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Loris Redovniković 7 and Markus Fiebig4

1Department of Geology, Croatian Geological Survey, Zagreb, Croatia, 2Department of Geography, Division of Physical
Geography, Faculty of Science, University of Zagreb, Zagreb, Croatia, 3Kaducej d.o.o., Split, Croatia, 4Institute of Applied
Geology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria, 5Laboratory for Low-level Radioactivities,
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During archeological excavations in the Lower Cerovačka Cave (Mt. Velebit, Croatia), the
test trench penetrated to a depth of 1.8 m. An undisturbed sequence of sediments was
exposed. Considering that caves represent highly efficient sediment traps it was possible
to recognize changes in the depositional mechanisms during the Pleistocene–Holocene
period. Using the multiproxy approach, the mineralogical, petrographic, and
biostratigraphic characterization of the cave sediments was performed. Facies analysis
revealed several stages in the development of the clastic filling of cave channels.
Allochthonous origin of the sediment was assumed. Sedimentation took place under
various conditions from pronounced cold and dry climate during Pleistocene stages in the
base of the profile, to humid periods with anthropogenic influence during the Holocene at
the very top of the profile. Although traditionally these sediments were believed to be of a
Pleistocene age, here for the first time a stratigraphic calibration of the profile has been
performed based on luminescence dating of detrital cave sediments and radiometric
dating of speleothems.
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INTRODUCTION

Situated in the locus typicus of the Dinaric karst (Zupan Hajna, 2019) within the NE slopes of Mt.
Crnopac (SE part of the Velebit massif in Croatia) (Figures 1A,B), the Cerovačke Caves represent a
network of subhorizontal hydrologically inactive cave channels (Figures 2A,B) in today’s vadose
zone. There are three Cerovačke caves, namely Lower, Middle and Upper Cerovačka Cave (LCC,
MCC and UCC). LCC was discovered in 1913 (Malez, 1956, 1958) during the construction of the
railroad. The caves have been the focus of research formany speleologists and other geoscientists ever
since. Because of the scientific interest, as well as exploitation interest related to the geo-heritage and
tourist potential of the cave, intensive cave surveying was conducted, combined with paleontological
and archaeological excavations. That research gave insight into the rich cave history, as evidenced by
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findings of large Pleistocene fossil mammals (Malez, 1960a;
1965a). Consequently, excavation campaigns resulted in the
first available data of cave channel sediment infill and
provenance of cave detrital sediments (e.g., Ivanović et al.,
1976). First interpretations suggest that these sediments
represent products of host rock weathering, deposited after the
caves lost their ponor (swallow hole) function during the uplift of
the mountain and lowering of the Gračac karst polje level (Malez,
1965b).

In recent years, the interest in revitalizing the tourist potential
of the LCC intensified. Following requirements prescribed by the
Conservation Department in Zadar (Croatia), new archaeological
research in the LCC was conducted during 2019. Excavations
included the area of the cave with archaeological potential,
endangered by construction works along the new visitor
pathway. The main archaeological excavation area was placed
along the route of the new pathway, spanning 120 m from
entrance. Three distinctive phases of human occupation were
determined within the excavation sites of the LCC, above the
geological record (Tresić Pavičić, 2020). The latest phase is
attributed to the modern period, from the discovery of the
cave in 1913 until today, and includes various features such as
existing pathway, trenches for electrical cables and archaeological
and geological test trenches from previous excavations. The
medieval phase within the cave was represented by a small
number of finds dated to the 13th century (Tresić Pavičić,
2020) when the cave was used sporadically, probably as a
shelter. The earliest and archeologically most significant phase
of human occupation represented in the excavated area,

corresponds to features and finds from the Late Bronze Age
period which in the area of Lika roughly corresponds to the
period from the 14th to 10th century BC (Blečić-Kavur, 2014;
Bakarić, 2017). The data collected suggest that the cave was used
for food storage and as a temporary dwelling in specific
circumstances such as extreme weather conditions during the
Late Bronze Age. The archaeological remains are numerous and
well documented. However, there has been a significant lack of
any new geological research within the cave since the seventies.

The sediment profile (DC-SP) investigated within our research
is situated within a test trench placed 120 m from the cave
entrance at the end of archaeological excavation area
(Figure 2B). Since the test trench penetrated to a depth of
1.8 m, an undisturbed sequence of sediments was exposed. At
the site, the Late Bronze Age and Modern Period features were
found within the investigated profile (Figure 3A). However, the
majority of the profile represents geological strata of unknown
origin and age. The aim of this study, therefore, is to determine
the provenance of sediments, and the type and degree of changes
in the environment during the time of deposition of clastic cave
sediments within the main channel of the LCC. A multiproxy
research approach was applied to the sediment including detailed
sedimentological and mineralogical analysis. The lithofacies
analysis of the detrital cave sediments was used to answer
questions regarding the deposition mechanisms in specific
conditions during the Pleistocene. Mineralogical analyzes are
applied to get insight into the provenance of the cave
sediments. Macropaleontological analysis was performed for a
detailed determination of the excavated fossil bones as well as

FIGURE1 | (A)Geographic position of the Cerovačke Caves, (B) Elevationmap of the surrounding area, legend: 1—surface streamswith ponors, 2—cave chanells
of Lower and Upper Cerovačka Cave, 3—entrance positions of Lower (LCC) and Upper (UCC) Cerovačka Cave, (C) Geological map of the surrounding area, sources:
Geological map of Croatia 1:300.000 (Croatian Geological Survey, 2009), Basic geological map of Croatia 1:100.000, sheet Obrovac (Ivanović et al., 1973), Basic
geological map of Croatia 1:100.000, sheet Udbina (Šušnjar et al., 1973), legend: 1—clastic rocks (C, P), 2—carbonate rocks (T2), 3—clastic-pyroclastic rocks (T3),
4—dolomites (T3), 5—limestones and dolomites (J1), 6—thick layered limestones and dolomites (J2), 7—limestones and dolomites (J3), 8—carbonate (Jelar) breccia (Pg,
Ng), 9—alluvial deposits (Q), 10—Terra Rossa (Q), 11—faults, LF—Lika fault.
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Kurečić et al. Cave Sediments in Dinaric Karst

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


palynological analysis to determine the palynofacies. To establish
the time frame and stratigraphic calibration of the investigated
profile, luminescence dating of detrital cave sediments was
performed and supported with radiometric dating of
speleothems found within the sediment sequence.
Furthermore, a comparison with available data on similar
(spatio-temporal) sedimentary profiles will be given.

GEOLOGICAL AND GEOMORPHOLOGICAL
SETTING

Velebit Mt. is a part of the Dinaric mountain system and the
longest mountain range in Croatia (Figure 1A). Cerovačke Caves
are located on the northern slope of its extreme southeastern part,
Crnopac (Figure 1B). To the north of Crnopac lies the Gračac

karst polje. In the structural-geological sense, the area of the
Gračac polje forms an anticline with Paleozoic clastites in their
core. Around them Mesozoic sediments spread periclinally
(Sokač et al., 1976; Šušnjar et al., 1973; Ivanović et al., 1973,
1976). Triassic dolomites and clastites and Jurassic dolomites
predominate at the surface. The youngest are Quaternary Terra
Rossa and alluvial deposits recorded at the bottom of the polje
(see Figure 1C for details). This lithology causes the bottom of the
Gračac polje to act as a hydrogeological barrier. A surface
drainage network has developed on its surface with a general
drainage direction to the south. The main stream is the Otuča
River, which forms a ponor zone in the southern, deepest part of
the field (Figures 1B,C). The Otuča drainage system superficially
drains an area of about 90 km2 as well as the underground karst
water that converges to the polje from the surrounding hills. The
lowest point of the field is at an elevation of 544 m. South of the

FIGURE 2 | (A) Simplified plan view of the Upper and Lower Cerovačka Cave, (B) plan view of the entrance part of the Lower Cerovačka Cave with the marked
position of the researched test trench (cave survey according Bočić et al., 2016), (C) selected cross-sections (1–4), and (D) cross-section of the cave channel at the
location of the test trench.
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Gračac polje rises the Crnopac massif (1,404 m), separated by the
Lika fault (Figures 1B,C). Crnopac is a part of the main ridge and
tectonic unit Velebit. Its structure is dominated by Jurassic and
Cretaceous carbonate rocks separated by paleo-relief boundaries
from overlaying Paleogene carbonate breccias (Ivanović et al.,
1973, 1976) known as Jelar breccia (Bahun, 1963, 1974). Areas
built up of Jelar breccias like the Northern Velebit are intensively
karstified, with a large number of dolines and deep caves,
including Lukina jama, the deepest cave in the Dinarides
(Bočić et al., 2019). Similar to the Northern Velebit, the
Crnopac area is also extremely karstified. The area is
characterized by large, steep, and numerous dolines whose
maximum density reaches 93 dolines per km2 (Marković et al.,
2016). More than 200 caves have been explored in the area, the

largest of which is the Crnopac Cave System (CCS) (Barišić,
2017), which is the longest cave in the Dinarides and 67th longest
cave in the world, measuring 53.3 km in length (Caver Bob, 2021;
Croatian Mountaineering Association, 2021).

Sinking waters from the Gračac polje flow underground
through the Crnopac massif toward the south, to the valleys of
the Krupa and Zrmanja rivers. These allogenic flows influence the
formation of cave systems. Due to the uplifting of the Crnopac
massif cave channels form at several levels. The speleogenesis of
the Crnopac massif is also influenced by autogenous water, which
has a vertical circulation through a deep unsaturated zone (Kuhta
and Stroj, 2005).

This area has the climate type Cfb (temperate humid with
warm summer) (Filipčić, 1998). Basic climatological

FIGURE 3 | Sedimentary log and photo of the investigated profile DC-SP within the archaeological excavation site in the Lower Cerovačka Cave (A) Sedimentary
log with indicated main structural and lithological features, (B) photo of profile and indicated position of sampling spots (on the left side—bulk analysis of described
intervals; on the right side—high-resolution granulometric analyses).
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characteristics of the area are visible through the basic data of the
Gračac meteorological station for the period 2004–2014: (i) the
average annual air temperature is 9.9°C and the mean annual
precipitation is 1,960 mm and (ii) the warmest month is July
(19.9°C), but the highest mean monthly precipitation is in
December (283 mm) (Czuppon et al., 2018).

All three known caves at the investigated site (UCC 4,035 m,
LCC 4,048 m, MCC, 390 m long) are located in the ponor (input)
zone of the Crnopac karst system above the level of the karst polje,
i.e., the currently active ponors. All three caves are formed in
Paleogene carbonate (Jelar) breccias (Figures 1B,C).

