
feart-09-674842 April 26, 2021 Time: 15:53 # 1

ORIGINAL RESEARCH
published: 30 April 2021

doi: 10.3389/feart.2021.674842

Edited by:
Min-Te Chen,

National Taiwan Ocean University,
Taiwan

Reviewed by:
Huang Huang,

Sun Yat-sen University, China
Yuan-Pin Chang,

National Sun Yat-sen University,
Taiwan

*Correspondence:
Jianjun Zou

zoujianjun@fio.org.cn
Xuefa Shi

xfshi@fio.org.cn

Specialty section:
This article was submitted to

Quaternary Science, Geomorphology
and Paleoenvironment,
a section of the journal

Frontiers in Earth Science

Received: 02 March 2021
Accepted: 07 April 2021
Published: 30 April 2021

Citation:
Chen J, Zou J, Zhu A, Shi X,

Nürnberg D, Lembke-Jene L,
Tiedemann R, Wang K, Wu Y, Dong Z,
Liu J and Dou R (2021) Geochemistry

of Surface Sediments From
the Emperor Seamount Chain, North

Pacific. Front. Earth Sci. 9:674842.
doi: 10.3389/feart.2021.674842

Geochemistry of Surface Sediments
From the Emperor Seamount Chain,
North Pacific
Jie Chen1, Jianjun Zou1,2* , Aimei Zhu1,2, Xuefa Shi1,2* , Dirk Nürnberg3,
Lester Lembke-Jene4, Ralf Tiedemann4, Kunshan Wang1,2, Yonghua Wu1,2, Zhi Dong1,2,
Jianxing Liu1,2 and Ruxi Dou1

1 Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources,
Qingdao, China, 2 Laboratory for Marine Geology and Environment, Pilot National Oceanography Laboratory for Marine
Science and Technology, Qingdao, China, 3 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany,
4 Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Investigating the composition and distribution of pelagic marine sediments is
fundamental in the field of marine sedimentology. The spatial distributions of surface
sediment are unclear due to limited investigation along the Emperor Seamount Chain
of the North Pacific. In this study, a suite of sedimentological and geochemical proxies
were analyzed, including the sediment grain size, organic carbon, CaCO3, major and
rare earth elements of 50 surface sediment samples from the Emperor Seamount
Chain, spanning from ∼33◦N to ∼52◦N. On the basis of sedimentary components, we
divide them into three Zones (I, II, and III) spatially with distinct features. Sediments
in Zone I (∼33◦N–44◦N) and Zone III (49.8◦N–53◦N) are dominated by clayey silt,
and mainly consist of sand and silty sand in Zone II. The mean grain size of the
sortable silt shows that the hydrodynamic condition in the study area is significantly
stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500
m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but
decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth
of 4,000 m is the carbonate compensation depth of the study area. Strong positive
correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk
sediments indicate pronounced contributions of terrigenous materials from surrounding
continent mass to the study area. Furthermore, the eolian dust makes contributions
to the composition of bulk sediments as confirmed by rare earth elements. There is
no significant correlation between grain size and major and minor elements, which
indicates that the sedimentary grain size does not exert important effects on terrigenous
components. There is significant negative δCe and positive δEu anomalies at all stations.
The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal
of seawater. The positive Eu anomaly indicates widespread volcanism contributions to
the study area from active volcanic islands arcs around the North Pacific. The relative
contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water
depth in the study area.

Keywords: sediment grain size, spatial distribution of sediment, Ce negative anomaly, sediment provenance,
Emperor Seamount Chain
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INTRODUCTION

The geochemical composition of marine sediments, including
the contributions of terrestrial, volcanic and biogenic materials,
reveals abundant information about ocean current circulation,
ecosystem community structure, tectonic movement, and climate
change, etc. (Ding et al., 1994; Liu et al., 2009; Hu et al., 2012;
Franzese and Hemming, 2013). Determining the composition
and distribution of pelagic sediments is fundamental to marine
sedimentology, as well as the basis for studying marine ecological
assessment, resource exploitation, the reconstruction of past
oceanic environment and climatic evolution, etc.

The seamounts are widespread and prominent features of the
world’s underwater topography. More and more studies suggest
that their biological communities, benthic biodiversity, marine

biogeography, marine fisheries, hydrodynamic conditions,
mineral resources, and climate change are all vital (Clark et al.,
2010). In recent years, some studies have greatly improved
our understanding of seamount ecology (Mcclain, 2007),
especially the vulnerability of seamount communities to human
impacts. With progresses in seamount research, it is necessary
to reveal some basic characteristics of seamounts, including the
composition of sediments deposited on seamount evolution of
ecosystems and the development of resources (Mcclain, 2007).

The Emperor Seamount Chain is located in the North Pacific
Ocean, extending from ∼20◦N to ∼50◦N, with a length of more
than 6,000 km, which varies greatly in topography. It extends
from the point of junction between the Aleutian Trench and the
Kuril Trench to Hawaii Island (Jiang et al., 2019). The formation
mechanism of the Emperor Seamount Chain is related to hot

FIGURE 1 | The map of sites locations, schematic of ocean circulation (A) (Wang et al., 2016) and the sectional view of dissolved oxygen concentration (B) of
SO264 surface sediments from the Emperor Seamount Chain in North Pacific Ocean. The study sites are marked with red, blue, and green dots in panels (A,B).
Blue dots, red dots and green dots represent samples in zone I, II, and III, respectively. Black arrows and yellow dashed lines denote surface ocean circulation and
Subarctic Front (Aydin et al., 2004), respectively. EKC = East Kamchatka Current, KC = Kuroshio Current, KE = Kuroshio Extension, NPC = North Pacific Current,
OC = Oyashio Current. Map drawn with Ocean Data View (Schlitzer, 2002). NPIW = North Pacific Intermediate Water, NPDW = North Pacific Deep Water,
LCDW = Lower Circumpolar Deep Water.
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spot, and the tectonic plate beneath most parts of the Pacific
Ocean are constantly moving to the northwest, while hot spot
remains stationary, forming a chain slowly (Wilson, 1973). Due to
the existence of seamounts, atolls, shoals, ridges, and submerged
reefs, the study area is a hot area for geophysicists to investigate
plate tectonics and models (Moore, 1970; Suzanne and David,
2000). However, there is little research on the sedimentology,
paleoclimate, and paleoenvironment in this area.

