ensemble median (WRFENS) over EP9. (B)
Bias of MSWEP, ERA5-Land and WRFENS against CHIRPS. (C) Deviation of the parameterization sub-ensemble median from WRFENS.
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WRFENS). Only some coastal and inland areas are drier than
CHIRPS. For EP3 (Figure 5B WRFENS), WRFENS bias against
INAMHI station data generally follows the patterns of bias
against CHIRPS, with a too dry simulated Ecuadorian coast
and too wet simulated Ecuadorian mountain regions.
Especially for EP3, higher resolved topography in WRF seems
to play a role as more distinct features of higher precipitation
amounts are evident in the Andes region at the Ecuador-Peru
border and in the southern part of the domain. CHIRPS does not
show these distinct features, resulting in a large positive bias of
WRFENS. For the Ecuadorian Andes, the lack of station data
within the area of largest positive bias ofWRFENS against CHIRPS

can also not bring further clarity to this high simulated
precipitation by WRF.

To illustrate the divergence within the WRF ensemble for
different applied parameterization schemes, theWRF ensemble is
grouped into several sub-ensembles that all use one fixed
parameterization scheme. For example, the G3DENS or
RRTMGENS encompass all eight or 16 runs, respectively, that
use the G3D cumulus or RRTMG radiation physics scheme. The
deviation of the median of these sub-ensembles from the total
WRFENS is shown in Figures 3–5. In all three domains, the
variation of the deviations fromWRFENS is largest within the CU
and RA sub-ensembles. The MP and PBL sub-ensemble medians

FIGURE 4 | As Figure 3, but for NB9.
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rather represent WRFENS. Only slight tendencies of wetter runs
for WSM6ENS and drier runs of WSM3ENS are found. For the
cumulus sub-ensembles in EP9 (Figure 3C), G3DENS and
TiedtkeENS, as well as BMJENS and KFENS seem to behave in
opposite ways: the G3DENS simulates more precipitation
especially for the mountainous (more than +10 mm d−1) and
Brazilian Amazon (up to +6 mm d−1) region whereas TiedtkeENS
gives less precipitation in these regions with similar magnitudes.
Opposite behavior for G3DENS and TiedtkeENS is also found
north of the equator with a drier tendency for G3DENS and a
wetter tendency for TiedtkeENS. A similar north-south division of
positive and negative deviations from WRFENS is evident for
BMJENS and KFENS that also behave in opposite ways, but with
smaller magnitudes than G3DENS and TiedtkeENS. For NB9
(Figure 4C), the picture is more clear: G3DENS and KFENS

compose the wetter runs of WRFENS, whereas TiedtkeENS and
BMJENS yield drier conditions. Similar to EP9, highest
magnitudes of deviations from WRFENS are found for G3DENS

with large areas above +10 mm d−1 and for TiedtkeENS with
regions especially in the Northwest and West up to −8 mm d−1.
For EP3 (Figure 5C), the deviations fromWRFENS among the CU
sub-ensembles are more diverse. The pattern of higher (less)
precipitation in the Andes region of G3DENS and BMJENS
(TiedtkeENS and KFENS) of EP9 passes through to EP3.
However, the negative deviations from WRFENS in the Andes
region seem to be even amplified for EP3 KFENS, whereas the
negative deviations of EP3 TiedtkeENS are dampened compared to
EP9. Here, it needs to be recalled that EP3 was simulated with
explicit convection, i.e., the CU parameterization was switched
off. However, for the parent domain EP9 the respective CU

FIGURE 5 | As Figure 3, but for EP3. Apart from CHIRPS, in (A) JFM mean precipitation values of and (B)WRFENS bias against 132 INAMHI stations having less
than 5% of missing values during JFM 2007 are shown.
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parameterizations were active. For the radiation sub-ensembles,
in all three domains, RRTMGENS composes the wetter part of
WRFENS, whereas RRTMENS builds the drier part of WRFENS
with similar magnitudes up to around ±6 mm d−1.