The LCC is a predominantly horizontal branchwork cave
(sensu Palmer, 1991). The entrance altitude is 630 m,
i.e., about 80 m higher than the active ponors at the edge of
the karst polje. The cave can be morphologically divided into two
parts. In the northern part, the channels run mainly in NW-SE
direction, following the main fold and thrust belt direction of the
External Dinarides (Tari, 2002; Schmid et al., 2008; Korbar,
2009). Here the channels are relatively narrower and rarely
exceed 5 m. In the southern part of the cave, which extends
toward the SW, the channels are much wider and often exceed
10 m in width (Figure 2A). The formation of the cave is most
likely related to the function of the karst conduit of sinking waters
from the Gračac karst polje. The investigated test trench is located
in the main channel at a distance of about 120 m from the
entrance, measures about 3 × 3 m in plan and is 1.8 m deep
(Figure 2B).

MATERIALS AND METHODS

The cave survey was the starting point to obtain data on the
morphology of the cave. The part of the cave open for visitors
(about 700m long) was surveyed at a scale of 1: 200, the rest of the
cave at a scale of 1: 500. The survey was made in the UIS-5-4-BC
mapping grade (Häuselmann, 2011). A standard procedure was
used to determine the relative position of survey points by
measuring the distance, azimuth and inclination angle. The
Leica hand laser distometer and Suunto clino-compas were
used. The starting point outside the cave was stabilized with a
GNSS receiver. Additional data on the morphology of the
investigated part of the cave were obtained by laser scanning.
The first laser scanning of LCC was performed in the period from
January 15 to 17, 2016. At that time, two geodetic bases were
established, one in front of and the second inside of the cave. The
Faro Focus3D X 330 laser scanner, the Topcon HiPer SR GNSS
receiver and two total stations (TOPCON GTS 105N and Cygnus
2LS) were used for the geodetic survey of the LCC. The laser
scanning was performed again on June 13th and 14th, 2019. but
this time strong lighting was used and panoramic 360°

photographs were collected during the scan to obtain a
colored point cloud. Point clouds obtained by the
photogrammetric method during archaeological research are
connected to the new colored point cloud and presented
within this paper as 3D supplement (Supplementary Material
S1). Leica Cyclone 3DR software was used to visualize the
obtained data and to create a characteristic profile.

Archaeological excavations were carried out with hand tools
following stratigraphic principles, and standard archaeological
field records were kept. A detailed catalog of methods and
archaeological findings is given by Tresić Pavičić and Burmaz
(2020) and Tresić Pavičić (2020). Sedimentological field data and
sampling were acquired within the archaeological test trench.

For a detailed sedimentological analysis individual layers and
lithofacies units were recognized below the archaeological layer
(Figure 3A). The nomenclature for the established lithofacies
units was based on Bosch and White (2004). All layers were
sampled (Figure 3B). The grain-size of the sediment was
determined on five bulk samples from each observed
lithological unit using the areometric method (Figure 3B;
Samples DC-SP 2, 3, 5, 6, 7) while high-resolution grain-size
(in 10 cm resolution) was determined using the laser diffraction
method. A total of 14 samples were analyzed with a Shimadzu
Laser Diffraction Particle Size Analyzer SALD-2300 to determine
the detailed dynamics of vertical changes in the particle size
distribution (Figure 3B; Samples DC-SP 35–165 cm). 0.1 g of a
dry representative sample was isolated for the analysis. The
samples were treated with a 4% solution of tetra-sodium
diphosphate decahydrate (Na4P2O7·10H2O) and deionized
water against coagulation and dispersed for at least 6 h on a
shaker. Eachmeasurement was repeated five times and an average
value was used for the grain-size distribution. The sediment was
classified according to Trefethen (1950).

To get insight in the composition of the sediment and
determine the provenance of the material, the modal (heavy
and light minerals) and XRPD analyses were performed. For
the separation of heavy and light minerals, the 0.09–0.16 mm
fraction of five samples was used (Figure 3B; Samples DC-SP 2, 3,
5, 6, 7). Samples were treated with 10% HCl to remove the
carbonates, and washed with H20 in an ultrasonic bath. The
grains were separated using sodium polytungstate (ρ �
2.8 g cm−3). Thin slides were prepared from the separated
material, and the composition was determined by counting up
to 300 grains per sample using a Leitz Orthoplan polarizing
microscope (Mange and Maurer, 1992). Typical mineral groups
were isolated and their characteristics and relative proportions in
the samples were described. Due to the low content of transparent
heavy minerals (THM) within the heavy mineral fraction (HMF),
real percentages and statistical analysis are not shown.

The mineral composition of seven cave sediment samples and
a bone fragment were determined by X-ray powder diffraction
(XRPD) (Figure 3B; Samples DC-SP 1-bone, 1-7-sediment). The
samples were grinded, sieved through a 0.063 mm sieve and the
<2 µm fraction was separated using the centrifuge method
(Krumm, 1994). Oriented mounts from <2 µm fraction were
prepared. Oriented samples were treated with following
treatments: a) air drying, b) saturation with K+ c) saturation
with Mg2+ d) Mg2+ saturation and ethylene-glycol solvation, e)
K+ saturation and ethylene-glycol solvation, f) Mg2+ saturation
and glycerol solvation, g) K+ saturation and DMSO solvation, h)
heating more than ½ hour to 400 and 550°C, i) treating with HCl
(18%, 24 h) (Weaver, 1967; Starkey et al., 1984; Moore and
Reynolds, 1997) and XRD patterns were recorded. The
measurements were performed using the Philips vertical
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goniometer (type X`Pert) equipped with a Cu tube under the
following experimental conditions: 45 kV, 40 mA, PW 3018/00
PIXcel detector, primary beam divergence 1/4°, continuous scan
(step 0.02°2θ/s). The interpretation of XRPD was obtained using
HIGH SCORE PLUS (2016) calculation and PDF-4 / Minerals
(2020) databases. The semi-quantitative analysis was performed
using the procedure described by Schultz (1964).

Palynological analyses were carried out on four samples
collected from the lower and upper part of the section
(Figure 3B; Samples DC-SP 1, 2, 7, 8). Standard palynological
processing techniques were used to extract the organic matter
(e.g., Moore et al., 1991; Wood et al., 1996). The samples were
treated with 4% solution of tetra-sodium diphosphate
decahydrate (Na4P2O7·10H2O) against coagulation, cold HCl
(15%) and HF (40%), removing carbonates and silica,
respectively. Heavy liquid (ZnCl2, ρ > 2.1 kg/l) was used to
separate the organic matter from the undissolved inorganic
components. The organic residue was sieved through a 10 µm
mesh. For palynofacies analysis slides were mounted in glycerin
and, for palynomorphs analysis in silicon oil. Microscopic
analyses were performed using the Olympus BH-2 and Leica
DM2500 microscope (Croatian geological survey).
Photomicrographs were taken using an AmScopeTM camera
adapter connected to the AmScope v.3.7 camera software and
Leica MC190 HD camera connected to the Leica LAS EZ
software. The palynofacies analyses were performed according
to the classifications proposed by Tyson (1995) and Sebag et al.
(2006). Three categories of organic matter (OM) were used: (1)
phytoclasts: opaque phytoclasts (OP) and ligno-cellulosic debris
(LcD), which can be preserved as cuticles and membranes (CM),
transparent (TLC), altered (ALC), amorphous (AP) or gelified
particles (GP), (2) Amorphous organic matter (AOM) and (3)
palynomorphs. Minimum 500 particles of OM were counted per
sample. Results were plotted in OM percentage abundance
diagram and diagram presenting the relation between
preserved/transformed phytoclasts and AOM to characterize
the palaeoenvironment.

Macropaleontological analyses were performed on faunal
remains collected during the research. The material was dry
sieved on site using a mesh size of 6 × 6 mm, bagged and
named. In the laboratory the faunal remains were washed and
dried and a detailed palaeontological analysis was conducted at
the Institute for Quaternary Palaeontology and Geology in
Zagreb. During the anatomical and taxonomical analysis, the
fossil remains were compared with the fossil and recent
comparative collection stored at the Institute. This was
followed by a detailed taphonomic study. All bone and teeth
fragments were carefully examined with a hand lens (×10
magnification) looking for any bone modifications that could
indicate butchery, gnawing, and other taphonomic traces as direct
indicators of different agencies responsible for the accumulation
and preservation of the skeletal material. Due to a relatively
modest number of identified remains (873), taxonomic
representation and element frequency were quantified using
NISP (Number of Identified Specimens; Lyman, 1994).

The luminescence dating method was applied on two cave
sediment samples to establish a chronological framework of the

deposits (Figure 3B; Samples DC-SP 3 and 7). The samples were
taken using stainless steel cylinders driven into the freshly
cleaned sediment and sealed light tight after sampling.
Additional samples for radionuclide determination were
taken in the direct surroundings of the luminescence
samples. During sample preparation, the ends of the cores
were removed, because of potential light exposure during
sampling. Since detrital cave sediments as water-lain
sediments are known to be prone to incomplete bleaching
(insufficient light exposure of the sediment during transport
and before burial), the obtained ages are often overestimated. In
luminescence dating, reliable methods for the detection and
correction of the effects of incomplete bleaching are available.
However, a basic restriction is that measurements have to be
conducted on subsamples (aliquots) containing only small
numbers of grains, ideally down to the single grain level. For
that reason, single quartz and potassium-rich feldspar grains
(usually between 63–300 µm) were extracted from the collected
samples. Sample preparation and measurements were
conducted at the Vienna Laboratory for Luminescence dating
(VLL) using standard methods (Lüthgens et al., 2017; Rades
et al., 2018). After sample preparation, no significant amount of
coarse grains could be extracted from sample DC-SP 7 (VLL-
0496-L), while a minimal number amount of coarse grains could
be retrieved from sample DC-SP 3 (VLL-0495-L). All
subsequent analyses could therefore only be conducted for
the latter sample. In contrast to potassium-rich feldspar, it is
known that only a small fraction of quartz grains (usually <10%,
but frequently also down to only few percent) does emit a
luminescence signal suitable for dating (e.g., Lüthgens et al.,
2011). Given the very small amount of grains available for
measurements and previous results showing rather low
quartz luminescence sensitivity in the broader area (e.g.,
Zhang et al., 2018), single grain measurements on potassium-
rich feldspar as the only dosimeter was the method of choice in
this study.