To reveal the spatial distributions of sediment compositions,
here a suite of proxies were measured on 50 surface sediments
from the Emperor Seamount Chain, including the grain size,
major elements, rare earth elements, and CaCO3.

OCEANOGRAPHY BACKGROUND

The North Pacific Ocean is divided into the Subarctic Gyre and
the Subtropical Gyre by the Subarctic Front (Qiu, 2002; Wang
et al., 2016). The surface circulation to the south of the Subarctic
Front includes the North Pacific Current, the Kuroshio Current,
and the Kuroshio Extension. The Subarctic Gyre contains the
Alaska Gyre in the east and the Western Subarctic Gyre in
the west respectively (Ren et al., 2014). The ventilation of the
Western Subarctic Gyre flows into the subtropical sea along the
western boundary, which may be created by the invasion of
Oyashio Current. Along the west subarctic region, the southward
Oyashio Current deflects eastward at about 40◦N and enters
the open North Pacific Ocean. In the Aleutian forearc area,
the surface circulation is mainly composed by the Alaskan
Current, and the part extending northward to the Bering
Sea (Figure 1A).

There is no formation of deep water in the modern Pacific
Ocean, but the North Pacific Intermediate Water (NPIW) is
developed (Warner et al., 1996), mainly from the Sea of Okhotsk
(Talley, 1993) and the Gulf of Alaska (Van Scoy and Druffel, 1993;
You, 2003). The NPIW is mainly transported to 150◦W in the
east of about 40◦N, then to ∼20◦N in the south, and partially
returns to the west, forming a clockwise cycle. At present, the
NPIW is characterized by low salt, rich oxygen, and low density
(water depth of 300–800 m, salinity of 33.3–33.4, content of
dissolved oxygen is 50–150 µmol/kg and density is 26.6–27.0 σθ)
(Talley, 1993). There is also much debate about the formation
of deep water masses in the North Pacific Ocean. The water
mass with a depth of more than 3,500 m is mainly transported
northward by the lower circumpolar deep water (LCDW), which
is characterized by higher salinity and lower silicate (Kawabe and
Fujio, 2010), and deep water in the North Pacific is developed
between NPIW and LCDW and transported southward.

The open Subarctic Pacific is mainly fed by two types of
terrestrial sediments: aeolian dust and clastic deposits carried
by ocean currents (Wang et al., 2016). Eolian dust accounts
for 90% of the open Subarctic Pacific sediments, but the
volcanic contribution increased significantly and the eolian dust
contribution decreased in the Kuril Islands and the Aleutian
Arc region (Serno et al., 2014). Up to now, we have not paid
enough attention to the geochemical composition and sediments
provenance in the Emperor Seamount Chain of North Pacific.

TABLE 1 | All samples of surface sediment information are mentioned
in this article.

Sample ID Latitude Longitude Water Area

ID (◦N) (◦E) depth (m)

SO264-8-1 33.65 174.75 2,682 E’ of Kimmei
Seamount

SO264-9-1 34.767 172.333 3,866 Koko Seamount

SO264-10-1 34.917 172.133 1,599 Koko Seamount

SO264-13-1 37.783 170.717 3,933 Ojin and Jingu
Seamount

SO264-14-2 40.833 170.9 3,739 Nintoku Seamount

SO264-15-1 41.6 170.417 3,668 E’ of Ninigi Seamount

SO264-16-1 41.567 170.417 3,570 E’ of Ninigi Seamount

SO264-18-1 41.333 170.367 1,313 Nintoku Seamount

SO264-19-1 41.533 169.917 5,304 W’ of Nintoku
Seamount

SO264-21-1 42.283 170.5 1,329 Yomei Seamount

SO264-22-1 43.8 170.767 5,709 near Soga Seamount

SO264-23-1 44.8 170.6 4,248 Suiko Seamount

SO264-25-1 44.767 170.117 1,819 Suiko Seamount

SO264-26-1 44.767 170.167 1,772 Suiko Seamount

SO264-28-1 44.85 170.05 1,935 Suiko Seamount

SO264-29-2 44.867 170.05 1,966 Suiko Seamount

SO264-30-1 44.767 170.017 1,857 Suiko Seamount

SO264-31-2 44.85 170.117 1,941 Suiko Seamount

SO264-32-1 44.983 170.4 3,203 Suiko Seamount

SO264-33-1 44.967 170.35 3,141 Suiko Seamount

SO264-34-1 45.017 170.217 2,622 Suiko Seamount

SO264-41-1 45.683 170.15 3,641 Suiko Seamount

SO264-42-1 46.167 169.167 3,024 Jimmu Seamount

SO264-43-1 46.1 169.117 3,242 Jimmu Seamount

SO264-44-1 46.25 169.333 1,892 Jimmu Seamount

SO264-45-1 46.55 169.6 2,423 Minnetonka Seamount

SO264-46-4 46.8 169.4 3,992 Minnetonka Seamount

SO264-47-1 47.067 169.35 2,644 Minnetonka Seamount

SO264-49-1 47.667 169.017 2,433 Minnetonka Seamount

SO264-50-1 47.317 169.483 2,622 Minnetonka Seamount

SO264-51-1 47.167 169.417 2,933 Minnetonka Seamount

SO264-52-1 47.117 169.15 2,754 Minnetonka Seamount

SO264-53-1 47.633 169.333 2,325 Minnetonka Seamount

SO264-54-1 47.617 169.233 2,127 Minnetonka Seamount

SO264-56-1 47.733 168.667 3,946 Minnetonka Seamount

SO264-57-1 48.833 168.467 2,355 Tenji Seamount

SO264-59-1 49.067 168.5 2,916 Tenji Seamount

SO264-60-14 49.3 168.55 5,270 Tenji Seamount

SO264-61-01 49.717 168.033 2,590 N’ of Tenji Seamount

SO264-62-01 49.717 168.3 2,378 N’ of Tenji Seamount

SO264-63-01 49.8 168.633 3,772 Tenji Seamount

SO264-64-02 49.983 168.217 3,492 S’ of Detroit Seamount

SO264-65-01 50.35 168.217 2,496 S’ of Detroit Seamount

SO264-66-01 50.25 168.283 2,747 S’ of Detroit Seamount

SO264-68-01 50.483 167.85 3,285 Detroit Seamount

SO264-69-01 50.5 167.917 3,478 Detroit Seamount

SO264-70-02 50.567 168.067 3,916 Detroit Seamount

SO264-71-01 51.083 167.7 2,394 Detroit Seamount

SO264-72-01 51.017 167.75 2,615 Detroit Seamount

SO264-73-01 50.933 167.917 3,039 Detroit Seamount
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FIGURE 2 | The distribution diagrams of parameters related to grain size of surface sediments. The triangular diagram of grain size (A), the distribution curves of grain
size-volumic content (B–D), the graph of linear correlation of end members (E), and the distribution curves of grain size-frequency of modeled end members (F).