3.2 Gridpoint-Based Validation
Figures 6, 7 show the discrete probability distribution for daily
gridpoint-based precipitation of the parameterization sub-
ensembles compared to the different reference datasets for
EP9, NB9 and EP3. Regardless of the domain, probability
distributions of CHIRPS, MSWEP and ERA5-Land differ
strongly and seem to be characterized by different shape and

scale parameters when compared to theoretical probability
distributions like the Gamma distribution. Whereas highest
probabilities of MSWEP and ERA5-Land are found for lowest
daily precipitation amounts below 1 mm d−1, the CHIRPS
probability distribution has its maximum around 7 mm d−1

and shows a strong decline of probabilities toward lower
precipitation amounts. For both EP9 and NB9, MSWEP has
an exponential decrease of probabilities and shows lower
probabilities than CHIRPS for precipitation values between 8
and 20 mm d−1. For EP9 (Figure 6A), greatly enhanced
probabilities of ERA5-Land precipitation between 5 and
18 mm d−1 are found compared to both CHIRPS and

FIGURE 6 | Probability distribution of the parameterization sub-ensembles compared to CHIRPS, MSWEP and ERA5-Land for daily gridpoint-based precipitation
of (A) EP9 and (B) NB9 from Jul 2006 till Jun 2008.
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MSWEP, with a rather constant than exponential decrease. For
NB9 (Figure 6B), the probability distribution of ERA5-Land has
a more exponential decrease and resembles the one of CHIRPS
after CHIRPS’s maximum. For EP3, CHIRPS shows the lowest
probabilities of precipitation below 2 mm d−1. The INAMHI
station data in EP3, however, show high probabilities of low
precipitation values and low probabilities of precipitation above
20 mm d−1.

Regarding the probability distributions of the WRF sub-
ensembles, largest differences in their shape and scale are
found among the sub-ensembles for EP9 (Figure 6A). With
respect to CHIRPS, all probability distributions of the sub-
ensembles of EP9 show too high probabilities especially for

precipitation amounts <19 mm d−1. The only exception is
KFENS, that matches the probabilities for CHIRPS’s maximum,
but overestimates those for both lower and higher precipitation
amounts. Apart from the in general overestimated probabilities,
the shape of CHIRPS’s probability distribution is best represented
by the one of G3DENS for values >2 mm d−1. No probability
distribution of any sub-ensemble resembles the one of MSWEP.
With respect to ERA5-Land, TiedtkeENS and RRTMENS best
reproduce the shape, only with slightly underestimated
probabilities for precipitation amounts between 8 and
19 mm d−1. Like those of MSWEP and ERA5-Land, the
probability distributions of the WRF sub-ensembles show the
general problem of overestimated probabilities for small

FIGURE 7 | As Figure 6, but for EP3, with (A) CHIRPS reference data and (B) INAMHI station data. For (B), WRF data interpolated to the location of the 106
selected stations was used.
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precipitation values <1 mm d−1, i.e., model drizzle. Lowest
probabilities of drizzle rain is found for the G3DENS among
the cumulus groups and for RRTMGENS among the radiation
physics groups. For drizzle rain, about equal performance is
found for the microphysics and planetary boundary layer
physics groups. In sum for EP9, the parameterization sub-
ensembles can be grouped in mainly two classes (classification
also in comparison with the other used parameterization scheme
for the same physics topic): 1) monotonous to exponential
decrease of probabilities with highest probabilities for drizzle
rain (TiedtkeENS, KFENS, WSM6ENS, ACM2ENS, RRTMENS), and
2) drizzle rain with highest probabilities, but enhanced
probabilities also for medium precipitation amounts around
5 mm d−1 and exponential decrease thereafter (G3DENS,
BMJENS, WSM3ENS, YSUENS, RRTMGENS).