A single grain, post infrared, infrared stimulated single aliquot
regenerative dose protocol (SG pIRIR225 SAR, e.g., Reimann et al.,
2012; Garcia et al., 2019 but modified to include the pIRIR225
signal) was applied for the determination of the equivalent dose.
Measurements were conducted at the VLL on a RISØ DA-20
luminescence reader system (Bøtter-Jensen et al., 2000, 2003)
equipped with an infrared laser (830 nm) for stimulation of the
single-grain luminescence signals, which were detected through a
LOT/Oriel D410/30 interference filter. For laboratory dosing, the
system is equipped with a 90Sr/90Y beta source delivering a dose of
about 0.1 Gy/s. Dose recovery experiments were conducted for
both luminescence signals measured in the pIRIR225 dose
protocol [stimulated at 50°C (IR50) and at 225°C (pIRIR225)].
The results showed agreement with unity within the error
(rejection criteria: recycling/recuperation in percent of the
natural signal/test dose error � 30/30/10%), proving the
suitability of the protocol. Whenever using feldspar as a
dosimeter, the effects of anomalous fading (athermal signal
loss over time, Wintle 1973) must be considered. Fading
experiments were conducted using the approach of Auclair
et al. (2003) but modified to also include the pIRIR225 signal.
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Naturally occurring radionuclides contributing to the doserate
(decay chains of 238U and 232Th, and 40K) were measured using
low-level, high-resolution gamma spectrometry on a Baltic
Scientific Instruments high purity Germanium (HPGe) p-type
detector (∼52% efficiency) after storage of the sample of more
than 4 weeks. The sample were found to be in secondary secular
equilibrium. The overall doserates and age calculations were
conducted using the software ADELE (Kulig, 2005).

Radiocarbon dating method was applied on a speleothem and
bone found in the sediment succession. Radiocarbon dating was
performed by accelerator mass spectrometry (AMS). Samples
were prepared into graphite targets at the RuCer Bošković
Institute (RBI, Croatia). The bone sample of Ursus spelaeus
(DC-SP-2, LCC, sample ID number Z-7351) was precleaned
using acid-base-acid wash and collagen extraction (Longin
1971). However, the amount of collagen in the bone was
below 0.1%, which indicated that the carbon in the collagen
was too degraded for radiocarbon dating (Marom et al., 2013).
The speleothem sample (DC-SP-4/1, LCC, ID number Z-7352)
was cut, and about 200 mg of powder were scraped off the surface.
The powder was hydrolyzed to CO2 in a vacuum rig using 4%
HCl. An aliquot of the obtained CO2 was sealed in a pyrex tube
for 13C composition analysis on the isotope ratio mass
spectrometer (IRMS). Another aliquot of the CO2 in reaction
with zinc was reduced to graphite for radiocarbon AMS
analysis (Krajcar Bronić et al., 2010; Sironić et al., 2013).
The sample 14C/13C ratio was measured on a 0.5 MeV AMS
and 13C/13C ratio (δ13C) on isotope ratio mass spectrometer
(IRMS), at the Center for Applied Isotope Studies, University
of Georgia (CAIS, United States). δ13C values are expressed in
per mil relative to VPDB. Measured 14C/13C ratios were
corrected for isotope fractionation using the corresponding
δ13C values measured by IRMS and normalized to –25‰
VPDB and presented as F14C and the 14C age before
present (BP) (Stuiver and Polach, 1977; Reimer et al., 2004).
Radiocarbon age was rounded of digits in accordance with the
recommendations given by Stuiver and Polach (1977). The
radiocarbon age was calibrated using the OxCal v 4.2.4
software (Bronk Ramsey 2009, 2016) and IntCal20
calibration curves (Reimer et al., 2020). Speleothem
radiocarbon date was presented without reservoir correction
(dead carbon fraction, DCF � 0), with DCF of 15% which is
generally used for Dinaric secondary carbonates (Horvatinčić
et al., 2003), and also with DCF of 12.5% determined at the
Modrič cave near the LCC location (Rudzka et al., 2012), since
DCF can vary with location (Srdoč et al., 1986; Krajcar Bronić
et al., 1986, 1992; Sironić et al., 2020) and time (Hua et al.,
2017; Bajo et al., 2017; Therre et al., 2020). Reservoir
corrections were reported according to Soulet et al. (2016):

DCF � (1 − F14Rs−atm) p 100%;

RS−atm � −8033 p In(F14Rs−atm)

where F14Rs-atm is ratio of measured fraction 14C in speleothem
and fraction 14C in contemporary atmosphere and RS-atm is
reservoir offset for correction to reservoir effect (reservoir age).
Reservoir age is given without rounding.

RESULTS

Cave Morphology
The entrance part of the LCC consists of a main channel and several
smaller branches. Morphologically, the channel consists of three
parts. The first part, 70m long, is straight and has a Dinaric
orientation (NW–SE). This is followed by two successive bends
and a third straight section about 50m long. The entire channel runs
almost parallel to the hill slope at the surface. The present cave
entrance is a 1.6 × 1m door. The entrance was naturally probably
much lower but it was artificially slightlymodified. Themain channel
is 6–8mhigh, although in some places it is much higher (over 15m).
The width of the channel is generally in the range of 4–7m. The area
cross-sections (Figure 2C) are generally 20–35m2 but may be larger
in some places, especially where the ceiling is higher due to some
fractures. The depth of the allogenic sediment in the bottom of the
cave channel is not known, so the full dimensions and shapes of the
cross sections are not completely known. Three sets of fractures were
recorded within the channel, which significantly influence its shape
and formation. The first part of the channel is dominated by a set of
fractures with Dinaric orientation (∼130°–310°), the middle part by a
set of fractures with meridional orientation (∼0°–180°), and the last
part is the most influential by the set of fractures with
orientation of ∼100°–280°. The host-rock is not stratified, so
there is no visible influence of bedding planes on the cave
morphology. Numerous speleogens were recorded behind the
channel walls: scallops, elongated domes, solution pockets,
pendants, wall rills, etc. Flowstones appear only about 80 m
from the entrance, mostly in the form of wide stalagmites and
wall flowstones. Due to low temperatures in winter and
occurrence of ice on the cave walls, the cryofracture
weathering of flowstones is pronounced in this part. The
floor in the almost entire length of the channel is built of
sediment and in the upper part it is mostly covered by
archaeological layer. At the site of the test trench, the
channel is slightly larger. It is 12 m high, 6.6 m wide, and
the cross-sectional area is about 45 m2. This is most likely
caused by the intersection of the two sets of fractures
(Figure 2D, Supplementary Material S1). The genesis of
the whole cave, including this entrance channel, is related
to the denudation effect of the sinking waters of the Gračac
karst polje. However, its mechanism is not yet completely
clear. Morphological traces (cross-sectional shapes and
speleogens indicating saturated conditions) of speleogenesis
indicate that the channel was formed mainly under saturated
conditions. Erosion traces of water flow in the vadose zone
were not recorded because, if present, they are located in the
lower parts of the channel covered with sediment.

Sediment Characteristics and Facies
Within the cave sediment infill found in the passage of the LCC,
eight intervals were recognized and described. Based on similar
lithological and structural features they were grouped into three
lithofacies units and the top archaeological layer. A detailed
description of the profile and the individual lithofacies units is
given inTable 1 and Figure 3A. According to the results of particle
size analysis by the sedimentation method (shown by cumulative

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6722297
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granulometric curves, Figure 4A) it can be seen that all described
intervals consist of clayey silt to silt with a small amount of very fine
sand particles (<9% of sand). According to Trask’s sorting
coefficient (S0), all samples show poor to very poor sorting
(1.802–3.067), while the asymmetry coefficient (Sk < 1) shows
that grains smaller than the median (average Md value is 0.0154)

predominate in the samples. Samples DC-SP 2, 3 and 5 are
classified as very poorly sorted clayey silt, while samples DC-SP
6 and 7 are classified as poorly sorted silt. Furthermore, the results
of the high-resolution particle size analysis using the laser
diffractometer show a decrease in the amount of the clay-sized
fraction from bottom to top of the section (Figure 4B), the trend

TABLE 1 | Sedimentological field description of DC-SP profile in the Lower Cerovačka Cave with described intervals and lithofacies.

Sediment intervals within the profile DC-SP (cm)
Lithology—short field description

Lithofacies described within the profile DC-SP

DC-SP 1 (0–10) Centimeter to decimeter blocks of limestones and broken
speleothems with clayey to silty matrix

Breakdown facies (Bd)—within the test trench it appears in two stratigraphic
horizons which are laterally interrupted. The lower boundary is not visible within the
profile DC-SP. Laterally within the test trench, when visible, it is sharp and uneven. Bd
facies is built of very poorly sorted angular clasts. Clasts vary in diameter from
centimeter to decimeter blocks of limestones and broken speleothemswith the chaotic
clast supported arrangement (Figures 1A, 3A). Clasts are often colored with black
coatings (black coating can be seen also on the flowstone on today’s surface of the
cave—black coated speleothems). Matrix is clayey to silty. The Bd facies is best visible
on the western and southern vertical surfaces of the excavation site, while on the
eastern side it is completely absent. The upper boundary of the Bd facies is sharp and
uneven. The thickness of the Bd deposits is highly variable laterally. Based on the
archaeological photo documentation and field description, the maximum thickness of
Bd facies reaches up to 50 cm

DC-SP 2 (10–60) clayey silt to silty clay (carbonate-free sediment) with fragments of
speleothems. Numerous findings of well-preserved bones and teeth, belonging to a
large vertebrate (27 cm from the bottom of the profile)

Diamicton facies (Di)—represents the filling of a depression formed on the upper
surface of the Bd facies, as can be seen, form the disconformity between Bd and Di
facies (Figures 3A, 11A). The lower boundary of the facies is partly unclear. The
impression is that the sediments of the Di facies in the transition zone intertwine with
underlying Bd facies. The same sediments which built the majority of the Di facies also
built a matrix of the Bd facies. Di facies is built of clayey silt with no visible gradation
through the vertical profile (Figures 4A,B). Although on the described profile these
facies appear massive, laterally, unevenly scattered speleothem (seem to be collapsed
from the ceiling into the clastic sediment) and limestone fragments can be observed
(Figure 3A) resulting in unsorted or poorly sorted sediment. There are no clearly
arranged sedimentary textures, the larger clasts appear to "float" in the clayey silt.
Numerous osteological remains of large vertebrates can be found on this horizon
(Figures 3A,B, 11A,D). An unnatural position of the bones is visible on the excavated
part of the skeleton. This can be the result of taphonomic processes, but also a sign of
re-deposition of the skeleton. The upper boundary of the Di facies represents the lateral
continuation of the upper boundary of the Bd facies. It is marked with a thin dashed
horizontal zone with fragments of speleothems (Figures 3A, 11C) (platy habitus,
perhaps a flowstone deposited on the underlying sediment)