Studies of sediments on core ODP 882A in Detroit Seamount,
which is located in the northernmost part of ESC, show that
terrestrial sediments of core ODP 882A mainly consist of ice
raft debris in the high latitude regions and Asian eolian dust
brought by westerly jet (Jiang and Liu, 2011). The environment
magnetism index recognizes that the degree of drought in the
source region of terrigenous clastic material increases obviously,
which is consistent with the change record of the aggravation of
drought in the Inner Asian and the prevalence of monsoon in
East Asia recorded by the loess in East Asia (Jiang and Liu, 2011).

MATERIALS AND METHODS

Sediments Samples
Surface multicorers (MUC) sediments were investigated, which
were collected during SO264 Expedition in 2018 (Nürnberg,
2018), and all stations information are reported in Table 1. These
cores were sampled in 1 cm slice at the onboard laboratory, and
then stored in the sample cabin at 4◦C. The sampling stations are

TABLE 2 | The grain-size modeled end members of SO264 surface sediments
from the Emperor Seamount Chain in the North Pacific Ocean.

End member Grain size (µm) Sort coefficient (σ) Skewness Peakedness

EM1 9.12 3.60 0.57 3.08

EM2 64.95 1.90 −0.18 2.81

EM3 157.67 1.59 −0.44 3.15

located along the Emperor Seamount Chain shown in Figure 1A,
between ∼167◦E–175◦E and 33.5◦N–52◦N. The water depth
ranges from 1,313 to 5,709 m, covering with intermediate water
(200–1,500 m), deep water (1,500–4,000 m) and bottom water
(>4,000 m) in the North Pacific Ocean. And all the surface
sediment samples are collected from the multicores, which has
been dated on the basis of planktic foraminiferal AMS 14C. The
dating results support that the age of surface sediments belonged
to the Holocene interval.

The surface sediments (0–1 cm) from 50 stations were
used to determine grain size, major elements, and rare earth
elements. The contents of organic carbon, total carbon (TC),
and total nitrogen (TN) of the bulk samples were analyzed. All
experiment processing and analysis tests were done at the Key
Laboratory of Marine Geology and Metallogeny, First Institute of
Oceanography, Ministry of Natural Resources, China.

Sediment Grain Size Analysis
The organic matter, carbonate fractions and biogenic silica of
all samples were removed with 5 mL H2O2 (30%), 5 mL HCl
(10%), and excessive NaOH (0.2 M), respectively. After adding
different reagents, the water bath was heated in the above three
steps for 1, 1, and 2 h, respectively. Then they were rinsed with
deionized water for three times, and the pH value of supernatant
was neutral. Grain-size measurements were conducted by laser
diffraction particle size analysis using a Malvern Mastersizer
3000. The grain-size range of measurement by the Malvern
Mastersizer 3000 is 0.01–3,500 µm, and the relative error of
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TABLE 3 | Statistical results of elemental concentrations of surface sediments in the study area.

33◦N–53◦N Minimum Maximum Mean Standard Variable 33◦N–44◦N Minimum Maximum Mean Standard Variable

elements coefficient (%) elements coefficient (%)

Al2O3 (%) 1.16 12.39 6.08 3.29 54.05 Al2O3 (%) 1.16 11.84 5.49 3.37 61.28

CaO (%) 1.47 44.72 25.77 12.63 49.02 CaO (%) 1.47 44.72 27.23 13.3 48.86

Fe2O3 (%) 0.57 6.02 2.9 1.43 49.33 Fe2O3 (%) 0.57 6.02 3 1.47 49.08

K2O (%) 0.22 2.21 0.88 0.47 53.86 K2O (%) 0.29 2.21 1.01 0.53 52.6

MgO (%) 0.54 2.98 1.49 0.67 44.79 MgO (%) 0.54 2.9 1.48 0.67 45.36

MnO (%) 0.05 0.8 0.19 0.14 72.46 MnO (%) 0.05 0.8 0.27 0.22 80.35

Na2O (%) 2.1 6.29 3.51 1.15 32.77 Na2O (%) 2.1 6.29 3.52 1.46 41.57

P2O5 (%) 0.05 0.15 0.1 0.03 27.68 P2O5 (%) 0.07 0.14 0.12 0.02 18.88

TiO2 (%) 0.06 0.58 0.3 0.14 48.17 TiO2 (%) 0.06 0.58 135.71 0.29 0.14 31.83 48.79

6PEE(ππµ) 31.03 135.71 61.1 22.43 36.7 6PEE(ππµ) 35.72 119.73 78.72 28.35 40.44

63PEE(ππµ) 25.49 119.73 51.25 19.88 38.79 63PEE(ππµ) 29.21 15.98 66.98 3.62 42.32