For NB9 (Figure 6B) and EP3 (Figure 7), such a clear
distinction between the shape of the probability distribution
of the different sub-ensembles is not valid. Rather, their
shape is characterized by an exponential decrease with
highest probabilities for drizzle rain. For NB9 (Figure 6B),
only G3DENS does not show an explicit exponential decrease
for values between 4 and 15 mm d−1. YSUENS further has
slightly enhanced probabilities around 8 mm d−1. For EP3,
the WRF gridpoints interpolated to INAMHI station
locations in general show higher probabilities of
precipitation than for the entire EP3 domain. KFENS and
RRTMENS best represent the distribution of the INAMHI
station data.

3.3 Domain-Based Validation
In the Taylor diagrams (Figures 8, 9A), domain averaged
timeseries of daily precipitation of all individual WRF runs
are evaluated with respect to their Pearson correlation
coefficient (CORR), standard-deviation (STD), and root-
mean square difference (RMSD) as compared to CHIRPS.
For EP9 and NB9 (Figure 8), the values of CORR, RMSD
and STD of MSWEP and ERA5-Land compared to CHIRPS
demonstrate a lower uncertainty within the reference than
within the WRF ensemble. Both MSWEP and ERA5-Land have
high CORR (both around 0.93 for NB9; around 0.78 and 0.87
for ERA5-Land and MSWEP for EP9), and low RMSD (both
around 2.2 mm d−1 for NB9; around 2 and 1.6 mm d−1 for
ERA5-Land and MSWEP for EP9) as compared to CHIRPS.
The respective STD of CHIRPS is around 3.2 and 3.3 mm d−1

for EP9 and NB9. The STDs of MSWEP and ERA5-Land are
around 2.4 and 2.8 mm d−1 for EP9, and around 2.9 and
3.4 mm d−1 for NB9, respectively. The comparison of
WRFENS against CHIRPS for EP9 and NB9 (Figure 8)
reveals in general higher CORR with smaller spread for
NB9 (0.74–0.85) than for EP9 (0.28–0.64), but also higher
spread of RMSD and STD for NB9 (RMSD: 1.7–5.6 mm d−1,
and STD: 2–7.6 mm d−1) than for EP9 (RMSD:
2.6–5.2 mm d−1, and STD: 2.4–5.1 mm d−1).

For EP3, in addition to CHIRPS, further comparison is
made against timeseries of INAMHI station data (Figure 9B).
Here, higher CORR is found against INAMHI station data
(0.48–0.75) than against CHIRPS (0.25–0.49). RMSD ranges

between 4.6 and 7.3 mm d−1 against CHIRPS and between 2.7
and 6.5 mm d−1 against INAMHI station data. CHIRPS has a
STD of around 4.6 mm d−1, whereas INAMHI station data
has its STD around 3.7 mm d−1. Due to interpolation to
station locations and considered gaps in the timeseries of
INAMHI stations, the STD of WRFENS differs in the
comparison against CHIRPS and INAMHI station data. It
ranges between 3.2 and 7.2 mm d−1 for the entire domain and
entire analysis period (CHIRPS), and between 2.8 and
7.6 mm d−1 for INAMHI station locations and periods.

Regarding different parameterization sub-ensembles, largest
differences are found for the CU schemes for all three domains.
The two sub-ensembles of both the MP and PBL schemes cover
the entire possible range of values without clear tendencies.
Among the CU sub-ensembles, G3DENS has the largest
variance with respect to CORR, RMSD and STD with a
tendency toward the ensemble’s lowest CORR, highest RMSD
and highest STD. TiedtkeENS encompasses runs with lowest
RMSD and STD and medium to high CORR. BMJENS is
characterized by medium to high CORR, medium RMSD and
STD, and KFENS shows medium CORR, high RMSD and STD.
Only for EP3 (Figure 9), the rating especially of KFENS within the
entire WRF ensemble differs, with low to medium RMSD and
STD when compared both against CHIRPS and INAMHI station
reference data. Among the RA sub-ensembles, RRTMGENS gives
lower CORR, higher RMSD and STD than RRTMENS for all three
domains.

