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There is a data gap in our current knowledge of the geospatial distribution, type and extent
of C rich peatlands across the globe. The Pastaza Marañón Foreland Basin (PMFB), within
the Peruvian Amazon, is known to store large amounts of peat, but the remoteness of the
region makes field data collection and mapping the distribution of peatland ecotypes
challenging. Here we review methods for developing high accuracy peatland maps for the
PMFB using a combination of multi-temporal synthetic aperture radar (SAR) and optical
remote sensing in a machine learning classifier. The new map produced has 95% overall
accuracy with low errors of commission (1–6%) and errors of omission (0–15%) for
individual peatland classes. We attribute this improvement in map accuracy over previous
maps of the region to the inclusion of high and low water season SAR images which
provides information about seasonal hydrological dynamics. The new multi-date map
showed an increase in area of more than 200% for pole forest peatland (6% error)
compared to previous maps, which had high errors for that ecotype (20–36%). Likewise,
estimates of C stocks were 35% greater than previously reported (3.238 Pg in Draper et al.
(2014) to 4.360 Pg in our study). Most of the increase is attributed to pole forest peatland
which contributed 58% (2.551 Pg) of total C, followed by palm swamp (34%, 1.476 Pg). In
an assessment of deforestation from 2010 to 2018 in the PMFB, we found 89% of the
deforestation was in seasonally flooded forest and 43% of deforestation was occurring
within 1 km of a river or road. Peatlands were found the least affected by deforestation and
there was not a noticeable trend over time. With development of improved transportation
routes and population pressures, future land use change is likely to put South American
tropical peatlands at risk, making continued monitoring a necessity. Accurate mapping of
peatland ecotypes with high resolution (<30m) sensors linked with field data are needed to
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reduce uncertainties in estimates of the distribution of C stocks, and to aid in deforestation
monitoring.
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INTRODUCTION

Despite covering a relatively small area of the Earth’s terrestrial
landscape (3–5% (Maltby and Proctor, 1996; Moomaw et al.,
2018), peat-accumulating wetlands currently represent one of the
largest carbon stores in the world with an estimated 25–30% of
the global belowground soil organic C stock (Yu et al., 2010;
Leifeld and Menichetti, 2018; Loisel et al., 2021). Although there
have been many efforts to estimate the spatial distribution of
peatlands and their C stocks, great uncertainties remain. One of
the challenges with mapping the distribution of peatlands is in
accurately distinguishing them from non-peat wetlands both in
the field and from remotely sensed data. Efforts to map global
wetlands from MODIS or other coarse resolution optical sources
are ineffective in detecting and mapping peatlands. With coarse
(250 m–1 km) resolution data, peatlands typically are grouped
with a more general wetland class. Since peatlands are often small
and interspersed with upland and other wetland types, it is
essential to use finer resolution data (30 m or better) to
distinguish peatland types. Further, hybrid remote sensing
methods that use a combination of data sources and imagery
frommultiple seasons are necessary to capture the hydrologic and
phenological variation that characterizes the diversity of
peatlands that exist on the landscape (Bourgeau-Chavez et al.,
2017; Bourgeau-Chavez et al., 2018).

Wetlands in general are difficult features to map due to
their high variability in morphology and wetness conditions
across the seasons. The utility of optical data alone is limited
because peatland and non-peatland ecotypes can be
floristically similar (Draper et al., 2014; Bourgeau-Chavez
et al., 2017; Hribljan et al., 2017). Reliance on optical data
is further challenged in regions like the tropics that are often
laden with heavy cloud cover. In contrast, the long wavelength
of L-band (∼24 cm wavelength) synthetic aperture radar
(SAR) allows for penetration of clouds and wetland
canopies, and interacts with the wet or flooded soil
differently than from dry soil, allowing discrimination of
wetlands from non-wetlands. A better distinction between
vegetation types (forested, shrubby, and herbaceous), peat-
and non-peat wetlands, and peatland types (bog vs. fen) has
been obtained through multi-date, multi-sensor SAR and
optical approaches (Bourgeau-Chavez et al., 2015;
Bourgeau-Chavez et al., 2017; Hribljan et al., 2017;
Chimner et al., 2019). Using multiple date SAR images
allows for monitoring of changes in hydrologic condition
to help differentiate between mineral soil wetlands that are
periodically inundated and organic soil peatlands that
typically have saturated soils for longer portions of a year
(e.g., Chimner et al., 2019). Similarly, multi-date Landsat
allows the capture of phenological differences between
dominant plant species and together the complementary