DC-SP 3 (60–95) clayey silt, probably contains a smaller amount of the sandy
component (carbonate-free sediment). Fragments of speleothems are visible in
places
DC-SP 4 (95–98) Horizontally oriented speleothem fragments - laterally
discontinuous layer covered with a thin layer (3 cm) of light brown clay that
disappears laterally

DC-SP 5 (98–108) clayey silt (carbonate-free sediment) Slackwater facies (Sw)—Facies of grayish-yellow laminated silt: it is visible on
all sides of the test trench. The lower boundary of the Sw facies is sharp and clearly
marked. At the bottom, 10 cm of homogeneous silt sharply turns into an interval of
horizontally laminated sediment (mm laminae) (Figures 3A,B). Lamination ismarked by
vertical alterations of the silty laminae and silty-sandy laminae. Occasionally thin layers
occurred (up to 1 cm). The thickness of the laminated interval varies laterally - the
laminated interval is thinnest at about 1 m from the side of the cave wall with laminae
and layers dipping toward the middle of the cave channel. Therefore, lamination partly
follows the inherited morphology in the underlaying homogeneous silt and it showing a
channel-like form with a maximum height of up to 10 cm, but erosional discordance
has not been observed. Laminae follow the shape of the "channel". Toward the top of
the profile, there is a transition toward the zone with wavy lamination (probably a post-
sedimentary deformation of the sediment—convolution). Small cracks with vertical
displacement between layers were also observed (micro faults). The increase in the
amount of sand in the laminated horizon is visible from the particle size distribution
curves (samples DC-SP 105 to DC-SP 135, Figure 4B). The upper 40 cm of the Sw
facies represent silty massive sediment with a decreased amount of sand (Figures 4B,
11B) and show a finning upwards trend. The upper boundary is marked with uneven
and sharp disconformity to the late Bronze age and Modern period archaeological
strata (Figure 11A)

DC-SP 6 (108–130) laminated clayey to sandy silt with intercalations of mm laminae
and thin layers (carbonate-free sediment)
DC-SP 7 (130–170)Homogeneous clayey-silt to silty-clay sediment (carbonate-free
sediment)

DC-SP 8 (170–195) archaeological strata with pottery fragments. Iapodes, late Bronze age
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FIGURE 4 |Granulometric composition of samples from the profile DC-SP. (A)Granulometric analysis by sedimentation method: cumulative granulometric curves,
(B) distribution curves of individual fractions (clay, silt, and sand) through the investigated profile.
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comparable to the results of areometric particle size analysis
(Figure 4A).

Mineralogical Composition of the Sediment
The results of the modal analysis of the sediment samples are
given in Table 2. Within all samples the LMF predominates,
represented by grains of monocrystalline quartz (84–92%)
which is mostly represented by angular and slightly rounded
grains of uniform and undulose extinction. In addition to this
dominant group, euhedral quartz grains can be found
(Figure 5A). Sporadic occurrences of well-rounded and
spherical quartz grains were recorded, as well. The amount
of rock fragments ranges from 4 to 8%. Among them, the most
common are chert particles. Rare tuffitic particles were found, as
well as schist rock fragments. Feldspars are represented mainly
in the form of potassium feldspars, and their total amount is up
to 9%. Feldspars are most often anhedral (Figure 5B) to
subhedral. Mica (muscovite) appears only sporadically (<1%)
in the form of transparent plates with a rounded outline
(Figure 5C). The LMF is quite uniform throughout the
profile (Table 2). A slight decrease in the number of quartz
grains toward the top of the profile was observed, and in
connection with that, a slight increase in the number of

feldspars and lithic particles. The mineral composition of all
analyzed samples is uniform. Among the HMF, the amount of
opaque minerals is high, about 90%. Completely opaque black
grains, often well rounded, are observed. Chromite grains,
slightly reddish-brown colored, are present in all analyzed
samples and in some samples pyrite (Figure 5D). The THM
are very sparse in the samples. Among the THM, the pyroxene
predominates. They appear in the form of anhedral to stubby
prismatic grains, are green in color and the typical “hacksaw”
terminations are often visible (Figures 5F,G). According to the
extinction angle, they are classified in the group of
clinopyroxene. The second most common translucent heavy
mineral is zircon. Zircons, mainly short-prismatic or anhedral
(slightly rounded) are present in all samples. Euhedral grains are
rare (Figure 5G). Tourmaline is present in roughly the same
proportion as zircon. It appears in the form of subhedral grains.
It is rounded in some places. Pleochroism in brown to greenish
color is visible in places. Other observed varieties belong to a
group of hemimorphic grains with multicolored poles (Figures
5E,H). Rutile is rare but still present in all samples, appearing in
rounded forms with a slightly prismatic habitus. Their color is
usually reddish-brown or dark red. Garnets are rare, occur in the
form of weakly rounded grains or angular grains/shards with

TABLE 2 | Mineral composition of silty cave sediment from profile DC-SP in the Lower Cerovačka Cave.

Light mineral fraction composition (fraction 0.09–0.16 mm) shown in %

Sample Quartz
(monocrystalline)

Feldspars (kfs+Pl) Lithic particles (chert and other) Muscovite

DC-SP 2 92 2 6
DC-SP 3 92 3 5 +
DC-SP 5 88 8 4
DC-SP 6 87 9 4
DC-SP 7 84 8 8 +

XRPD analysis (bulk samples) shown in %

Qtz Pl 14 Å 10 Å 9 Å 7 Å Gbs Hem HA Clays

DC-SP 1 bone 100
DC-SP 1 12 + + + 39 49
DC-SP 2 35 + + + + ? * 65
DC-SP 3 36 + + + + * * 64
DC-SP 4/2 30 6 + + + ? ? 64
DC-SP 5 31 4 + + + * ? 65
DC-SP 6 32 7 + + + ? ? 61
DC-SP 7 34 6 + + + ? 60

XRPD analysis (fraction < 2 µm) shown by the relative abundance

L.c. Vrm Vrm Ill/Ms Tlc-Prl Kln KlnD Chl Qtz Chl-V I-S

DC-SP 2 * XX X * X * XX – X *
DC-SP 3 * XX X * XX * X * X
DC-SP 4/2 X X X * XX X * X
DC-SP 5 * XX X * XX * X * X
DC-SP 6 * X X XX * X * X *
DC-SP 7 X X X XX * X * X *

Data is obtained by modal analysis of Light mineral fraction (performed on fraction 0.09–0.16 mm), and by Quantitative XRPD analysis. Quantitative mineral composition of bulk samples
and semi-quantitative mineral composition of the <2 µm fractionis are shown. Abbreviation codes: Qtz—quartz, Pl—plagioclase, Gbs—gibbsite, Hem—hematite, HA—hydroxylapatite,
14, 10, 9, 7 Å—type of clay minerals present in bulk sample marked with +, ?—mineral is probably present in the sample but cannot be confirmed with certainty because of low content
and/or overlapping of diffraction maximums. L.c. Vrm—Low-charge vermiculite or high-charge smectite, Vrm—vermiculite, Ill/Ms—illite/muscovite, Tlc-Prl—talc-pyrophillite group, Kln �
Kaolinite which does not intercalate with DMSO, KlnD—kaolinite which forms intercalation compounds with DMSO, Chl—chlorite, Chl-V—chlorite-vermiculite mixed-layerd clay mineral,
I-S—illite-smectite mixed-layerd clay mineral, XXX—dominant (>50%), XX—abundant (20–50%), X—subordinate (1–20%), *—traces (<1%).
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FIGURE 5 | Overview of selected mineral grains from the light and heavy mineral fraction of the DC-SP profile (photo without analyzer). (A) Weakly rounded
allotriomorphic and hypidiomorphic quartz grains (Q) from sample DC-SP 2, (B) Feldspar (F) from sample DC-SP 2, (C)muscovite grains (ms) from sample DC-SP 7, (D)
rounded opaque minerals (op), chromite (cr), and pyrite (py) from sample DC-SP 2, (E) opaque minerals (op), tourmaline (tu), and garnet (grt) from sample DC-SP 6, (F)
pyroxenes (px) from sample DC-SP 6, (G) zircon (zrn), and pyroxene (px) from sample DC-SP 2, and (H) opaque minerals (op) and tourmaline (tu) from sample DC-
SP 3.
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sharp edges. Colorless garnets predominate. Slightly pink
garnets are also present (Figure 5E). Among other THM,
grains from the epidote-zoisite group rarely occur. The
epidote is greenish, semi-rounded, in the form of irregular
grains while mineral grains classified as zoisite/clinozoisite
look fresh and show an anomalous blue interference color.
Rare occurrences of biotite and greenish anhedral amphiboles
are also present.

The results of the XRPDmethod are shown in Table 2. Sample
DC-SP 1 is extremely heterogenous. It consists of bone fragments,
and sandy silt size sediments. The analysis was performed on both
parts. Sediment sample DC-SP 1 (silt), in addition to clay minerals,
contains a significant amount of hydroxylapatite (HA) and quartz
(Table 2). Quantities of fractions <2 μm were too small for clay
analysis, so the analysis was performed on a fraction<0.063 mm. In
that fraction quartz, vermiculite, illite/muscovite, talc-pyrophyllite,
kaolinite and a small amount of chlorite are present. Bone fragment
sample consists only of HA. The main mineral phases in all other
analyzed samples are clay minerals and quartz (Table 2). Samples
DC-SP 4 toDC-SP 7 contain a smaller amount of plagioclase. Some
of the samples (Table 2) contain a very small amount of gibbsite
and hematite, but due to the low content cannot be confirmed with
certainty in all samples. Mineral composition of <2 μm fraction of
all analyzed samples is similar. In the analyzed samples, among clay
minerals, vermiculite, illite/muscovite, kaolinite, and a lesser
amount of chlorite and chlorite-vermiculite regularly appear. In
some samples, small quantities of low-charge vermiculite or high-
charge smectite, talc-pyrophyllite, kaolinite which forms
intercalation compounds with DMSO and illite-smectite are also
present. Samples DC-SP 3 and DC-SP 5 probably contain
secondary chlorite (the 14Å diffraction maximum disappeared
after heating to 550°C).