3.4 Feature-based Validation
The overall domain precipitation as well as the feature-based
location and volume of individual precipitation patterns in
the WRF sub-ensembles are validated in the ensemble
Structure-Amplitude-Location analysis (eSAL) of Figures
10–12. In general, for all three domains, reference domain
average precipitation <5 mm d−1 of CHIRPS is mostly
overestimated by WRFENS (eA > 0) and associated with
too large or too flat modeled precipitation features (eS >
0) and large location error eL. The overestimation of small
reference domain average precipitation is more pronounced
for EP9 and EP3 than for NB9. Larger reference domain
average precipitation is correctly estimated (eA ≈ 0), or
slightly over- or underestimated, and shows smaller eL and
too small or too peaked modeled precipitation features (eS <
0) in comparison to CHIRPS.

As for previous analysis measures in Sections 3.2 and 3.3,
largest impact on the performance of WRF runs in eSAL,
especially for EP9 and NB9, is given by the choice of different
CU schemes, followed by different RA schemes (Figures 10,
11A,B,D). eSAL characteristics for different evaluated PBL
(Figures 10, 11C), or MP (see Supplementary Material) sub-
ensembles are almost identical. For EP9 (Figure 10), best
eSAL characteristics among the CU schemes are found for
TiedtkeENS. TiedtkeENS shows highest density for correlated
eA ≈ 0 and eS ≈ 0, together with a high density of small eL. The
overestimation of reference domain average precipitation <5
mm d−1 is smallest. For NB9 (Figure 11), even both over- and
underestimation for TiedtkeENS is possible, but highest
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density is found for eA ≈ 0. BMJENS and KFENS for both EP9 and
NB9 have the disadvantage of high density of either eA > 0 or eS <
0. For NB9, however, both BMJENS and KFENS show even better eL
than TiedtkeENS. For both domains, G3DENS generally
overestimates domain average precipitation. Its structure and
location error is similar to KFENS for EP9, whereas for NB9
both largest location errors and positive structure errors of

G3DENS especially for low reference precipitation are evident.
Among the RA schemes, RRTMENS seems to be preferable with
a generally smaller amplitude error, as well as smaller structure and
location errors in particular for EP9.Whereas no distinction can be
made for EP9 regarding the PBL sub-ensembles, ACM2ENS tends
toward smaller amplitude, structure and location error than
YSUENS for NB9.

FIGURE 8 | Taylor diagram for (A) EP9 and (B) NB9 including the Pearson correlation coefficient (dashed-dotted lines), the standard deviation (dotted lines, in
mm d−1) and the root-mean-square difference (RMSD) of the anomalies (dashed lines, in mm d−1) between the simulated daily precipitation timeseries of the 32 WRF
physics ensemble members and CHIRPS reference data for the period Jan 2006–Jun 2008. Each panel shows the differences in the physics parameterization sub-
ensembles, i.e., cumulus convection (G3D, Tiedtke, BMJ, KF), microphysics (WSM3, WSM6), planetary boundary layer (YSU, ACM2), and radiation physics
(RRTMG, RRTM-Dudhia).
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For EP3 (Figure 12), the performance of WRFENS against
CHIRPS with respect to eA and eS is poorer and shows a higher
variance than for EP9 or NB9. High positive eA is common,
and both positive and negative structure errors occur
frequently. Location errors are similar to NB9, with lower
values than for EP9. A clear distinction between different sub-
ensembles turns out to be harder than for EP9 or NB9. Only

the KFENS has clearly different behavior with a tendency of
underestimation of domain average precipitation (eA < 0) and
too small or too peaked modeled precipitation features (eS <
0). As in EP9, RRTMENS tends toward smaller amplitude error
than RRTMGENS, and rather too small or too peaked modeled
precipitation (eS < 0) compared to RRTMGENS with rather too
large or too flat modeled precipitation (eS < 0).