6HPEE(ππµ)
3PEE/HPEE

5.54 15.98 9.86 2.64 26.76 6HPEE(ππµ)
3PEE/HPEE

6.35 7.49 11.74 0.86 30.81

δEυ 3.9 7.49 5.07 0.64 12.52 δEυ 4.35 4.24 5.5 0.43 15.61

δXε 2.04 4.24 3.33 0.49 14.83 δXε 2.78 0.9 3.56 0.12 12.07

CaCO3 (%) 0.47 1.1 0.74 0.13 17.15 CaCO3 (%) 0.47 83.78 0.8 25.49 15.4

TOC (%) 0.04 83.78 47.19 25.09 53.18 TOC (%) 0.86 1.36 50.69 0.35 50.29

0.07 1.36 0.32 0.21 67.33 0.17 0.53 67.28

44◦N–49.8◦N
elements

49.8◦N–53◦N
elements

Al2O3 (%) 1.55 12.39 5.17 2.87 55.52 Al2O3 (%) 7.85 11.85 9.84 1.18 12.02

CaO (%) 2.18 44.18 29.38 11.21 38.17 CaO (%) 3.62 17.02 11.95 3.77 31.52

Fe2O3 (%) 0.78 6 2.46 1.33 54.04 Fe2O3 (%) 3.39 5.3 4.27 0.57 13.35

K2O (%) 0.22 1.85 0.71 0.42 58.96 K2O (%) 1.11 1.64 1.3 0.16 12.33

MgO (%) 0.58 2.98 1.28 0.61 47.34 MgO (%) 1.88 2.77 2.17 0.27 12.44

MnO (%) 0.06 0.49 0.16 0.1 63.17 MnO (%) 0.11 0.25 0.19 0.05 24.49

Na2O (%) 2.23 6.19 3.19 0.96 30.02 Na2O (%) 3.94 5.68 4.57 0.48 10.47

P2O5 (%) 0.05 0.15 0.09 0.03 29.79 P2O5 (%) 0.1 0.13 0.12 0.01 7.05

TiO2 (%) 0.08 0.58 0.25 0.13 50.99 TiO2 (%) 0.37 0.55 0.45 0.05 11.34

6PEE(ππµ) 31.03 94.85 53.09 16.47 31.03 6PEE(ππµ) 58.99 75.38 66.27 5.63 8.49

63PEE(ππµ) 25.49 81.34 44.21 14.51 32.83 63PEE(ππµ) 48.93 63.62 55.49 5.01 9.02

6HPEE(ππµ)
3PEE/HPEE

5.54 14.07 8.89 2.04 23.01 6HPEE(ππµ)
3PEE/HPEE

9.96 11.77 10.78 0.62 5.79

δEυ 3.9 6.21 4.9 0.54 11.12 δEυ 4.86 5.41 5.14 0.17 3.35

δXε 2.31 4.13 3.34 0.44 13.16 δXε 2.04 3.91 3.05 0.59 19.28

CaCO3 (%) 0.57 0.96 0.72 0.1 14.29 CaCO3 (%) 0.58 1.1 0.76 0.17 22.76

TOC (%) 0.04 81.73 54.36 22.35 41.11 TOC (%) 2.43 29.87 18.99 7.62 40.1

0.07 0.53 0.26 0.09 34.42 0.16 0.31 0.26 0.04 16.29

repeated measurement is less than 3%. According to Weltje
(1997) and Weltje and Prins (2003), sediments are composed
of components from different provenance or dynamic processes,
and different end members (EM) can be separated by multi-
peak morphology of grain size data. Therefore, the end-member
analysis model is proposed to distinguish different provenance
or transport mechanisms (Weltje, 1997; Weltje and Prins, 2003).
Paterson and Heslop (2015) improved the analysis model of EM
based on MATLAB (Paterson and Heslop, 2015), and we utilize
the modeling algorithm to analyze grain size end-member of
surface sediments, with using the mean EM of sediment was fitted
by Gen.Webibull function.

Total Organic Carbon, TN, and CaCO3
Analysis
About 50.00 mg of sample was weighted, freeze-dried and ground
to less than 200 mesh by agate mortar, which was directly used
for determination of the content of TC and TN. The manually
powdered samples of ∼1 g were placed in the centrifuge tube,
dissolved by HCl (1M) to remove carbonate, and then they were
dried to determine the contents of total organic carbon (TOC).
Acetailide (ACET) was used as the standard sample and GSD-
9 was used as the quality control standard reference materials
during the measurement. The contents of TOC, TC, TN were
tested by Elemental Vario EL III (Bai et al., 2013).
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FIGURE 3 | The scatter plots between CaCO3 and water depth (A) and between CaO and CaCO3 (B) and between CaO and Al2O3 (C).

The content of CaCO3 is calculated according to the following
formula:

CaCO3 = (TC–TOC)× 8.33

Major and Minor Elements
About 50.00 mg of powdered sample was placed in the centrifuge
tube. And high-purity HNO3, HF and concentrated HCl were
used to completely digest sediments. Major elements (Al2O3,
Fe2O3, K2O, MgO, MnO, P2O5, CaO, and TiO2) were analyzed
on Thermal iCAP 6300 ICP-OES. Rare earth elements were
analyzed on a Thermal series II ICP-MS. GSD-9, duplicate
samples and blank samples were used for quality control during
the measurement. The analytical results of blank samples were all
below the detection limit. The results show that relative standard
deviation of major elements is less than 2.2%, and that of rare
earth elements is less than 5.1%.

RESULTS

The Grain-Size Distribution
The grain size and sorting coefficient of sediments in the study
area range from 7.74 to 192.71 µm and 0.64 to 2.61, with an
average value of 42.91 µm and 1.66, respectively. The frequency
distribution curves of sediments grain size have different modes
(Figures 2B–D), and these curves show the left trailing of some
stations, indicating that they are affected by various factors.
According to distinct features of grain size-related parameters,
including the sediment types and grain size characteristics,
the study area was divided into three areas: Zone I (33◦N–
44◦N), Zone II (44◦N–49.8◦N), and Zone III (49.8◦N–53◦N)
(Figure 2A). Sediments in Zone I and in Zone III are dominated
by clayey silt with higher value of sorting coefficient (>1.66).
The grain size-frequency distribution curves are characterized by
usually double peaks, which are concentrated between 5 and 8
µm and 140–150 µm in Zone I, respectively (Figure 2B). This
indicates that the sediments may have different provenance or
poor sorting coefficient. In zone III, the curves are dominated
by single peaks, with the peak value between 7 and 64 µm
(Figure 2D). In Zone II (44◦N–49.8◦N), the sediments are mainly
composed of sand and silty sand, with lower sorting coefficient.

The stations with grain size of less than 42.91 µm are mainly
located in this zone, and curves consist of single and double
peaks. Most of curves are single peaks, and vary between 120
and 170 µm, indicating that the sediment has a single provenance
or is well sorted.

The calculation results of grain size data shows that when
the end-member number is 1–6, the R2 is 0.6517, 0.9485,
0.9875, 0.9925, 0.9960, and 0.9979 (Figure 2E), respectively.
From the point of view of the degree of data fitting, three end-
member numbers are selected to analyze the grain size in this
paper because it can well represent the overall characteristics
of the grain size. End-member analysis of sediment grain-size
distribution has an optimal model with three EM, all of which
are single peaks and close to Gaussian distribution (Figure 2F
and Table 2). These peaks appear at 2.54–17.1, 48.40–96.75, and
136.85–230.1 µm, with mean grain size of 9.12 µm, 64.95 µm
and 157.67 µm, respectively. The abundance of EM is 0–100, 0–
75.33, and 0–100%, with average abundances of 37.85, 24.73, and
37.42% respectively.