sensors have been shown to improve wetland mapping in
the coastal Great Lakes (Bourgeau-Chavez et al., 2015), boreal
peatlands of Alberta and Northwest Territories Canada,
Michigan’s upper peninsula (Bourgeau-Chavez et al., 2017;
Bourgeau-Chavez et al., 2019) and in tropical mountain
peatlands (Hribljan et al., 2017; Chimner et al., 2019).
However, these methods have not yet been applied to
tropical lowland peatlands.

Compared to boreal peatlands, the distribution of tropical
peatlands has only recently begun to be revealed. Although
tropical Southeast Asian peatlands have been well-studied,
recent efforts are discovering vast tropical peatland areas in
both the Congo of Africa (Dargie et al., 2017) and the
Amazon basin of South America (Lähteenoja et al., 2012;
Gumbricht et al., 2017). Several groups have mapped tropical
peatlands globally (Gumbricht et al., 2017; Xu et al., 2018), as well
as for Indonesia (Margono et al., 2014; Warren et al., 2017;
Crowson et al., 2019) and Peru (Lähteenoja et al., 2009a;
Lähteenoja et al., 2012; Draper et al., 2014). These maps have
relied on optical (Landsat) imagery from a single date (e.g.,
Lhteenoja et al., 2012) or more recently a hybrid of optical
and SAR (e.g., PALSAR or Sentinel-1) also from a single date
(Draper et al., 2014; Margono et al., 2014; Crowson et al., 2019).
Improving peatland distributionmaps and reducing uncertainties
in estimates of C stocks requires additional field sampling and
high resolution (<30 m) remote sensing analysis (Xu et al., 2018)
that includes multi-date, multi-sensor imagery. Reducing errors
in peatland map classifications will increase confidence in
estimates of C stocks, and also allow for better understanding
of threats to existing peatlands through monitoring of land cover
and land use changes.

The main goal of our research was to determine if the
application of a multi-date, multi-sensor SAR and optical
approach can improve on previous mapping efforts employing
a single date of SAR and optical data (Draper et al., 2014) for
classification of tropical lowland peatlands of Peru. For this
analysis, we focus on a similar study area to that of Draper
et al. (2014) in the Pastaza Marañón Foreland Basin (PMFB)
within the Peruvian Amazon. This region harbors extensive areas
with deep peat reservoirs that sequester large C stocks
(Lähteenoja et al., 2012; Draper et al., 2014; Bhomia et al.,
2019). Tropical floodplain ecosystems such as these are
defined by their seasonal cycles of inundation, lasting several
months, alternating with seasonal drying (Hamilton et al., 1998).
These periods of inundation vary across the landscape, leading to
a complex mosaic of interspersed peatlands and seasonally
flooded non-peat wetlands. Our objectives are to determine
what improvements can be made over a single date of L-band
radar and single date of Landsat in our mapping approach and
also how helpful digital elevation model (DEM) derivatives may
be in mapping this relatively flat region. We then compare
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changes in estimates of carbon stocks based on these new maps
using the field data and algorithms from Draper et al. (2014).
Second, while it is imperative to improve accuracy in peatland
mapping capability, it is also of great importance to recognize and
quantify threats to these systems. Globally, from the arctic to the
tropics, land use change (e.g., deforestation, oil, and gas
exploration, grazing, agriculture, infrastructure development,
hydrologic alterations, etc.) is one of the largest threats to
peatlands. Until recently, human impacts on South American
tropical peatlands were not widely studied. Most of the focus has
been on Indonesia, where tropical peatlands have been rapidly
deforested and converted to agricultural production such as palm
oil and tree plantations (Miettinen et al., 2011; Miettinen et al.,
2016). The Peruvian Amazon contrasts with Indonesia as it has
not yet been heavily affected by widespread anthropogenic
disturbance, but there is potential for more severe human
impacts as economic and industrial development of the region
increase (Roucoux et al., 2017; Lilleskov et al., 2019). Recent
expansion of road networks in the Peruvian Amazon could
directly affect these extensive peatland ecosystems. An accurate
understanding and quantification of peatland extent, carbon
storage, and human impacts is needed to inform policy and
guide management. Thus, our second goal is to assess current

deforestation rates in the PMFB peatlands, and patterns of
deforestation in relation to proximity to river and road networks.