Palynofacies
Palynofacies of all studied samples beside the oldest one (DC-SP 1)
are dominated by phytoclasts. Sporomorphs occur in a small
amount and therefore there is no standard palynological diagram.
Instead of that, only organic matter abundance is presented in the
diagram (Figure 6). In the oldest analyzed sample, DC-SP 1, the
palynofacies is dominated by bacterial amorphous organic matter
(AOM) particles (Figure 7A), and non-opaque phytoclasts, mostly
amorphous particles, which indicate an increased input of
terrigenous material. Only a few Pinaceae pollen (Figure 7C) and
Fungi spores occur. Microscopic charcoal remains (around 100
microns in size; Figure 7B) point to the influence of fire
(Whitlock and Larsen, 2002). Palynofacies from the sample DC-
SP 2 is dominated by opaque phytoclasts, mostly corroded charcoal,
while non-opaque phytoclasts decreased. Sporomorphs from conifer
Pinaceae (Figure 7D) family as well as herbs of Asteraceae
(Figure 7D) and Cichoriaceae family (Figure 7E) dominate in
the same ratio (6%). They point to a cold and dry climate,
probably to a glacial stage. In sample DC-SP 7 palynofacies is
still dominated by the opaque phytoclasts, mostly corroded
charcoal. Beside phytoclasts there are a lot of particles resembling
cyanobacteria, maybe degraded cyanobacteria (Figures 7F,G) that
lived in the cave. Palynofacies from the youngest sample DC-SP 8 is
dominated by the phytoclasts, mostly non-opaque

phytoclasts—brown wood and amorphous particles. Rare findings
of the palynomorph Pseudoschizaea (Figure 7I), probably related to
Zygnemataceae, indicate the runoff due to periods of enhanced soil
erosion outside the cave (Leroy et al., 2007). The presence of spores
from the genus Glomus suggests erosion from a forested upstream
slope (van Geel, 2001), possibly due to fires, themselves evidenced by
an increase in microcharcoal particles. Aquatic pollen (Typha) and
grasses (Graminae) were also present in the similar ratio (ca. 3%). At
the same time rare Polygonum persicaria (Figure 7H) points to
anthropogenic influence.

Paleontological and Taphonomic Analysis
The vertebrate remains from the Pleistocene deposits of the test
trench (specifically 873 fragments) were recovered at a depth of
∼1.2 m, within a 30 cm thick layer (Figure 3A). Of these, 230 bones
and teeth are identified to the genus Ursus (26.4%). The vertebrate
remains are therefore documented and presented within Figure 8.
Based on morphological and metrical characteristics, all bear
remains from LCC are attributed to cave bear (U. spelaeus),
making this species the only mammalian taxon identified within
the analyzed faunal assemblage from Pleistocene deposits. The vast
majority of the remains, however, remained taxonomically
undetermined. Based on their relative size and robustness, many
of these remains could also come from a cave bear. However, given
the mention of rare findings of other large carnivores and herbivores
in previous studies (Malez, 1965b; Paunović et al., 1999), this
assumption should be considered with caution and the possibility
of the existence of other taxa in this assemblage should not be ruled
out. Although most of the remains could not be aged precisely,
information of the relative age at death shows predominance of adult
bears (81.7%), while the rest belongs to juveniles (Figure 8). A single
bone is attributed to a fetal or newborn animal.

In order to study the body part representation of bears in the
LCC, data for both cave bear and taxonomically indeterminate
remains of the similar body size are combined. All major parts of
the body are present (Figure 8) suggesting deposition of complete
bear carcasses within the cave. However, a closer examination of
the differential representation of different body parts revealed the
following: the most abundant class are trunk elements (32.2%),
closely followed by the elements of the head (teeth included; 29.1%)
and feet bones (25.2%). Relative to them, larger bones of the
appendicular skeleton are under-represented within the
analyzed assemblage. Thus, the upper elements of the fore limbs
(scapula, humerus, radius, ulna) and hind limbs (pelvis, femur,
tibia, fibula) are represented by only 6.1 and 7.4%, respectively.

With the exception of a few more complete bones, the skeletal
material is fragmented. Recent breaks are present but most
breakages are dry and attributable to natural processes typical
of cave environment (e.g., trampling by other animals, sediment
pressure). Looking at the bone surface modifications the material
is relatively well preserved. The average bone color varies between
pale white to yellowish white. Just a few fragments display small
areas of dark brownish coloration, suggesting light staining
probably due to exposure to minerals in the sediment. Besides
fragmentation, the most common taphonomic modification is
very light weathering (fine line fractures and spalling of bone
surface), while chemical etching is evidenced on several
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fragments. In addition, only a few bones were gnawed by large
carnivores (e.g., cave lion or hyena) and there is no evidence of
modification by hominins.

Luminescence Dating
Using the rejection criteria determined in dose recovery
experiments, 43 equivalent dose values were accepted for the
IR50 signal, and 33 for the pIRIR225 signal, respectively. Dose
distributions for both signals are positively skewed and show
overdispersion values of 56 ± 7% (IR50) and 42 ± 7% (pIRIR225),
which in combination can be interpreted as an indication for
incomplete bleaching being significant in the sample. Therefore,
average equivalent doses for both signals were calculated using a
bootstrapped three-parameter minimum age model (Galbraith
et al., 1999; Cunningham and Wallinga, 2012), with sigmab of
0.3 ± 0.2 as a threshold value, based on the overdispersion values
from dose recovery experiments and assigned with an uncertainty
to account for the lack of a well-bleached natural reference
sample. The g-values of 5.6 ± 0.8 for the IR50 and 0.6 ± 0.9
for the pIRIR225 signal were obtained after fading corrections.
Fading correction was conducted using the approach of Huntley
and Lamothe (2001) and calculated using the R-Luminescence

package of Kreutzer et al. (2012). Equivalent dose values and
resulting ages as well as all luminescence results are summarized
in Table 3.

The different characteristics of the two luminescence signals
measured with the pIRIR225 dose protocol can be used to assess
the reliability of the determined ages. The IR50 and pIRIR225

signals are known to exhibit different fading rates, as was
confirmed by the fading measurements in this study, and
different bleaching rates, with the IR50 signal bleaching much
faster than the pIRIR225 signal (e.g., Murray et al., 2012; Bickel
et al., 2015a, 2015b). If incomplete bleaching is significant in a
sample, the success of the correction of the effect of incomplete
bleaching using the statistical approach of the bootstrapped
MAM can be assessed by comparing the fading corrected ages
for both signals. If the apparent age of the IR50 is significantly
younger than that of the pIRIR225 signal, incomplete bleaching
was not successfully corrected for. If, however, the fading
corrected ages for the two signals are in agreement within
error limits, like is the case here, this is a strong argument
for a successful correction of the effects of incomplete bleaching.
Although fading correction was applied also for the pIRIR225

signal for comparative reasons, the fading rate is negligible

FIGURE 6 | Organic matter (OM) percentage abundance diagram for the DC-SP profile in the Lower Cerovačka Cave. Diagram was made with the Tilia software
(Grimm, 1991).
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within error and because of that the pIRIR225 based age not
corrected for fading of 53.7 ± 6.9 ka can be regarded as the most
reliable depositional age for the sample (marked in bold in
Table 3). In addition, it is important to note that the
luminescence age is in stratigraphic order with the
radiocarbon age obtained from a flowstone sample (Chapter
4.6.2), further corroborating the high reliability of the age
determination.

Radiocarbon Dating
The speleothem sample (Z-7352, graphite number A2160 (RBI),
ID number UGAMS# 49576 (CAIS)—Figures 9A–C) had F14C �
0.1148 ± 0.0006 (17,390 ± 40 BP) and δ13C -5.3 ± 0.1‰. F14C and
radiocarbon dates without and with DCF of 12.5 and 15%, along
with their calibrated dates are presented in Table 4. Compared
calibration curves for both 12.5 and 15% DCF and both for using
the reservoir function in OxCal and calibrating raw 14C dates are

FIGURE 7 | Palynofacies from the profile DC-SP in the Lower Cerovačka Cave (A,B) DC-SP 1, (C,D) DC-SP 2, (E,F) DC-SP 7, and (G,H) DC-SP 8.

FIGURE 8 | Body part representation (NISP) of Ursus spelaeus at the profile DC-SP in the Lower Cerovačka Cave, presented separately for two main age
categories. A single fetal/neonatal bone has been excluded.
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presented in Figure 9D. Here should be pointed out that there is a
large difference between conventional radiocarbon dated
(expressed as BP) and calibrated calendar dates (expressed as
cal AD and cal BC) in this part of the radiocarbon calibration
curve, resulting in difference of about 2,500 years between the
conventional and calibrated age. The true age of material with the
obtained age of 16 ka BP is therefore ∼19.5 ka old (Table 4).

DISCUSSION

Mineral Composition and Provenance of
Cave Sediments
The investigated sediments represent the clastic filling of cave
channels. Earlier research assumed that the clastic filling of cave
channels is an accumulation of in situ products of weathering of
the host rock (Malez, 1965). According to mineralogical analysis
presented within this paper the cave sediment is mainly
allochthonous clastic detritus but a part of it is autochthonous
chemogenic and collapse material. The overall mixture of cave
detrital sediments depends greatly on the weathering products in
the source area, transported and deposited by episodic events in
different facies types (depending on flow dynamics) inside the
cave (Georgiadis et al., 2019). Therefore, our results are compared
to the geological units in the river Otuča catchment area
(Figures 1B,C).