Contents of CaCO3 and TOC
The content of calcium carbonate in surface sediments in the
study area ranges between 0.04 and 83.78%, with a mean
value of about ∼47.19% (Table 3). The calcium carbonate
content in marine sediments is mainly affected by production,
dissolution and dilution effect. Generally, the content of CaCO3
is less than 2% at stations with water depth of more than
4,000 m (Figure 3A). According to Farrell and Warren (1989),
10% calcium carbonate in the Pacific Ocean is defined as
the carbonate compensation depth (Farrell and Warren, 1989).
Therefore, the calcium carbonate content in this area indicates
that the water depth of 4,000 m is the carbonate compensation
depth of this area. There is no significant relationship between
the content of CaCO3 and water depth of above 4,000 m.
At similar water depth to the north of 49.8◦N, the content
of CaCO3 is obviously lower than that to the south of
49.8◦N in the study area. In the range of 33◦N–49.8◦N,
the content of CaCO3 in most stations is more than 30%.
The mean content of CaCO3 in the zone of 33◦N–44◦N is
about 50.69%, and which decreases gradually from south to
north on the whole.
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FIGURE 4 | Spatial variations in the contents of major elements in the study
area. The dark black vertical lines indicate stations with water depth greater
than 4,000 m. The spatial variation of water depth (A), spatial variation in the
content of CaCO3 (B), spatial variation in the content of TOC (C), spatial
variation in the content of TOC/TN (D), spatial variation in the content of Al2O3

(E), spatial variation in the content of TiO2 (F), spatial variation in the content
of CaO (G), spatial variation in the content of MnO (H) and spatial variation in
the content of Fe2O3 (I).

The content of TOC in sediments varies between 0.07 and
1.36%, averaging about 0.32% (Table 3). In general, the stations
with higher contents of TOC mainly are located between 33◦N–
44◦N (Figure 4). The correlation coefficient between TOC and
TN is insignificant (R = 0.48). The ratio of TOC/TN varies
between 2.45 and 24.0, with a mean value of 7.68. Besides the
supply from surface primary productivity, the content of organic
matter is also affected by aerobic respiration and denitrification
(Wang et al., 2018). The ratio of TOC/TN of terrestrial organic
matter is generally greater than 15, as well as between 5 and 7 for
marine organic matter (Fry and Sherr, 1984; Meyers, 1997). We
noted that the ratio of TOC/TN of 6 stations is more than 12,
although the study area is far from land, indicating a potential
supply of terrestrial organic matter to the study area, or that
nitrogen loss caused by early diagenesis, leading to an increase
of TOC/TN ratio.

Major Elements
The content of CaO in surface sediments is dominant with a
range of 1.47–44.72% and a mean value of 25.77% (Table 3).
There is a strong positive correlation between CaO and CaCO3
on the whole (R = 0.99) (Figure 3B), thus mainly reflects the
contribution of biogenic materials. Within the latitudinal range of
33◦N–44◦N, 44◦N–49.8◦N, and 49.8◦N–53◦N, the mean content
of CaO is 27.23, 29.38 and 11.95%, respectively. The lower
values mainly appears between around 44◦N and 49.8◦N, and the
highest value is found around 33.65◦N (Figure 3).

The content of Al2O3 ranges between 1.16 and 12.39% with
an average value of 6.08% (Table 3). As a whole the variation of
Al2O3 with latitude is opposite to that of CaO, the high value
of Al2O3 in the northern region of 49.8◦N and deeper than
4,000 m. The mean content of Fe2O3, K2O, MgO and TiO2
is 2.95, 0.89, 1.51, and 0.30%, respectively, which is similar to
the spatial distribution pattern of Al2O3. Correlation analysis
shows that there are significant positive correlations among Al-
Fe, Al-K, Al-Mg and Al-Ti, with correlation coefficients of 0.93,
0.93, 0.98, and 0.97, respectively (Figure 6). There is positive
correlations between Al2O3–MnO and Al2O3–P2O5, and the
correlation coefficient is 0.65 and 0.82, respectively (Figure 6).

Rare Earth Elements
The content of rare earth elements (6REE) of surface sediments
varies between∼31 and 136 µg/g, with a mean value of∼61 µg/g,
and the coefficient of variation is 36.70% (Table 3), indicating that
there are significant differences in content of different stations.
The contents of light rare earth elements (6LREE: La, Ce, Pr,
Nd, Sm, and Eu) and heavy rare earth elements (6HREE: Gd,
Tb, Td, Dy, Ho, Er, Tm, Yb, and Lu) range between 25.49–119.73
and 5.54–15.98 µg/g, with a mean value of 51.25 µg/g and 9.86
µg/g, respectively. LREE/HREE ranges from 4.60 to 7.50, with an
average value of 5.20. There is a significant positive correlation
between rare elements with correlation coefficient of more than
0.98. Also significant positive correlation is observed between
Al2O3 and 6REE (R = 0.65). Overall, the patterns of 6REE,
6LREE, and 6HREE are similar along the latitudinal zone, with
higher values at around 44◦N and 49.8◦N (Figure 7).
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FIGURE 5 | The scatter plots between grain size and contents of major elements. The correlation between water depth and grain size (R = −0.74, A), the correlation
between Al2O3 and grain size (R = −0.71, B), the correlation between MnO and grain size (R = −0.67, C), the correlation between TiO2 and grain size (R = −0.69,
D), the correlation between TOC and grain size (R = 0.15, E) and the correlation between 6REE and grain size (R = −0.79, F).

FIGURE 6 | The scatter plots between Al2O3 and other elements. The correlation between CaCO3 and Al2O3 (R = −0.99, A), the correlation between Fe2O3 and
Al2O3 (R = 0.93, B), the correlation between K2O and Al2O3 (R = 0.93, C), the correlation between TiO2 and Al2O3 (R = 0.97, D), the correlation between MnO and
Al2O3 (R = 0.65, E), the correlation between MgO and Al2O3 (R = 0.98, F), the correlation between P2O5 and Al2O3 (R = 0.82, G) and the correlation between
6REE and Al2O3 (R = 0.65, H).