STUDY AREA

The 141,200 km2 study area is a vast floodplain complex of
the Pastaza-Marañón Foreland Basin (PMFB) in Amazonian
Peru to the west and south of Iquitos (Figure 1). The region is
dominated by palm swamps in the Marañón and Ucayali
basins, which are remote and difficult to access. The larger
landscape consists of a mosaic of uplands and wetlands, both
peat forming and non-peat forming. Three peatland
ecosystem types (palm swamp peatland, pole forest
peatland, and open peatland) and two non-peatland
ecosystem types (seasonally flooded forest, Terra firme/
occasionally flooded forest) dominate the landscape
(Lähteenoja and Page, 2011; Draper et al., 2014; Draper
et al., 2018). Palm swamp peatlands (a portion of the
ecosystems locally known as aguajales or tahuampas) are
dominated by flood tolerant palms, especially Mauritia
flexuosa, commonly known as aguaje (Draper et al., 2018),
and are typically minerotrophic (i.e., fed by groundwater

FIGURE 1 | Pastaza Marañón Foreland Basin (PMFB) study area location in northern Peru including the Ucayali and Marañón river watersheds. Mapped area is
shown in red outline; field sites are color-coded by data source.
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and/or surface water). Seasonally flooded forests are annually
inundated for a portion of the year, they represent a wide
range of forest community types, but are predominately non-
peat forming and are normally not dominated by palm
species. Open peatlands are dominated by herbaceous
vegetation, typically graminoids, ferns, and floating aquatic
plants (Draper et al., 2014), and can be minerotrophic
(Lähteenoja and Page, 2011) or ombrotrophic
(i.e., rainwater fed) (Lähteenoja et al., 2009a; Lähteenoja
et al., 2009b). Pole forest peatlands (varillales
hidromórfico) are dominated by dense, thin, low-stature
(<20 m) trees (Draper at al., 2014), and tend to be
ombrotrophic (Lähteenoja and Page, 2011). The forests are
morphologically similar to white-sand forests (varillales in
Peru; Adeney et al., 2016) but have distinct vegetation
(Draper et al., 2018). The pole forest peatlands tend to
have the thickest, oldest and most ombrotrophic peat
deposits, with peat domes that extend above the maximum
flood level, while palm swamp peatlands are commonly
minerotrophic with evidence of frequent flooding and
locations typically close to large and geomorphically
dynamic rivers (Lähteenoja and Page, 2011; Lähteenoja
et al., 2012). Open peatlands were also found near large
and dynamic rivers and it is suggested that they may be in

the early succession of peatland development because they
appear much younger than pole forests (Draper et al., 2014).

METHODS

Field Data
Due to the remoteness of the study area and availability of
existing field data on ecosystem types from various previous
studies (Lähteenoja et al., 2009a; Lähteenoja et al., 2012; Draper
et al., 2014, Hergoualc’h et al., 2017; Bhomia et al., 2019), we
chose to compile the existing data for training and testing the map
classifier (Figure 1; Supplemental Table S1). A total of 350 field
locations (most of which had peat cores sampled) were obtained
from these multiple sources and grouped into the five classes as
defined by Draper et al. (2014) (open peatland, palm swamp, pole
forest, Terra firme/occasionally flooded forest, and seasonally
flooded forest). The field data were clustered to the eastern
side of the study area and a handful of locations north of the
Marañón River in the west at accessible sites along roads and
rivers (Figure 1). Ideally, field data would be collected in a
random distribution across the entire study region, however in
remote locations that is logistically infeasible. Field data for
mapping purposes is also best collected at the scale of the