The results of the LMF and XRD analysis (Table 2) shows that
the main components of the analyzed cave sediments are quartz
and clay minerals. The sample DC-SP 1 additionally contains
bone fragments and significant amounts of hydroxyapatite (HA)
(Table 2). HA is the main constituent of mammalian bones and
teeth and is often recognized within cave sediments, like e.g., in
the Modrič Cave (Miko et al., 2001). Also, the relationship
between the habitation of bats and HA formation in caves has
been found in limestone caves worldwide (Hill and Forti, 1997).
HA is usually formed as a crust that coats speleothems and
bedrock substrate surfaces within or near bat habitats, while
powdery forms of HA could be found under bat guano
deposits (Chang et al., 2010 and references therein). Hence, it
is possible that beside the tiny bone fragments in the fine-grained
part of the sample DC-SP 1, a part of the HA may also have
originated from the in situ bat guano, as indicated by the dark
color of the sediment. In samples DC-SP 4 to DC-SP 7 small
amount of plagioclase are also present (Table 2). Their
preservation in the samples and the absence of gibbsite and
hematite indicates that these samples were subjected to less
intensive pre-burial weathering compared to samples DC-SP 2
and DC-SP 3. The clay minerals contained in the analyzed cave
sediments (Table 2) are similar in composition to the Terra Rossa
type paleosols developed on the carbonate rock in the Adriatic
region (Durn et al., 2007, 2018). In the wider Mediterranean area,
the mineral composition of Terra Rossa type soils and palaeosols
may be very variable (Durn, 2003). This variable composition is a
consequence of the polygenetic nature of Terra Rossa which can
form exclusively from the insoluble residue of limestone and
dolomite but much more often encompasses a range of parent
materials that arrived on the carbonate terrain by differentT
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transport mechanisms (Durn, 2003). Thus, in Istrian Terra Rossa,
the dominant mineral phases in the clay fraction are kaolinite,
illitic material, Fe-oxides and XRD amorphous inorganic
compounds, while vermiculite, low-charge-vermiculite or high-
charge smectite, chlorite, mixed-layer clay minerals and quartz
are present in smaller quantities (Durn, 2003). Terra Rossa soils
fromWestern Herzegovina have a similar composition where the

dominant mineral phases in the clay minerals fraction are
kaolinite, Fe-oxides and XRD amorphous inorganic
compounds, while vermiculite, smectite, illitic material,
chlorite–vermiculite and quartz are present in a subordinate
amount (Durn et al., 2014). However, even though cave
sediments show similarities to Terra Rossa type soils, they
cannot be classified as soils (Zupan Hajna et al., 2020). Cave

FIGURE 9 | Sampled flowstone (14C) from the DC-SP profile in the Lower Cerovačka Cave (A)Bottom view, (B) top view, (C) cross-section with indicated sampling
line, (D) calibration curves for 14C date without DCF correction (in gray), and for 12.5% (“Reservoir 1,073,” in green) and 15% (“Reservoir 1,305,” in red) DCF.

TABLE 4 | F14C and radiocarbon dates and calibrated dates for dead carbon fraction of 0, 12.5 and 15%, RS-atm—reservoir offset for correction to reservoir effect using the
OxCal v 4.2.4 software (Bronk Ramsey 2009, 2016).

DCF (%) F14C F14Rs-atm
14C date

(BP)
RS-atm (BP) Calibrated date (95.4%)

Span Median

0 0.1148 ± 0.0006 1 17,390 ± 40 – 19,050–18,940 cal BC 19,002 cal BC
12.5 0.875 16,315 ± 40a 1,073 18,189–17,811 cal BC 18,000 cal BC
15 0.85 16,080 ± 40a 1,305 17,949–17,562 cal BC 17,758 cal BC

aDates presented only for orientation, not used directly in the calibration curve.
Radiocarbon dates were calibrated using IntCal20 calibration curve (Reimer et al., 2020) and calibrated date spans are given with 95.4% confidence (k � 2).
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sediments reveal a good, multi-proxy record of cave and surface
environmental conditions in the time of their deposition (Bosák,
2002). Therefore, the red clayey-silty sediments found in the LCC
can, to some extent, be considered as redeposited Terra Rossa.
Despite the similarities, cave sediments appear to have suffered
less advanced stages of weathering compared to Terra Rossa.
Iacoviello and Martini (2012) came to the same conclusion
comparing the clay mineral composition of cave sediments
and Terra Rossa soils in the karst massif of Montagnola
Senese in Italy. The source area of the investigated sediment
could be in the Gračac karst polje in the close vicinity of the
entrance to the LCC. In the catchment area of the Otuča river
(Figure 1B), approximately 3.5 km upstream of today’s ponors
close to the cave entrance, the river flows through the area
covered with Terra Rossa type sediment, as can be seen from
the geological map (Figure 1C, unit 10; Ivanović et al., 1973).
Beside kaolinite, vermiculite, illite/muscovite, chlorite and mix-
layered clay minerals, samples DC-SP 2 to DC-SP 6 contain
minerals from the talc-pyrophillite group (Table 2). Talc-
pyrophyllite usually occurs as a minor component in soils,
which could be inherited from the parent rock, but they can
also form as a result of weathering processes (Weaver, 1989).
According to Velde and Meunier (2010) talc can be formed
directly from pyroxenes. Other secondary minerals that can be
formed from pyroxene are vermiculite, smectite, kaolinite or
hematite. The analyzed samples contain a small amount of
pyroxene group minerals (Table 2) which could have been the
parent material for the talc-pyrophyllite group of minerals.
Hematite is present only in traces (Table 2), very likely
derived from the Terra Rossa. The mineral assemblage
determined by the XRD within the analyzed DC-SP samples is
comparable to detrital cave sediments within Dinaric karst (Bosák
et al., 2012; Zupan Hajna et al., 2021), and e.g., cave sediments
from northwestern Oltenia in Romania (Ghenciu, 2017). When
comparing cave sediment compositions, it should be noted that
the composition of these sediments depends on the clastic source
rocks, and factors such as weathering and/or pedogenesis.

To answer the question about the clastic source rocks and
source areas, results of LMF and HMF analysis (Table 2;
Figure 5) were compared to the main lithological units in
today’s catchment area of the Otuča river and Gračac karst
polje (Figures 1B,C). Underground passages of the LCC are
developed in the Tertiary carbonate breccia host rock (Ivanović
et al., 1973) (Figure 1C, unit 8), known as Jelar breccia (Bahun,
1963, 1974) which is locally composed of various lithic fragments,
most commonly related to the lithological composition of
underlying rocks. Therefore, the breccia is mainly composed
of lithic fragments of Jurassic, Cretaceous, and younger
Paleogene carbonate rocks (Ivanović et al., 1976). In the
investigated sediment, it was not possible to recognize this
carbonate source area, except within the clearly in situ formed
Bd facies which contains angular boulders of the host rock
(Figure 11A). However, in most of the sediment, the
siliciclastic detritus predominates (Table 2) which points to
the allochthonous origin of the detritus. According to the
results of the HMF and LMF analysis (Figure 5; Table 2) it
can be concluded that the source of the clastic detritus is

connected to the wider river Otuča catchment area.
Downstream from the source, river Otuča flows through the
upper Carboniferous deposits (Šušnjar et al., 1973) (Figure 1C,
unit 1), mostly clayey shales and sandstones, accompanied by
conglomerates. In the composition of the clayey shales quartz,
muscovite, chlorite, plagioclase, kaolinite, organic substance, and
pyrite can be found. In the layered, well-sorted, and fine-grained
sandstones the detritus is composed mainly of quartz, muscovite,
chlorite, lithic fragments, and a small amount of plagioclase
(Sokač et al., 1976). Traces of such mineral assemblages can
be recognized within the composition of LMF from LCC where
quartz grains prevail (84–92%), together with the occurrence of
muscovite and feldspar (Table 2), while the presence of chlorite
and kaolinite is confirmed by XRD analysis (Table 2). Potential
source area could be found within the clastic-pyroclastic series of
middle to upper Triassic (Figure 1C, unit 3), composed of shales,
quartz-calcarenites, subgraywacke sandstones, calcilutites,
breccias, and tuffitic rocks (Sokač et al., 1976). The
subgraywacke shows pronounced domination of quartz,
followed by chert, plagioclase, and platy minerals such as
biotite, muscovite, and chlorite, all comparable with the
composition of the analyzed samples (Table 2; Figure 5).
Furthermore, other rocks within the clastic-pyroclastic series
contain angular quartz, chert/radiolarite, and in smaller
amounts fragments of older sandstones and shales, similar to
the investigated samples. The predominance of pyroxenes among
the THM in investigated samples points to the upper part of the
middle Triassic clastic-pyroclastic series as the possible source
rocks (Sokač et al., 1976). Pyroxenes, as chemically unstable
detrital constituents, possibly indicate higher erosion rates of
the source rocks, rapid transport, and short grain residence time
in the river (Sevastjanova et al., 2012; Wacha et al., 2019).
Although present, garnet grains are not the dominant phase
within the composition of THM in LCC detrital sediments
(Chapter 4.3, Figure 5) but the overall mineral assemblage is
almost identical except for the absence of corundum and apatite.
The apatite absence could be related to the sample preparation
process and chemical dissolution. The relatively abundant well-
rounded opaque grains within HMF resembles to Fe-Mn nodules,
which are common in clastic cave sediments and Terra Rossa type
soils and paleosols (Durn et al., 2018; unpublished data) (Figures
5D,E,H). Their occurrence could be related to the earlier
mentioned Terra Rossa type soil in the Gračac karst polje
(Figure 1B, Ivanović et al., 1973). To conclude, the mineral
composition of the clastic detritus in which there is high
proportion of quartz, followed by feldspars, muscovite, opaque
minerals, biotite, chlorite, chromite, pyroxenes, zircon, rutile,
garnets, epidote, zoisite/clinozoisite group minerals and
chromite can indicate a diverse source area, but the one that is
geographically connected to the nearby river Otuča
catchment area.

Sedimentary Facies and Depositional
Environments
Due to the unique characteristic of cave environments, it is
sometimes difficult to interpret specific depositional conditions
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within sequences of detrital cave deposits. Cave sediments
represent the most complex terrestrial depositional
environment where the law of superposition is often violated,
facies are usually diachronous and re-deposition along the same
cave passage is very common (White, 2007; Zupan Hajna et al.,
2020 and references within). However, we were able to describe
and interpret three lithofacies types within the sedimentary
profile DC-SP in the LCC; the Breakdown facies (Bd), the
Diamicton facies (Di) and the Slackwater facies (Sw)
(Figure 3A; Table 1).