FIGURE 9 | As Figure 8, but for EP3, with (A) CHIRPS reference data and (B) INAMHI station data. A direct comparison of CHIRPS and INAMHI station data on a
daily scale in one plot as in Figure 8 for MSWEP and ERA5-Land is not possible due to different accumulation times of 00 UTC–00 UTC (CHIRPS) and 12 UTC-12 UTC
(07–07 am local time, INAMHI stations), respectively. For the comparison with INAMHI stations, the mean of the 106 selected stations or respective modeled nearest
grid-cell data was used.
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4 DISCUSSION AND CONCLUSION

In all evaluated categories for the physics sub-ensembles in terms
of deviation from the total WRF physics ensemble (gridpoint-
based probability distributions, domain-averaged characteristics
of standard deviation, correlation, root-mean square difference

and bias, and spatial feature-based structure and location),
switching between different cumulus physics (CU) schemes
resulted in the largest performance variability, followed by the
radiation physics (RA) schemes. The large spread among the CU
sub-ensembles confirms the strong impact of different CU
schemes on the simulated precipitation in the study regions.

FIGURE 10 | Ensemble Structure-Amplitude-Location (eSAL) analysis for EP9with respect to CHIRPS for the physical parameterization sub-ensembles of (A)G3D
and Tiedtke (B) BMJ and KF (C) YSU and ACM2, and (D) RRTMG and RRTM-Dudhia. For each physics sub-ensemble, eA, eS, eL and the reference domain average
precipitation (Mean P) are juxtaposed in density contour plots of daily values from Jul 2006 till Jun 2008. The diagonal shows the probability histograms of eA, eS, eL of
the respective physics ensemble and of the reference domain average precipitation (Mean P). When the transparently colored probability histograms of eA, eS, or
eL overlap, darker colors are produced. As all different parameterization groups use CHIRPS as reference, histograms of reference mean P always overlap.
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Even for the explicitly resolved convection in EP3, the effects of
CU schemes used in the parent domains is still larger than those
of different microphysics (MP) or planetary boundary layer
physics (PBL) schemes, but in the same order of magnitude as
between different RA schemes. Regarding the deviations from the
ensemble median for the CU sub-ensembles, many areas reached
more than ±6 mm d−1, whereas different MP and PBL sub-
ensembles deviated only by around ±2 mm d−1 (Figures 3–5).
In Klein et al. (2015), such large variations between different CU

sub-ensembles were not observed for West Africa. Instead, these
deviations were mainly in the order of ±3 mm d−1 for almost all
tested CU, and in the same range as those of theMP and PBL sub-
ensembles. Klein et al. (2015) further showed an overall dry bias
for WSM3 compared to more sophisticated schemes, and for
ACM2 compared to YSU in the Sahel and Sudano-Sahel regions.
Similar, but not as pronounced tendencies within the MP and
PBL schemes as in Klein et al. (2015) could be observed for our
South American regions. An overestimation of precipitation by

FIGURE 11 | As Figure 10, but for NB9.
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KF and an underestimation by BMJ for Northeastern Africa
found by Pohl et al. (2011) and Tariku and Gan (2017), is of
course relative to their respective reference, however, opposing
behavior of BMJ and KF sub-ensembles with respect to the
deviation from the WRF ensemble median was also evident
for our focus regions. An observed wetter climate for RRTMG
than for RRTM reported by Tariku and Gan (2017) can also be
confirmed for all our domains. Especially for EP9, the generally
small differences between WSM3 and WSM6 sub-ensembles

could be related to the limited necessity of using a graupel
scheme (e.g., WSM6) for horizontal resolutions above 10 km
(Skamarock et al., 2008). Obviously, the 9-km-domain is still in a
“gray zone” of only partly resolved updrafts producing graupel
and the simpler WSM3 scheme gives similar results. However,
also the convection-resolving 3-km-grid of EP3 does not produce
large differences between WSM3 and WSM6 sub-ensembles for
all evaluated metrics, which should be expected from Hong and
Lim (2006). Thus for our study, independent of the grid