FIGURE 2 | Field transect data within the Pastaza Marañón Foreland Basin (PMFB) of the same ecosystem type, such as the Riñón open peatland transect
displayed in green (Lähteenoja et al., 2009a; Lähteenoja et al., 2012), were clustered into single ecosystem training polygons. For individual field points, such as the two
seasonally flooded forest points from Draper et al. (2014) depicted in yellow, unique training polygons were created.
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minimum mapping unit, which for our dataset is 0.4 ha
(Bourgeau-Chavez et al., 2017). Thus, the point locations were
used with image interpretation of sub-meter Worldview-2 or
Google Earth imagery to create training and validation polygons
of similar type, consisting of multiple pixels (minimum four
pixels of 30 m size) in the Landsat-SAR imagery. For field data
that consisted of multiple points along a transect in one wetland
ecosystem type, we grouped the transect points into distinct
training polygons using image interpretation of the sub-meter
imagery as a guide (Figure 2). Thus, the actual number of
training/validation polygons created for map classification was
85, much less than the 350 original field point locations, but areal
coverage was much larger for each of the 85 polygons. This
grouping was necessary to scale the field data to the remote
sensing, thus maintaining field data at the scale of the minimum
mapping unit (0.4 ha) or larger.

Remote Sensing Data
PALSAR Data
Advanced Land observing Satellite (ALOS) Phased Array type
L-band Synthetic Aperture Radar (PALSAR) data (2007–2010)
from fine beam single (FBS) and fine beam dual (FBD) modes
were downloaded for the study area from the archive at the Alaska
Satellite Facility (ASF) and radiometrically terrain corrected
through ASF’s MapReady software to sigma nought. FBS
consists of 10 m resolution horizontal send and horizontal
receive polarized data (L-HH). FBD consists of dual polarized
L-HH and L-HV (horizontal send and vertical receive polarized
data). For each PALSAR scene extent, this resulted in 10–15
images. Past mapping efforts using the multi-date, multi-sensor
approach by the authors relied on field data within each PALSAR
scene. Such an approach limited the need for normalizing
between adjacent scenes of PALSAR or Landsat that is
necessary when mosaicking images. However, due to the
remoteness of the study area and the limited and isolated field
data, the 44 PALSAR scenes making up the study area needed to
be mosaicked and normalization methods had to be developed.
Several options for normalization were considered, but because
we had a time series of images (10–15 dates) for the whole area,
we chose to employ Principal Component Analysis (PCA) and to
also use weather data to help choose images to mosaic of similar
environmental conditions from similar seasons (high- and low-
water), to create three input PALSAR datasets (PCA1, High-
Water, Low-Water).

The time series PCA was used based on input of all available
temporal PALSAR data (∼10–15 dates per scene area) in Erdas
Imagine. PCA is a multivariate statistical technique that can be
used to identify dominant spatial and temporal backscatter
signatures (Jensen, 1996; Henebry, 1997; Bourgeau-Chavez
et al., 2005). The first principal component (PCA1) captured
dominant features across scenes, and reduced brightness/
darkness inconsistencies between adjacent scenes, thus
normalizing the data. This provided an image of stable scene
elements, but changes in hydrological condition (high-vs. low-
water seasons) also needed to be captured. A mosaic of low-water
season PALSAR scenes as well as a mosaic of high-water season
PALSAR scenes were needed. To do this, images from the same

season/year and similar dates were chosen to build the mosaic.
High-water season was defined as January–May and
October–December, while the low-water season was defined as
June–September. Next, images from other years from either the
high- or low-water season were selected to fill in gaps. This was
done by comparing precipitation data between scenes to capture
similar environmental conditions and minimize variation in
brightness across the mosaic. After each season (high- and
low-water) of imagery was mosaicked it was filtered using a
3 × 3 median filter to reduce speckle. A total of 211 scenes were
used for the high-water season and 156 for the low-water season
(Supplemental Tables S2, S3). The PCA was not speckle filtered
as the process already reduces speckle to higher order principal
component (PC) images.