We used the Post-Archean Average Shale (PAAS) to normalize
the rare earth elements in the study area as shown in Figure 8.
The distribution patterns of curves show obvious characteristics
of enrichment of HREE. The analysis shows that both Ce and

Eu range between 0.47–1.10 and 2.04–4.24, with average values
of 0.74 and 3.33, respectively. Although the contents of 6REE
at different stations in the study area are quite variable, the
distribution patterns of REE in surface sediments are roughly
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FIGURE 7 | Spatial trends of rare earth elements and related proxies. The
spatial variation of water depth (A), spatial variation in the content of 6REE
(B), spatial variation in the content of 6LREE (C), spatial variation in the
content of 6HREE (D), spatial variation of δCe (E) and spatial variation
of δEu (F).

identical, and the sediments totally appear Ce negative anomaly
and Eu positive anomaly (Figure 7).

DISCUSSION

Sediment Dynamics in the Emperor
Seamount Chain
The grain size of sediments is affected by mineral composition,
process of weathering transport and sedimentary dynamic
conditions, and the grain size and morphology of sediments
in different regions are obviously different. Negative correlation
between water depth and grain size (R = −0.74, Figure 5A) in
the study area suggests that the deeper the water depth is, the
finer the grain size of sediments is. In order to further reveal the
relationship between hydrodynamic condition and water depth,

FIGURE 8 | Comparisons of PAAS-normalized rare earth elements patterns of
surface sediments of the Emperor Seamount Chain, the content of REE of
pelagic clay (Kato et al., 2011), MORB (Klein, 2003), UCC (Taylor and
Mclennan, 1995), and seawater (Zhang and Nozaki, 1998).

we calculated the mean grain size of the sortable silt, a proxy for
deep current intensity (Mccave et al., 1995). Mean grain size of
sortable silt shows strong positive correlation with the contents
of sortable silt in the study area, suggesting that it can be used to
indicate the relative change of bottom current strength (Mccave
et al., 2020). As shown in Figure 9, there is a negative correlation
between grain size of sortable silt and water depth (R = −0.73),
and grain size of sortable silt increases significantly, indicating
strong hydrodynamic conditions. Modern observations have
shown that there are strong hydrodynamic conditions at the
water depth of ∼2,000 m in the study area (Ueno, 2003), and the
results of grain size further confirmed the observation results of
deep flow field. It can be seen from Figures 5A, 9 that the range
of water depth in different zones is discrepant, the water depth
of all sediment collected in zone II is no deeper than 4,000 m.
Therefore, the water depth could affect the geochemical proxies
variation in the study area. And we only discuss the relationship
between the overall water depth and the grain size and the mean
grain size of the sortable silt due to the lack of samples in different
water depth of discussion section, such as the lack of samples in
the 1,500–3,000 m of zone I.

Also, we conducted the sediment grain size end-member
simulations using MATLAB (Paterson and Heslop, 2015).
According to the grain size analysis of simulated EM, there
are three EM with mean grain size of 9.12 µm (EM1),
64.95 µm (EM2), and 157.67 µm (EM3), representing fine silt,
fine sand and medium sand, respectively. Furthermore, using
the same simulation method of EM analysis, we compared
our data with the results of the SO202 Expedition from the
open subarctic Pacific Ocean (Serno et al., 2014), and found
that mean grain size was about 5.33 µm. This indicates
that there are great differences in hydrodynamic conditions
between seamounts and deep plain of the open subarctic Pacific
Ocean. It has previously been observed that vortex is easily
to occur around seamount under the combined influence of
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FIGURE 9 | The correlation plot between grain size of sortable silt and water
depth.

tide and topography (Oka and Niwa, 2013), and hydrodynamic
condition is significantly enhanced, causing the sediment being
severely winnowed.

The higher contents of EM1 mainly appear at stations of
33◦N–44◦N and deeper than 4,000 m (Figure 10), which may
represent the input of terrestrial and volcanic sources by wind,
and also correspond to the westerly path of the modern Northern
Hemisphere. In this context, it is reasonable to speculate that
EM1 mainly reflects the contribution of eolian dust, including
dust of Central Asia and volcanic materials by wind-transported.
The grain sizes of EM2 and EM3 are coarser and cannot be
transported by wind over long distances, so they cannot be
explained by dust input. The content of EM3 decreases to the
north of 49.8◦N and increases to the south of 49.8◦N, which
may reflect that sediments in the study area are reworked after
deposition by strong hydrodynamic conditions.

As shown in Figure 5A and end member analysis, coarser
sediment grain size can be seen in Zone II, relative to Zone I and
III, we argue that this is mainly related to strong mid-depth and
deep-depth circulation in Zone II as mentioned above. And the
mean grain size of sortable silt (Figure 9), which shows higher
SS values, corroborating our interference. Some coarser sediment
grain size in zone II at the water depth of 3,000–4,000 m in
comparison with those of zone I and III also can be observed in
Figure 9, which may be caused by additional factors, such as the
input of volcanic materials, proximal erosion of seamount, etc.

There is significant relationship between composition of
sediment and grain size, which is especially obvious in the coastal
sediments (Zhao et al., 2002; Gao et al., 2003; Jiang et al., 2008;
Miao et al., 2008). Through the correlation analysis, we find the
grain size in the study area is negatively correlated with Al2O3
(R = −0.71, Figure 5B) and TiO2 (R = −0.69, Figure 5D),

indicating that the finer the grain size is, the higher the contents
of Al2O3 and TiO2 are. Rare earth elements are negatively
correlated with grain size (R = −0.79, Figure 5F), arguing
that rare earth elements are mainly enriches in fine-grained
sediments and depleted in coarse-grained sediments. There is no
significant correlation between grain size and MnO and TOC
(Figures 5C,E), and the coefficient of variation is higher, reaching
67.33 and 72.46%, respectively, which demonstrates that the grain
size is not the main factor controlling the composition and
distribution of MnO and TOC in surface sediments.