FIGURE 12 | As Figure 10, but for EP3.
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resolution, the tested MP schemes introduced less uncertainties
than the CU or RA schemes but similar uncertainties as the PBL
schemes with respect to analyzed precipitation distributional,
temporal and spatial patterns. The generally weak dependency
of the modeled precipitation on the MP treatment in our study
could also have its origin in the choice of testedMP schemes. Other
studies (e.g., Liu et al., 2011; Klein et al., 2015) that found larger
differences between MP schemes not only used single moment
schemes like WSM3 and WSM6, but also used more complex
double moment schemes predicting number concentration of the
water and ice species that are not part of theWRF-MP series (WRF
single or double moment schemes). Here, further studies are
needed to investigate if the weak dependency on MP schemes
still holds for more complex MP schemes.

Regarding our choice of CU schemes, it should be noticed that
the 9-km grid size is at the upper end of the convective “gray
zone” and we only used conventional parameterizations of
convection such as BMJ, Tiedtke, and KF. These are
constructed so that the parameterization acts self-contained
within one grid column, assuming that the proportion of the
grid column covered by active convection is small. With small
grid sizes, however, this assumption is no longer valid (Grell and
Freitas, 2014). G3D allows subsidence spreading to neighboring
grid cells, however, this is recommended only for even smaller
grid sizes (Skamarock et al., 2008; Grell and Freitas, 2014). For the
9-km-domain, it is thus assumed that the subsidence still takes
place in the same grid column and G3D therefore acts
conventionally. Scale-aware cumulus schemes like Grell–Freitas
(Grell and Freitas, 2014) or the updated multi-scale KF (Zheng
et al., 2016) attempt to smooth the transition to cloud-resolving
scales by increasing deactivation of the parameterization with
increasing grid resolution. However, the parameterization is still
quite active at 9 km and Jeworrek et al. (2019) found a
comparable performance of the scale-aware msKF and GF
schemes to the conventional cumulus schemes such as BMJ,
Tiedtke and KF at 9 km. For the scale-aware msKF and GF, the
contribution of the resolved-scale precipitation from the
microphysics scheme was comparable to BMJ at 9 km; Tiedtke
even produced substantially more resolved-scale precipitation at
9 km (Jeworrek et al., 2019). This example shows that the
application of conventional cumulus schemes is still justifiable
at 9 km grid resolution. However, especially with respect to the
conventional KF, the msKF may be preferred: In their
comparison of conventional KF and msKF at 9 km, Zheng
et al. (2016) found superior performance of the msKF in
terms of precipitation bias, location and intensity. Future
studies should therefore consider to additionally test the scale-
aware GF and msKF schemes at 9 km resolution. The inclusion of
the simple conventional KF in our study should also be a test in
terms of required computational costs, i.e., if the simple and
computationally cheap KF scheme is also able to produce
reasonable results. Especially as parent domain for the 3 km
EP3, KFENS proved to be closest to the reference data.

The comparison of the WRF performance in the 3-km-
domain EP3 with explicit convection against the
performance in the 9-km-domain EP9 showed that the bias
of the WRF ensemble against CHIRPS in this region was not

reduced. Also Sikder and Hossain (2016) could not find
substantial improvements at higher resolution (3 km) for
their mountainous study regions around the Himalaya by
disabling cumulus parameterization. Noteworthy, many
performance measures are substantially worse for EP3 than
for EP9 with respect to CHIRPS: Correlation coefficients below
0.5, RMSD above 4.5 mm d−1 and frequent large amplitude and
structure errors for EP3. However, considering the main
patterns of precipitation in WRFENS and in CHIRPS for the
JFM season of 2007, CHIRPS seems to contain only little
topographic precipitation effects from the Andes. An
underestimation of precipitation in some mountainous
regions by CHIRPS and other thermal-infrared based
satellite products is well known (Bai et al., 2018; Dinku
et al., 2018). The better performance of WRFENS in terms of
correlation and root-mean square difference with respect to
INAMHI station data as compared to CHIRPS may thus suggest
possible limitations for the use of CHIRPS as reference data for
high-resolution simulations in mountainous domains. But still,
the areas with largest positive bias above 9 mm d−1 of WRF vs.
CHIRPS are also not covered by INAMHI and the general trend
of overestimated precipitation around those regions byWRFENS