Landsat Data
Cloud free Landsat imagery was very limited in this area and
similar dates were not available across the study area. Two
sources of Landsat mosaics were available for the region which
were composites of multiple Landsat images. The first was the
circa 2,000 Landsat 5 cloud-free composite created by Hansen
et al. (2013) for Peru. The 2,000 image composite included
Landsat bands 3 (red), 4 (NIR), 5 (SWIR), and 7 (SWIR). The
second source was a 2010 Landsat 5 mosaic created by Draper
et al. (2014). The Draper mosaic had three Landsat bands: 4
(NIR), 5 (SWIR), and 7 (SWIR).

Digital Elevation Model and Derivative
Digital elevation model (DEM) data were downloaded from both
the Earth Explorer [ASTER Global Digital Elevation Model
(GDEM)] and the USGS Shuttle Radar Topography Mission
(SRTM) DEM Directory. The 30 m SRTM DEM is based on
interferometric SAR and was preferred but contained several data
gaps which were filled with the ASTER GDEM. ASTER is an
optical sensor and stereoscopic imaging was used to measure
elevations and create the Global ASTER DEM product at 30 m
horizontal resolution. Note that the work presented was created
prior to the release of the SRTM Plus product that also has data
gaps filled with ASTER and other sources.

Topographic Position Index
Topographic indices allow for improved identification of low-
lying areas and depressions that are more likely to be wet, but
also for domed areas, such as occur in pole forests. These
indices are then combined with remote sensing data in the map
classifier. We chose to use the topographic position index
(TPI) which is a measure of a point’s elevational position
relative to the area immediately surrounding it (Weiss, 2001).
To calculate TPI, each 30 m cell in the DEM was compared to
the average value of cells in its surrounding neighborhood. In
the resulting data set, negative values indicate a cell is relatively
lower in elevation than the area around it, suggesting they are
depressions, while positive values indicate the cell is relatively
higher in elevation, such as peat domes. TPI is highly
dependent on input parameters such as the shape and size
of the neighborhood. For this project, a circular neighborhood
with a 600 m (20-cell) radius was used. This 600 m radius tends
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to capture broad variability in landscapes without rugged
topography.

Peatland Ecotype Mapping
The input datasets from PALSAR, Landsat, and either SRTM
DEM or TPI (see examples in Figure 3) were used for
classification to: 1) apply a single date of Landsat, PALSAR
and SRTM DEM to mimic the Draper et al. (2014) approach;
and 2) to test if there is improved accuracy of a multi-date
approach. Models tested included all three data sources
because it has already been demonstrated that adding PALSAR
and SRTM DEM or derivatives improves peatland mapping
accuracies over Landsat alone (Draper et al., 2014; Bourgeau-
Chavez et al., 2017; Hribljan et al., 2017).

Interpretation of the various input images in combination can
provide insight into land cover types and hydrologic variation
(Figure 3). Dynamic hydrologic conditions are noticeable in
Figure 3A, which is a false color composite of PALSAR high-
water and low-water bands. The scattering occurring is a complex
interaction of moisture content, vegetation structure and whether
or not there is standing water. Areas appearing as shades of
orange in Figure 3A represent vegetated areas that are exhibiting
higher backscatter in the high-water L-HH image, likely due to
flooding, while areas appearing pink exhibit high backscatter in
both the high-water and the low-water L-HH image dates. We

can infer that soil moisture or flooding was relatively higher in the
pink areas than in green areas of the image in both seasons. In the
low-water-HV image (Figure 3B), brighter areas correspond to
higher biomass forests, while darker shades of grey correspond
with open-canopied forbs and graminoid plants. Black areas,
representing very low backscatter levels, show water features or
saturated bare soils. Areas with high biomass (high L-HV) and
wet conditions (high L-HH) likely represent forested wetlands,
while similar areas with lower biomass are likely open wetlands.
The machine learning classifier is trained for the various ecotypes
and their respective backscatter signatures and reflectance based
on field data.