Sediments of the Bd facies are commonly formed by the
gravitational collapse of the host-rock or speleothems from the
ceiling of the caves. Such facies type has been described in other
caves, and is considered as an autochthonous type of sediment
(e.g., Bosch and White, 2004; White, 2007). The transport of
material, in this case, is very short, as is confirmed by the
angularity of collapsed blocks and poor sorting of the debris
(Table 1; Figure 11A). Collapsed sediments are common near the
cave entrances (e.g., Bočić et al., 2012; Haddad-Martim et al.,
2017), although they can often be seen as big accumulations of
unsorted boulders and cobbles on the floor of big chambers
within caves (Fornós et al., 2014). Deposition is, besides other
processes, often triggered by the cryofracturing process within
cave channels during the cold periods (White, 2019). Hence, it
can be assumed that sedimentation of the Bd facies in the channel
of the LCC could also happen during a relatively cold period. That
assumption is confirmed by palynological data which shows that
the base of the investigated profile was formed during a period of
cold and dry climate (see Chapter 4.4). The silty matrix within the
Bd facies is the result of secondary infiltration (e.g., Martini, 2011)
due to the existence of occasional and relatively insignificant
water flow within the open cave channel. This is evidenced by the
preserved/transformed phytoclast ratio according to Sebag et al.
(2006). Even though this index was introduced by Sebag et al.
(2006) for Holocene alluvial sediments, our data show a
distribution of the index (Figure 10) which allows us to
distinguish the paleoenvironment, confirming a transition

from a fluvial paleoenvironment in the lower (older) part of
the section (DC-SP 1—Bd facies) to a non-aquatic terrestrial
paleoenvironment toward the youngest part of the section (DC-
SP 8—Late Bronze Age). Such interpretation shows a good
correlation with the sedimentological data. The appearance of
microscopic-sized charcoal remains (Figure 7B) and possible
traces of guano and bone remains (Table 2) between collapsed
blocks of the Bd facies indicate that during the deposition of the
Bd facies the cave channel was already fully developed and well
connected to the surface in an open-air environment. Charcoal
remains could indicate occurrences of wildfires in the area.
Deposits of this type are formed during the vadose, air-filled
stages of cave development (Hill, 1999). However, the
distribution of palynofacies shown on Figure 10 in the lower
part of the section, could also be a reflection of palynomorph
transport by hydrological mechanism of cave drip water into the
vadose cave channel.

Coevally to the Bd facies, the sediments of the Di facies were
deposited (Figures 11A,D), as implied by their lateral contact.
The red clayey silt resembles the Terra Rossa type soils and
palaeosols whose genesis within the karst has not yet been
unambiguously resolved. Polygenetic, detrital, and residual
origins are most commonly mentioned (Durn et al., 2007).
Similar red clayey-silty sediments in caves are interpreted as a
composite of detritus introduced into the cave, and the insoluble
residue from the dissolution of the host rock (e.g., Iacoviello and
Martini, 2012). Mostly allogenic origin of the Di sediment within
LCC is confirmed bymineralogy reflecting the composition of the
river Otuča drainage area (Samples DC-SP 2, 3 in Table 2;
Chapters 4.3 and 5.1). Although the vast majority of this
interval is formed by finer sediment (Samples DC-SP 2, 3;
Figure 4A), a significant number of larger clasts and bone
fragments were found within (Figures 3A, 11A), could
indicate depositional mechanisms by non-selective agents
within cave specific environments. The aeolian contribution
could also played important role in creating fine-grained
sediment sequences within the cave. However, in the close
vicinity of the LCC, there are no occurrences of loess on the
surface (Figure 1C). Loess and loess-like deposits were
widespread in the Adriatic region during oxygen isotope stage
3 (Wacha et al., 2018; Zhang et al., 2018). Nevertheless, aeolian
sediments also play a significant role in the forming of polygenetic
Terra Rossa type of soils (Durn et al., 2007) which were found in
the river Otuča catchment area (Figure 1C, unit 9). According to
paleontological data, it is necessary to mention that most
probably intertwining of the depositional and biological
processes resulted in today’s distribution of clasts and fossil
remains within the sediment. Despite the fact that all parts of
the U. spelaeus body are represented (Chapter 4.5), there is a lack
of articulated sets and high fragmentation with indications of
certain movements and destruction of the faunal material within
the sampled DC-SP 2 interval of Di facies (Table 1; Figure 3). In
density-mediated attrition, low-density elements are quickly
destructed and removed from the assemblage (Lyman, 1994),
which does not explain why there are very few fragments of major
limb bones. The post-depositional disturbance is possible.
However, based on data on body parts representation and

FIGURE 10 | Diagram for discrimination of depositional environments
according to palynofacies analysis applied to samples from DC-SP profile in
the Lower Cerovačka Cave with optical indices “AOM contents” (aquatic or
microbial production) and “preserved/transformed ratio” (preservation
degree of terrestrial plant debris) (according to Sebag et al., 2006).
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fragmentation, it is possible that a larger dispersal of the skeletal
material occurred even before, when bear carcasses were lying on
the fossil surface of the cave. Except for a single questionable
finding of cut marks (Trbojević Vukičević and Babić, 2008), no
traces of butchering were previously found on cave bear bones
from LCC, so it is safe to assume that hominins were not
responsible for the accumulation and dispersal of cave bear
bones. Since the cave has probably been used for a very long
time by several generations of cave bears (Malez, 1965b), lack of
articulated skeletons can be also explained as a result of trampling
by other cave bears. However, high fragmentation and under-
representation of major long bones may be due to scavenging
activities of large carnivore predators, whose presence should not
be ruled out despite the lack of corresponding taphonomic traces
within the analyzed assemblage. Bears used caves as shelter and
for hibernation, and were often targeted by other large carnivores,
mostly hyenas, who entered deep into caves in search of them
(Diedrich, 2012). To conclude, described lack of complete
skeletons or articulated sets, as well as high fragmentation
undoubtedly indicate certain movements and destruction of
the faunal material within the sediment, although taphonomic
processes could have a significant influence (Chapter 4.5). Given
the chaotic arrangement of clasts and random orientation of long
bones with no visible textures in the clayey silt, the facies of the
red clayey silt is interpreted as Di facies (e.g., Bosch and White,
2004; White, 2007; Haddad-Martim et al., 2017). This type of
sediment could be formed by high-density debris flows within the
caves and by the redeposition of older clastic cave deposits.
Distinguishing facies types within this type of deposits is not
always unambiguous because cave sediments deposited near cave
entrances are often transported by nonselective mechanisms such
as slumping, creeping, and collapsing. Such processes result in the
fact that they are mainly built of similar ratios of silt, clay and
sand, which makes it difficult to recognize unconformities
(Haddad-Martim et al., 2017). The chaotic character of the Di
facies (see description in Table 1) and the possible redeposition of
the sediments, is supported by the results of the palynological
analysis which shows signs of redeposition, for example high
(relative) values of phytoclasts fragments especially corroded
charcoal remains (Figure 10). Deposition of the Di facies
sediments took place during a period of a colder and drier
climate (Chapter 4.4). Such occurrence of poorly sorted
fossiliferous sediments coincides with the results of previous
research within the LCC (e.g., Malez, 1960b). Namely, the
horizon of the Di facies could be related to deposits earlier
described in the caves of the nearby Gračac area as sediment
composed of reddish-brown phosphate clays with numerous
osteological remains of the Late Pleistocene with traces of the
Upper Paleolithic culture (Malez, 1960b; Ivanović et al., 1976).
Those sediments were correlated to the Last Glacial Period.
Although cave bears are one of the most abundant taxon
recovered from Pleistocene cave sites in Croatia (Miracle,
1991), with Cerovačke caves being one of the most important
cave bear sites (Paunović et al., 1999), our paleontological data are
limited by the relatively modest sample size. Therefore, U.
spelaeus remains within the investigated sequence cannot be
used as a precise stratigraphic marker. The earliest appearance

of the U. spelaeus dates back to the end of the Middle-Late
Pleistocene transition, and it became extinct in central Europe
during the LGM, around 24 ka BP (Kurtén, 1958, 1968; Pacher
and Stuart, 2009). Within Dinaric karst there are dated cave bear
specific sites (e.g., Križna jama) with ages of cave bear
thanatocenoses around 47–45 ka and >94 ka BP (Bosák et al.,
2012). To establish a chronological framework of the Di facies of
the LCC luminescence dating was performed. Although it is a
new approach in the region, the application of luminescence
dating techniques has proven to be a suitable chronometer in cave
settings (e.g., Montanari et al., 2019). In general, luminescence
techniques enable the determination of depositional ages of
sediments by determining the point in time when quartz or
potassium-rich feldspar grains were last exposed to daylight
during transport before final deposition (for the basic
principles of luminescence dating see Preusser et al., 2008,
Rhodes 2011; Wintle 2008). According to the obtained
luminescence age, the sediment directly overlying cave bear
remains entered the cave environment 53.7 ± 6.9 ka ago
(Table 3), which correlates well with oxygen isotope stage 3
(OIS3). The obtained date does not necessarily indicate the time
of deposition at the investigated site but the time when the
sediment entered the cave environment. It also indicates that
this part of the sequence is not older than ∼54 ka. The end of
deposition of the Di facies is marked by a change in color from
reddish to gray to yellow and the appearance of a discontinuous
flowstone level (Table 1; Figure 11C). Similar it is also described
in other caves of the investigated area (reddish-brown phosphate
clays phase covered with flowstone—Ivanović et al., 1976).

A thin layer of laminated flowstone composed of columnar
sparry calcite was determined with visible crystal growth
directions (Supplementary Material S2). Millimeter-sized
sparry calcite possibly indicate a relatively high growth rate of
the flowstone. We assumed in situ genesis of the flowstone
because platy fragments (Figures 9A–C) are distributed at the
same horizontal level with visible distinct uneven base/nucleation
plane shoving traces of the underlying silty-clayey sediment
(Supplementary Material S2). However, due to the thin and
discontinuous horizon (Figure 3A), an allochthonous origin is
not excluded. If in situ, the flowstone within the sedimentary
profile is an indicator of change in the cave environment since
their formation implies the absence of the detrital input (Haddad-
Martim et al., 2017). Flowstones could be formed from sheets of
flowing water derived from fissures or major conduits (Fairchild
et al., 2006) or as subaqueous flowstones fed with turbulent
underground stream water (Wróblewski et al., 2017). As
valuable marker horizons for dating, they were previously used
in this region as source material for acquiring 14C ages within
caves (e.g., Bočić et al., 2012). Within this study the obtained 14C
age from the flowstone is supported by the pIRIR225 dating of the
sediment horizon below the flowstone.