Negative Ce Anomaly
The δCe of surface sediments in the study area ranges from
0.5 to 1.1, with a significant negative Ce anomaly. The factors
causing Ce anomaly are very complex, involving sedimentary
environment, diagenesis, content of oxygen of bottom water and
other factors (Pattan et al., 2005). Therefore, the interpretation
and application of index of Ce anomaly must be careful. REE
analysis of different types of sediments in the Indian Ocean
reveals that there are positive Ce anomaly in siliceous ooze
and negative Ce anomaly in calcareous sediments (Nath et al.,
1992). The rare earth elements in different types of sediments
in the open Pacific Ocean showed that there is clear negative Ce
anomaly in sediments enrich in calcareous ooze. Toyoda et al.
(1990) suggested that the negative Ce anomaly in calcareous
ooze mainly is related to the enrichment of phosphorus. No Ce
anomaly was observed in the bulk sediments mainly composed of
silicate (Zou et al., 2010; Zhu et al., 2012). The analysis of leaching
experiment found that the positive Ce anomaly mainly occurred
in Fe-Mn phase of sediments (Toyoda and Masuda, 1991), which
indicated that the enrichment of Ce was closely related to Fe-Mn
oxide. In general, it is believed that Ce is easily adsorbed on the
surface of Fe-Mn oxide and subsequently result in Ce enrichment
in Fe-Mn oxides. Under anoxic condition, Ce can be removed
from the Fe-Mn oxides due to the desorption along with the
dissolution of particulate Fe-Mn oxides, leading to negative Ce
anomaly in sediments (Tachikawa et al., 1999).

Our REE data shows that there is strong positive correlation
between CaCO3 and δCe (R = −0.90), which suggests that
higher the content of CaCO3, the greater the depletion of Ce
(Figure11A). The pattern of negative Ce anomaly is consistent
with distribution pattern of REE in seawater (Figure 8),
suggesting that the negative Ce anomaly in sediments in the study
area mainly inherits the signal from seawater. No negative Ce
anomaly is observed at the depth of more than 4,000 m, which
proves that the contribution of calcareous materials decreases
significantly and is mainly composed of terrigenous materials.

As mentioned above, the change of oxidation-reduction
in sediments also has potential effects on δCe. The Mn/Fe
ratio could be used to indicate the sedimentary redox
condition changes. The main reason is that both these two
elements have contrasting geochemical behaviors under changing
redox conditions. The lower correlation coefficient between
bulk sedimentary Fe2O3 and MnO (R = 0.65, Figure 11C)
further corroborates this inference. The correlation analysis of
MnO/Fe2O3 and δCe reveals that there is no obvious positive
correlation (R = −0.10) (Figure 11B). Hence, we argue that the
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FIGURE 10 | The changing trend graph of content of three modeled grain-size end members. The spatial variation in the content of EM1 (A), spatial variation in the
content of EM2 (B) and spatial variation in the content of EM3 (C).

FIGURE 11 | The scatter plots between CaCO3 and δCe (A) and between MnO/Fe2O3 ratio of Fe-Mn phase and δCe of bulk sediments (B) and between Fe2O3 and
MnO (C).

oxidation-reduction changes in surface sediments in the study
area have no distinct effects on δCe.

Provenance of Sediments
The study area is far away from surrounding continents, therefore
lots of terrigenous materials deposited in the open northwest
Pacific Ocean mainly are delivered by eolian dust, volcanic
materials, ice raft debris, and debris carried by ocean currents.
The eolian dust mainly comes from Central Asia, and the
volcanism materials are mainly sourced from the surrounding
island arcs, including the Kuril Islands, the Aleutian Islands,
the Kamchatka Peninsula, and the volcanic arc of Alaska and
Japan. The clastic components transported by sea ice and ocean

currents may also have potential contributions to the sediments
in the study area.

In general, the provenance and composition of surface
sediments are closely related to the characteristics of parent rocks.
The large ion lithophile elements such as Al, Fe, Ti, K, and Mg are
rock forming elements, and rare earth elements are also enriched
in silicate minerals. These elements are mainly concentrated
in the upper crust with good symbiotic relationships, similar
geochemical behavior and active geochemical properties (Wang,
2014), and as shown in Figure 6, the correlation analysis shows
that there is strong positive correlation between Al2O3 and
Fe2O3, TiO2, MgO, K2O, and REE (R = 0.93, 0.97, 0.98, and
0.93), respectively, which suggests that sediments in the study
area contribute significantly to terrigenous detritus.
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FIGURE 12 | Discrimination plot of the nature of parental rock of sediment provenance (A) and the scatter plot of (LREE/REE)N and (HREE/REE)N (B), east Asian
dust sources and volcanic sources refer to Serno et al. (2014).

There are multiple sources for Ca, such as aeolian dust,
volcanic and biogenic contributions in bulk sediments. The
content of CaCO3 in the surface sediments of study area is about
47.2%, which is negatively correlated with the representative
element Al (R = −0.99, Figure 6A) of terrigenous detritus,
indicating that it is mainly contributed by biogenic material. As
shown in Figure 3B, there is strong positive correlation between
CaO and CaCO3 (R = 0.99, Figure 3B), indicating potential
biogenic input. Also a strong negative correlation (R = −0.98,
Figure 3C) can be observed between CaO and Al2O3, a lithogenic
element, indicating little contributions of detrital materials. In
terms of spatial distribution, the content of CaCO3 is less than
2% at water depth of deeper than 4,000 m, and with similar
water depth, the content of CaCO3 in sediments to the north
of 49.8◦N is significantly lower than that to the south of 49.8◦N.
This implies that the conditions to the south of 49.8◦N are more
conducive to the preservation of calcareous organisms.

The sources of P2O5 in sediments are various, mainly
consisting of rivers, atmospheric deposition and volcanic
activities (Paytan and McLaughlin, 2007). Studies over the past
years have suggested that the contribution of volcanic materials
to phosphorus is much higher than that of input of atmospheric
precipitation (Wang, 2014). Meanwhile, phosphorus from
seawater is also absorbed by organisms in seawater and related to
biogenic carbonate (Wang and Chen, 2011). There is a positive
correlation between P2O5 and Al2O3 (R = 0.64, Figure 6G),
but lower than the correlation between Fe2O3 and TiO2 and
Al2O3, while the negative correlation between CaCO3 and P2O5
indicates that the contribution of biogenic phosphorus may be
small, mainly clastic phosphorus.

The content of MnO in sediments is affected by both redox
conditions and terrestrial input. Correlation analysis of MnO and
Al2O3 shows positive correlation (R = 0.67, Figure 6E), which
indicates that MnO has significant terrestrial contributions in
surface sediments of study area. There is also a significant positive
correlation between MnO and water depth (R = 0.83), and the
lower content of stations is mainly located in which is affected by

the NPIW. Modern observations have shown that the dissolved
oxygen at this depth is low (Figure 1B), and therefore a part of
manganese oxide may be dissolved due to lower oxygenation.