The multi-date, multi-sensor map (hereafter referred to as
multi-date map) was produced from 12 data layers including
mosaics of the PALSAR PC1, PALSAR Low-water Season (L-HH
and L-HV), PALSAR High-water Season (L-HH), SRTM TPI,
and the 2000 (4 bands) and 2010 (3 bands) Landsat-5 mosaics.
The map using the single date of Landsat and PALSAR imagery,
similar to the Draper et al. (2014) map, had seven input layers
including the PALSAR low-water season mosaic (L-HH and
L-HV as well as a ratioed layer HH/HV), Landsat-5 2010
mosaic and SRTM DEM (not the TPI). Draper et al. (2014)
used the 50 m PALSAR mosaic from JAXA, which is no longer
available. Thus, we needed to reproduce that layer. From our
reconnaissance of the image archive in comparison to the mosaic

FIGURE 3 | Examples of the input PastazaMarañón Foreland Basin (PMFB) SAR and Optical datasets from the red box of the locationmap: (A) PALSAR false color
composite with high-water L-HH (red), low-water L-HV (green), and low-water L-HH (blue); (B) PALSAR low-water L-HV; (C) PALSAR PCA1; (D) Landsat 2001 bands 5
SWIR (red), 4 NIR (green), and 3 red (blue) (Hansen et al., 2013); (E) Landsat Draper et al. (2014) Mosaic circa 2010 bands 4 (red), 5 (green), 6 (blue), and (F) SRTM TPI
with 20 cell radius resampled to 30 m.
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shown in Draper et al. (2014), most of the images appeared to be
from the low-water season, thus we chose that as input to the RF
classifier. For direct comparison of the single date and multi-date
products we used the Random Forest classifier for both. Note,
that we are not trying to exactly reproduce the Draper map, but to
test if adding multi-seasonal optical and SAR images and a TPI
improves the map accuracy. Thus, we focus on using the same
input training and testing data and single versus multiple season
images and compare the results.

Random Forests (Breiman, 2001), a machine learning
classifier, was used for both peatland ecotype map
classifications. Random Forests is a robust method that can be
applied to a large area with consistency. It comprises multiple
decision trees generated from a random subset of input training
data and bands. Once the forest of decision trees is created, an
individual pixel’s classification is determined by which class
receives the most “votes” across all decision trees. One
advantage of the algorithm is that it can easily handle missing
attributes, such as cloud obscured pixels, as decision trees built
without the missing attributes can be used to classify the
compromised data.

Deforestation Data
Data products showing deforestation in the study region were
available from Peru’s Ministry of the Environment (MINAM)
through the GeoBosques platform (http://geobosques.minam.
gob.pe/). The deforestation product was created using Landsat
data and a supervised decision tree classification approach to
represent annual forest loss from 2001 to 2011 (Potapov et al.,
2014). An updated version of the product from MINAM
representing years from 2001 to 2018 was used for this
analysis. Since our maps are based on imagery from circa
2000 to 2010, we focused on the deforestation occurring
after 2010.

To determine if proximity to waterways or roads has an effect
on deforestation of each forest class, buffers were calculated
around each of the rivers and roads in 1-km increments, and
area for each mapped class was calculated within those buffers.

To assess if post-2010 deforested areas within the PMFB that
were near rivers were a result of natural causes due to river
meandering or appeared to be human-caused (i.e., forest
harvesting), we selected a random set of 100 deforestation
locations and used image interpretation of high-resolution
imagery in Google Earth and ArcMap to determine what
percent appeared to be human versus natural caused. This
assessment was conducted using the most recent imagery
available first, and for instances where the cause of the change
to the river and surrounding land was not immediately obvious or
if the most recent imagery was cloudy or of poor quality, we used
multi-year imagery from Google Earth.