Comparing δ13C of the LCC speleothem sample (Table 4) of
5.3‰ to the Modrič cave speleothem (Rudzka et al., 2012) that
has a mean value of −7.37‰ (2σ � 1.74‰), it could be concluded
that the speleothem in the Modrič cave had a lower amount of
DCF. Therefore, the most likely date for the LCC speleothem
would be the OxCal Reservoir function date 17,949–17,562 cal BC
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(median 17,758 cal BC) for DCF � 15%. The formation of a
relatively thin flowstone layer within the sedimentary profile in
LCC, therefore, could be related to the known period-related
phenomena in the border zone between the temperate
Mediterranean and the periglacial/glacial parts of Europe
(Surić and Juračić, 2010) when the formation of speleothems
were rare or slow. Speleothem deposition ceased during the Last
Glacial Maximum (LGM) in most of Europe and began again
around 15 ka ago (Gascoyne, 1992; Lowe and Walker, 1997;
Mihevc, 2001; Surić and Juračić, 2010). According to our data, the
pronounced collapse processes and deposition of both Bd and Di
facies sediments happened probably during local LGM,
sometimes before ∼19.5 ka from today (14C age
17,949–17,562 cal BC—Table 4, Figure 11C), before
postglacial warming commenced. The Dinaric mountains were
glaciated during the Middle and Late Pleistocene (Hughes and
Woodward, 2009). Therefore, periglacial influence on the LCC
could be expected. If the flowstone is allochthonous (e.g.,
spallation from the ceiling), the obtained age could still be
used as the oldest possible date when deposition of the upper
section of the DC-SP profile commenced. Sedimentation in a
calm aquatic environment therefore set on after ∼19.5 ka ago, as
evidenced by the sedimentary filling of the cave channel which

covers the flowstone marker horizon. This phase is characterized
by gray to yellow laminated silt (Table 1; Figure 3A) which can be
interpreted as slackwater deposit (Sw facies) (e.g., Bosch and
White, 2004; White, 2007; Iacoviello and Martini, 2012;
Ballesteros et al., 2017). These fine-grained sediments
(Figure 4) entered the cave after flood events and settled
during calmer conditions with very low flow velocities (often
submerged cave channels). The allogenic origin of the Sw
sediment is confirmed by the mineralogy, reflecting the
composition of the river Otuča drainage area (Samples DC-SP
5–7 in Table 2; Chapters 4.3 and 5.1). Although the detritus was
transported underground by turbulent flows rich in suspended
sediment, the final depositional mechanism of this sediment type
is very likely related to deposition from stagnant water
suspension, as evidenced by the particle size characteristics
and the lamination of the sediment. This is also confirmed by
the fining upwards sequence observed in the upper part of the Sw
facies interval (Figure 4B; Table 1). Slight reduction of the grain
size from the base to the top indicating a decrease in the
hydrodynamic energy conditions of the cave, is commonly
observed within the Sw facies (Fornós et al., 2014). This is
also confirmed by the palynofacies analysis, results of which
indicate sedimentation in a calm palustrine environment

FIGURE 11 | Facies types and age on profile DC-SP in the Lower Cerovačka Cave (A) Facies distribution with indicated sampling spots, (B) detail from upper part
of Slackwater facies with indicated sampling spot and luminescence age, (C) 14C age with indicated sampling spot within flowstone fragment, (D) detail from diamicton
facies with visible larger clasts and bone fragments ofUrsus spelaeuswith indicated sampling spot and luminescence age [authors of photographs (A)DTP, (B)–(D)NB].
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(Figure 10). However, the laminated structure of the sediment in
the lower part of the SW facies followed by a slight increase of the
sand content (Figures 3A, 4B), described as vertical alterations
of silty laminae and silty-sandy laminae (Table 1), could also
resemble sediments deposited in stagnant hydrological
conditions in regions prone to glaciation. Nearby areas of
southern Velebit Mt. were prone to glaciation, documented
with morphological moraine features and with glacial and
glacio-fluvial sediments (Nikler, 1973; Krklec et al., 2015;
Marjanac and Marjanac, 2016; Velić et al., 2017). The retreat
of mountain glaciers in the southern Velebit Mt. is therefore
dated roughly around 20.7–22.7 ka ago (Sarıkaya et al., 2020).
Even so, there is no data about glacial chronology and processes
in the very close vicinity of LCC. It should be mentioned that
warming and deglaciation in the inland part of the Dinarides
commenced mainly after 12.5 ka BP. It can be seen from
increased speleothem growth in the Dinaric karst
(Horvatinčić et al., 2003). Hence, we assume that it is highly
possible to recognize glacial/periglacial influence on the
deposition of Sw facies. According to our data, the Sw
sediments were deposited during the Late Pleistocene
(starting after ∼19.5 ka). In caves within glaciated regions,
similar varve-like deposits are common (Ford and Williams,
2007). Even though the grain-size curves of the Sw facies
(Figure 4A) resemble the varve-like sediments (Valen et al.,
1997; Ford and Williams, 2007), the glacial-related depositional
environment through the whole profile of the Sw facies
sediments is ambiguous and needs further proof. Grain-size
distribution curves themselves do not point to an unambiguous
conclusion, it is necessary to compare them with known
sediment ages to resolve the glacial-related origin of the
laminae (Tischler et al., 2020).

The termination of allogenic siliciclastic sedimentation in an
aquatic environment and consequently the end of the ponor
function of this part of the LCC channel cannot be precisely dated
within our research. Nevertheless, our data revealed a relatively
young age in comparison to the known data within the wider area
of the Dinaric karst where cave sediments cover the time span of
the last ∼5 Ma years (Zupan Hajna et al., 2020; Zupan Hajna et al.,
2021). We can conclude that this pronounced sedimentary
environment shift is visible in the profile DC-SP with the
onset of a Holocene Late Bronze Age layer (Tresić Pavičić,
2020). As known, the cessation of allogeneic sedimentation in
caves is mostly controlled by tectonics and therefore related to
changes in the hydrological regimes due to the separation of cave
systems from active watercourses (Zupan Hajna et al., 2020). At
Postojnska Cave, the sequence follows the series of events:
formation of the fault, growth of the initial conduit due to
groundwater circulation through the fault, infilling of the
conduit with allogenic sediment, abandonment due to regional
base level lowering, and continued motion along the fault
(Sasowsky et al., 2003). Locally in LCC, it could be related to
the permanent neotectonic uplift of this area (Prelogović, 1975).
Especially pronounced uplift along the main NW–SE faults, e.g.,
along the Lika fault (Figure 1C), was recorded during the
Pliocene and Quaternary (Prelogović, 1975). Maximum uplift
of the local mountains was calculated of up to 1,200 m, with

vertical shifts on individual faults averaging from 300 to 500 m
(Prelogović, 1975). The sedimentary profile DC-SP, and the
obtained data therefore possibly reveal the sedimentation
history of the youngest inactive cave level within Mt. Crnopac.
The same phases in the development of allogenic cave sediments
occurred earlier in the higher cave levels within themountain. It is
evidenced with similar facies types (Sw) of detrital sediments
which were found within the hypsometrically highest horizontal
level of the todays CCS (Talaja and Kurečić, 2017). Considering
that caves and their sediments are often related to the former base
level and can conserve this information for long periods
(Neuhuber et al., 2021), the average offset rate of local
ongoing uplift/base level drop can be roughly estimated.
Considering the relative displacement value of ∼80 m between
today’s LCC entrance (at 624 m a.s.l.), and the recent active ponor
phase on the polje level we have calculated the relative
displacement rate. It is based on the obtained 14C age of
17,949–17,562 cal BC (before approximately 19.5 ka from
today) of the flowstone strata identified within the DC-SP
profile (Table 4). The displacement rate gives us a relatively
high value up to ∼0.004 m per year. The calculated result is higher
and not unambiguously comparable with fault slip rates
calculated in the area of External Dinarides (Kastelic and
Carafa, 2012). Therefore, due to scarce data without numerous
variables, we believe that the computed rate could only be used as
a rough estimation and basis for further research. Even if we use
the combination of absolute and relative methods in order to get
an accurate and robust age estimate (Häuselman et al., 2015), the
critical problems identified are lack of data regarding the timing
of the cessation of the allogenic sediment input. The archeological
data suggests that the LCC was used for specific purposes during
the Late Bronze Age (Tresić Pavičić, 2020), such as food storage
and as a temporary dwelling in specific circumstances which
surely indicate already ceased sediment input. However, due to
the possible large time gap between the cessation of the Sw
deposition and the onset of the Late Bronze Age, we cannot
use that data for accurate calculations.

CONCLUSION

The allogenic cave deposits in Croatia have been poorly explored,
especially from the point of view of their origin and depositional
mechanisms. Numerical dating is also absent. This is the first
detailed study of detrital cave sediments with reliable
luminescence age constraints in the Croatian part of the
Dinaric karst region. The presented data are a significant
contribution to solving the complex stratigraphy and genesis
of a multilevel cave system of Mt. Crnopac and Dinaric karst. Our
conclusions are as follows:

• The genesis of the LCC and its entrance channel is related to
the denudation effect of the sinking waters of the Gračac
karst polje, mainly under saturated conditions.

• Within the investigated sedimentary profile (DC-SP) three
lithofacies types were identified: Breakdown deposits (Bd),
Diamicton deposits (Di), and Slackwater deposits (Sw)
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covered with an archaeological Late Bronze Age and Modern
period deposits.

• The mineral composition of cave detrital sediments points to
an allochthonous origin, derived from the wider Otuča river
catchment area.

• The source rocks which derived the siliciclastic detritus
found within the entrance channel of the LCC belong to
the upper Carboniferous clastic series, middle to upper
Triassic clastic-pyroclastic series, Terra Rossa type of
sediments, and arguably in some extent to the insoluble
remnant of the host rock.

• Sedimentary facies analysis coupled with the palynofacies
analysis revealed changes in depositional events within the
LCC, ranging from intensive collapse processes with fluvial
influence through re-deposition by mechanisms of high
density flows to the forming of stagnant water
environments with laminated sediments, and finally to the
terrestrial environment with pronounced human activity.

• Numerous bones ofU. spelaeuswere found, giving us a broad
estimation of the stratigraphic position of the Di facies
sediments spanning from the early Late Pleistocene to the
Last Glacial Maximum.

• The lack of complete skeletons or even articulated sets, as
well as high fragmentation, indicate movements and
destruction of the faunal material as a result of
taphonomic processes coupled with re-deposition within
the fossiliferous interval.

• Deposition of first allochthonous detrital cave sediment
sequence (Di facies) within the LCC channel commenced
around or after ∼54 ka ago as evidenced by luminescence
dating. For the first time in Croatia, luminescence dating
contributed to resolving the chronostratigraphy of clastic
sedimentary sequence within the cave environment.

• The major shift in sedimentation mechanisms between
collapse and redeposition processes, and deposition within
stagnant water conditions commenced through the period
after 19.5 ka from today up to the onset of the Late
Bronze Age.

• The cessation of allogenic sedimentation within the LCC is
related to the permanent neotectonic uplift of the area,
especially pronounced uplift along the main NW–SE faults.
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