is similarly represented if compared against INAMHI. For the
WRF physics sub-ensembles, only KFENS (KF only used in
parent domains) is able to diminish these peaks of
precipitation overestimation, however leading to a drier
Amazon basin in the Northeast of the EP3 domain.

Another aspect revealed for the 3-km-domain EP3 is that the
lack of cumulus parameterizations obviously produces very
similarly shaped probability distribution functions of
precipitation for all parameterization sub-ensembles, including
the high probabilities for precipitation below 1 mm d−1,
i.e., drizzle, that were partly compensated by G3D, BMJ and
KF schemes in the larger 9-km-domain. Interestingly, the
INAMHI stations confirm this shape of the WRF histograms
with an exponential decrease and with high probabilities for
drizzle. CHIRPS contrasts this for EP3 by showing remarkably
low probabilities of gridpoint-based daily precipitation values not
only up to 1 mm d−1 (as in EP9), but also up to 3 mm d−1, possibly
further indicating a limited use of CHIRPS in this region or at the
0.05° resolution. With the harmonization of the probability
distributions among the sub-ensembles for EP3, also the
strong overestimation of probabilities for heavy precipitation
above 20 mm d−1 within the KFENS in EP9 vanished. For EP3,
KFENS even represented best the probability distribution of
INAMHI station data.

For the two 9-km-domains EP9 and NB9, the strong similarity
of probability distributions of TiedtkeENS and ERA5-Land is
striking. ERA5-Land gets its atmospheric forcing from ERA5
whose cumulus parameterization is based on Tiedtke (1989)
(Hersbach et al., 2020). Precipitation here is only spatially
disaggregated from 31 to 9 km and a “lapse rate correction”
for altitude is performed in ERA5-Land (ECMWF, 2019). Also
bias/deviation patterns for TiedtkeENS and ERA5-Land highly
resemble each other, e.g., with a drier Amazon basin and drier
Peruvian Andes in EP9 (Figure 3), that seem to be associated with
the same underlying cumulus physics.
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Finally, we discuss several examples of how the choice of a
suitable WRF setup could be made based on the provided
performance metrics. Firstly, if one is interested in how
precipitation probability distributions might change with
future regional climate scenarios, the observed current
probability distribution needs to be first and foremost met.
The shape of CHIRPS’s statistical distribution of precipitation
values for EP9 would be best represented by G3DENS among the
CU schemes, and by RTTMGENS among the RA schemes.
However, these WRF sub-ensembles generally overestimate the
wet-day probability as compared to CHIRPS, thus requiring a
frequency correction (see e.g., Lorenz et al., 2020). For other
physics sub-ensembles, the more their distributions and the one
of the reference differ from each other, the more severe
corrections would be required and the deeper one intervenes
in precipitation processes. This could probably produce
inconsistencies in the precipitation fields especially when not
using correction methods including neighboring gridpoints. Such
large differences in the distributions would be the case, e.g., when
choosing physics schemes like Tiedtke for CU or RRTM for RA
when using CHIRPS as a reference. A choice of G3D and RRTMG
for best-fit probability distributions for EP9, however, is
connected with the highest overestimation of precipitation,
largest RMSD and lowest correlation of domain-averaged
precipitation of the WRF ensemble. On the other hand,
TiedtkeENS or BMJENS and RRTMENS have low structural
errors of precipitation features as compared to CHIRPS, as
well as high correlation, low RMSD and relatively low
amplitude errors for domain averages of EP9. Moreover, the
spread of evaluation measures for individual ensemble members
within TiedtkeENS or BMJENS is smaller than for other sub-
ensembles for EP9, indicating a high robustness of the
performance of runs when combining Tiedtke or BMJ with
different MP, PBL and RA physics schemes in this domain. So
secondly, the schemes of Tiedtke and BMJ would be best suited if
the WRF simulations are used for distributed impact models that
require spatially and temporally differentiated precipitation
input. In particular, these spatial criteria, i.e., where we can
expect how much precipitation, that means the location and
volume of precipitation patterns, are of interest and have major
impact on the model results of, e.g., simulated local streamflow or
ecosystem functionality. For NB9, similar choices would be made
1) with G3D for precipitation distributional studies, and 2) with
Tiedtke or BMJ when precipitation amplitude and structure, as
well as RMSD and correlation of domain-averages should be
best comparable to CHIRPS. In the case of NB9, the
disadvantages of G3D with respect to precipitation
overestimation and too large or too flat structured
precipitation patterns is even more pronounced than in EP9,
suggesting an even more limited suitability. We further faced the
difficulty to have suitable reference data to select a model
configuration for the 3-km-resolution EP3 domain, as
CHIRPS seemed to fail to provide reasonable precipitation
for the mountainous regions. All these examples show the
challenges when attempting to identify an overall best suited
WRF setup. Similarly to previous studies (e.g., Klein et al., 2015;
Yang et al., 2021), also in our two South American example