Carbon Stocks
In order to better estimate the mean carbon stocks in the
peatlands, we used a stratified estimator to calculate peatland
cover area based on our error matrix (Olofsson et al., 2013). The
mapped area of peatlands estimated from a pixel counting
approach (counting pixels allocated to a map class and

multiplying by the area of the pixel) may be quite different from
the actual area on the ground due to weighted errors of omission and
commission. While it is not possible to map where these errors are
located, the actual area or adjusted area of each land cover class can
be estimated using the error matrix and the percentage of area of
each land cover class in the map (Olofsson et al., 2013). The
assumptions for calculating adjusted area include having a
random, systematic, or stratified random sample of ground truth
points (Olofsson et al., 2013). Our ground truth samples were
randomly selected from our training sites, which were sampled
by several other researchers from accessible sites within a reasonable
walking distance from a road or waterway (a necessary constraint
due to remoteness of our study area). Peatland C storage across the
mapping area was determined by summing the product of the total
adjusted mapped peatland area for each peatland vegetation
classification and the upper and lower limits of the C stock per
area for each peatland vegetation type (palm swamp peatland, pole
forest peatland, and open peatland) using the equation below from
Draper et al. (2014) and Page et al. (2011):

CP � ∑
pv

p�1

DpρpCpAp

1012
+ AGCpAp

1012

where CP is total peatland carbon pool (Pg), v represents total
number of peatland ecosystems, Dp is peat thickness (m), ρp is dry
bulk density (kg/m3), Cp is carbon concentration (percentage mass
of carbon in dry peat), AGCp is above-ground carbon (kg/m2), and
Ap is area (m

2). Field-based estimates fromDraper et al. (2014) were
used for the peat thickness, dry bulk density, carbon concentrations,
and AGC for each peatland type. We report the contribution of each
peatland vegetation type to aboveground, belowground, and total
peatland C storage. Errors were propagated along the computations.

Statistical Analyses
All statistical analyses were conducted in R statistical software
version 1.3.1056.

Accuracy Assessment of Ecotype Maps
To assess the accuracy of each of the ecotype maps produced
using Random Forests, twenty percent of training polygons were
withheld from classification and used for validation. Whole
polygons were randomly selected and reserved with priority to
field-verified polygons.

This approach was used because the out-of-box validation of
Random Forests does not represent an independent dataset for
validation (Bourgeau-Chavez et al., 2015; Millard and
Richardson, 2015).

Chi-Square Goodness of Fit Tests for Deforestation
To assess whether different ecotypes were being harvested
preferentially in the deforestation analysis, a chi-square
goodness of fit test was applied. This test allowed us to assess
whether an ecotype was deforested more or less preferentially
based on a null model of its availability on the landscape. Thus,
we compared ratios of observed area deforested in each ecotype
and expected values of area deforested in each type based on the
full distribution of area deforested.
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FIGURE 4 | Pastaza Marañón Foreland Basin (PMFB) multi-date, multi-sensor Random Forests map (A) produced from PALSAR high-water season HH, low-
water season HH and HV, and PCA1, combined with Landsat-5 2000 (Hansen), Landsat-5 2010 (Draper), and SRTM TPI; compared to single date Draper et al. (2014)
map (B) using PALSAR low-water season HH and HV, ratioed HH/HV, Landsat-5 2010, and SRTM DEM.
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RESULTS

Peatland Ecotype Mapping
The multi-date peatland map that included DEM-TPI (Figure 4)
had an overall accuracy of 95% with individual peatland class
producer’s accuracies (PA) of 85–99% (error of omission 0–15%)
and user’s accuracies (UA) of 94–99% (errors of commission
1–6%, Tables 1, 2). Accuracy is calculated from a random sample
of pixels within reserved validation polygons. An example of
reserved polygons from each peatland class in comparison to the
classified map is shown in Figure 5. The Random Forests (RF)
classified map using the single date imagery and the SRTM DEM
(after Draper et al., 2014) had 88% overall map accuracy, with
individual peatland class producer’s accuracies of 69–88%
(12–31% error of omission) and user’s accuracies of 77–99%
(1–23% error of commission). The lowest accuracies for the single
date map were with palm swamp peatland (77% UA, 70% PA)
and pole forest peatland (77% UA, 75% PA). Draper et al., 2014
also reported lower accuracies for pole forest peatland (64% UA,
80% PA) using the Support Vector Machine (SVM) classifier and

for the producer’s accuracy of palm swamp peatland (79% PA;
96% UA).