In the study area, Eu generally has significant positive anomaly
with range of 1.5–4, confirming that there are significant volcanic
input. The clastic surface sediments near the Emperor Seamount
Chain is characterized by sediment with more radiogenic εNd
values (averaging −4.4 ± 4.3) that reflect inputs from volcanic
ash (Jones et al., 2000). The content of smectite at stations near
the Emperor Seamount Chain increased significantly, indicating
large input of volcanic materials (Wang et al., 2016). Positive
Eu anomaly occurred not only in the open Northwest Pacific
Ocean, but also in the Sea of Okhotsk and the Bering Sea
(Wang et al., 2016; Zhu et al., 2019). Therefore volcanic debris
makes a significant contribution for marine sediments in the
northwestern Pacific Ocean and its marginal seas.

The geochemical behavior of major elements can be used
to trace the characteristics of parent rocks of the sediment
provenance, which has been widely used in the study of
determined provenance signatures (Zhu et al., 2015, 2019).
In this paper, we employ the sediments source discriminant
function proposed by Roser and Korsch (1988) to identify the
characteristics of provenance (Figure 12A) (Roser and Korsch,
1988). The formulation is as follows, and DF1 and DF2 mainly
represent the component of felsic igneous rock source and mafic
igneous rock source, respectively:

DF1 = 30.638w(TiO2)/w(Al2O3)− 12.541w(Fe2O3)/w(Al2O3)

+7.329w(MgO)/w(Al2O3)+ 12.031w(Na2O)/w(Al2O3)

+35.402w(K2O)/w(Al2O3)− 6.382

DF2 = 56.500w(TiO2)/w(Al2O3)− 10.879w(TFe2O3)/

w(Al2O3)+ 30.875w(MgO)/w(Al2O3) − 5.404w(Na2O)/

w(Al2O3)+ 11.112w(K2O)/w(Al2O3)− 3.89
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The results suggest that the clastic materials in the study area
are mainly volcanic materials and small amount of quartzose
sediments, while the magma composition is mainly felsic magma,
which is consistent with the results based on positive Eu anomaly.
On the other hand, rare earth elements have been also widely
used as proxies for tracing sediment provenance, especially
in the open North Pacific Ocean, where rare earth elements
are considered as an effective indicator for tracing changes of
eolian dust (Serno et al., 2014). Serno et al. (2014) confirmed
the effectiveness of rare earth elements in tracing the dust
contribution in the Subarctic Pacific Ocean based on the three
independent indexes of 4He, 230Thxs and rare earth elements. The
scatter plot of (LREE/REE)N and (HREE/REE)N (Figure 12B)
shows that the composition of the surface sediments of the
Emperor Seamount Chain falls into the range of two EM: volcanic
and terrigenous dust, which can be regarded as a mixture of two
EM. Our data further reveals that the eolian dust contribution
is higher between 33◦N and 44◦N, while the volcanic materials
contribution is relatively higher between 44◦N and 49.8◦N, as
shown in Figure 12B.

IMPLICATIONS

At present, the main challenge in the study of paleoclimate in the
Subarctic Pacific is to establish a reliable and accurate age model,
which is mainly due to the lack of calcareous biogenic shells
in relation with dissolution in the sediments. Our data shows
that the depth of carbonate compensation is ∼4,000 m in the
northwestern Pacific Ocean, and the content of CaCO3 increases
significantly in the sea area south of 49.8◦N. These information
provides a useful reference for sampling implementation in the
subarctic open Pacific Ocean.

For one thing, understanding the evolution of climate and
desertification in the Asian interior and verifying the hypothesis
of eolian dust and iron fertilization have been a matter of debate
in paleoceanography and paleoclimate. The Emperor Seamount
Chain is far away from the land, and it receives continuous
deposition of large amount of eolian dust, which is a key
area for reconstructing the climate and environment of Asian
interior. Our research discovered that the current contribution
of eolian dust to Zone I is relative higher, consistent with the
present pathway of the northern westerly. For another thing,
significant input of volcanic material is also prevalent in the
study area. Effectively discriminating the sources from eolian dust
and volcanic detrital is crucial for above research. Here, we find
that some parameters related to rare earth elements are reliable
proxies for distinguishing eolian dust and volcanic materials,
which provides a useful tool for tracing environment and climate
changes in the Asian interior.

CONCLUSION

In this study, we investigate the compositions and spatial
distribution of surface sediments along the Emperor Seamount
Chain with a suite of proxies, including the grain size, organic

matter, CaCO3, major and rare earth elements. The main findings
can be drawn as follows:

The sediment composition varies with latitude and there
are significant differences in the types and composition of
sediments between 33◦N–44◦N (Zone I), 44◦N–49.8◦N (Zone
II), and 49.8◦N–53◦N (Zone III) in study area. Sediments are
dominated by clayey silt in Zone I and Zone III and mainly
consist of sand and silty sand in Zone II. The mean grain size
of sortable silt shows that the hydrodynamic condition in sea
mountain area is significantly stronger than that of the abyssal
plain, especially at the water depth of 1,000–2,500 m in study
area. The sediments in the study area mainly include three
components: terrestrial, volcanic and biogenic materials. There
are evident positive correlation between Al2O3 and Fe2O3, TiO2,
MgO, K2O, MnO, and REE, indicating that sediments in the
study area have significant contribution of terrigenous debris.
Obvious negative correlations between the content of CaCO3
and Al2O3 and positive Eu anomaly indicate contribution of
biogenic and volcanic materials, respectively. The index of rare
earth elements further shows that the contribution of eolian
dust is higher between 33◦N and 44◦N, while the contribution
of volcanic materials is higher between 44◦N and 49.8◦N. The
relative contributions of terrestrial, biogenic and volcanic sources
vary with latitude and water depth.

There are visible negative Ce anomalies in surface sediments
of the study area, which mainly occur in areas where calcareous
ooze develops. The distribution pattern of negative Ce anomaly
is the same as that of REE in seawater, and has weak
negative correlation with Mn/Fe. Therefore, we conclude that the
negative Ce anomaly in the study area mainly inherits signal of
seawater, and redox change of sediments has weak influence on
negative Ce anomaly.
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