regions, we can not clearly conclude on a single “best” setup for
all cases and all evaluation metrics. Synthesizing all applied
performance measures in one metric (like in, e.g., Yang et al.,
2021; Gbode et al., 2019) looses the contained information on
individual performance criteria that are critical for one
application but not for another. Whatever choice is finally
met, not for all areas and not for all performance metrics
this choice is optimal. It continues to depend on the specific
requirements and on the application of the WRF output, as well
as on the observational reference. Nonetheless, with our applied
ensemble-tailored analysis methods for distributional, temporal
and spatial patterns, it is possible to narrow down the number of
suited parameterizations significantly, allowing this choice
according to application needs and reference data.

The use of explicitly resolved convection for the highest-
resolved 3-km-domain (while still using CU schemes in the
parent domains) revealed that even in this domain without CU
schemes still large differences were present between runs whose
parent domains used different CU schemes. This effect was even
larger than the effect of differently appliedMP or PBL physics. This
has far-reaching implications: tuning a WRF setup with one input
data for initial and boundary conditions, e.g. with the latest ERA5
reanalysis that uses amodified Tiedtke CU scheme (Hersbach et al.,
2020), does not allow a direct transfer of the setup to other input
data sets that may have different underlying physics
parameterizations. Sensitivity tests therefore always should be
performed with the final input data set.

Concluding, this study clearly demonstrated the necessity of
having a very detailed look at the effects of different physics
parameterization schemes on simulated precipitation. In our case,
up to four times as high monthly precipitation can be generated
compared to three different reference data. This shows that a
tremendous gain in model performance can be achieved when
the computationally expensive effort of conducting a 32-member
parameterization ensemble over two consecutive years is
undertaken. Especially for distributed impact modeling, it is
further essential that such sensitivity studies are not only based
on region-averages, but also comprise spatial pattern analysis tools as
used in this study. But only the detailed look at all distributional,
temporal and spatial patterns allows a comprehensive overview on
how different parameterization schemes effect the simulated
precipitation. The presented ensemble-tailored strategy allowed to
generalize the impacts of and uncertainties introduced by the chosen
parameterization schemes. Though failing in identifying an overall
best suited setup for each study region in South America, still a final
choice ofWRF setup according to the application and reference data
is possible that can satisfy the need for the required reliable regional
information on precipitation to be employed, e.g., for regional
climate adaptation and risk mitigation.
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