With any map product, it is important to also review the map
to see if it appears correct based on knowledge of the landscape
and comparison to other maps. Figures 4, 6 show a direct
comparison between the actual Draper et al., 2014 map
(recolored) and the new multi-date product. The single date
Draper map (2014) has much less pole forest peatland and
seasonally flooded forest than the multi-date map. The single
date RF map we created is consistent with the SVM product
published in Draper et al., 2014, but we show the Draper et al.
(2014) map in Figures 4, 6 for direct comparison. The single date
Draper et al. (2014) map shows large amounts of palm swamp
peatland and Terra firme in place of pole forest peatland and
seasonally flooded forest, respectively (Figures 4, 6).

A comparison of SRTMDEM and TPI was conducted for each
of the maps, single date and multi-date (Table 2). The accuracies
were much lower for the multi-date map with the DEM rather
than the TPI, while the single date map had reduced accuracy
with the TPI. The peatland and non-peatland classes drop by

TABLE 1 | Error matrix for the multi-date, multi-sensor map. Numbers are pixel counts randomly sampled from the validation polygons in each ecosystem class.

Classified Ground truth values

Urban/
barren

Water Open
peatland

Palm
swamp
peatland

Pole
forest

peatland

Seasonally
flooded
forest

Terra
firme/

occasionally
flooded
forest

Sum Commission
(%)

User
Acc.
(%)

Urban/barren 927 0 0 1 0 2 0 9,300 0.3 99.7
Water 11 1,006 0 0 0 0 0 1,017 1.0 99.0
Open peatland 7 0 997 0 0 0 0 1,004 1.0 99.0
Palm swamp peatland 0 0 0 868 13 0 0 881 1.5 98.5
Pole forest peatland 0 0 0 49 944 9 0 1,002 5.8 94.2
Seasonally flooded forest 47 0 0 73 0 798 57 975 18.2 81.8
Terra firme/Occasionally flooded
forest

0 0 6 25 42 7 948 1,028 7.8 92.2

Sum 992 1,006 1,003 1,016 999 816 1,005
Omission (%) 6.6 0.0 0.6 14.6 5.6 2.2 5.7
Prod. Acc. (%) 93.4 100.0 99.4 85.4 94.4 97.8 94.3 Overall accuracy 94.9

TABLE 2 | Comparison of User’s (UA) and producer’s (PA) accuracies for the multi-date map vs. the single date map. Each are shown using the SRTM TPI or SRTM DEM in
the RF classifier.

Random forests 20–30 m data

Multi-date landsat,
PALSAR, SRTM TPI

Multi-date landsat,
PALSAR, SRTM DEM

Single date landsat,
PALSAR, SRTM TPI

Single date landsat,
PALSAR, SRTM DEM

Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Urban/barren 100 93 99 95 74 91 86 98
Water 99 100 100 100 100 100 98 100
Open peatland 99 99 98 99 89 78 99 88
Palm swamp peatland 99 85 79 66 68 57 77 69
Pole forest peatland 94 94.4 67 69 57 53 77 75
Seasonally flooded forest 82 98 78 92 79 77 88 81
Terra firme/occasionally flooded forest 92 94 80 77 63 71 87 100
Overall accuracy (%) 95 86 75 88
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10–20 percentage points when using the TPI in the single date
map. For the multi-date map, open peatland stays about the same
with TPI or DEM in the model. However, the map is improved
when including the TPI instead of the DEM for palm swamp
peatland with an increase by 18–19 percentage points in accuracy
with the TPI. Similarly, pole forest peatland increases by 27–28
percentage points and even Terra firme/occasionally flooded
forest increases slightly in accuracy (Table 2) with the TPI in
the multi-date map.

A review of band importance within RF was conducted by
class for the single date (DEM) and multi-date (TPI) maps
(Figure 7). In all cases the Landsat optical bands had high
importance. For the single date map, out of seven input bands,
the SRTMDEMwas the most important variable for determining
Terre firme and pole forest, it was second in importance for open
peatland and fourth for palm swamp and seasonally flooded
forest. Without the second date of PALSAR to help in
distinguishing these peatland/non-peatland types, the classifier
appears to have been reliant on the DEM to distinguish lowland
from upland. For the single-date map, PALSAR low-water HV
was third in importance for pole forest, but for the other classes it

was fifth or sixth in importance. This contrasts with the multi-
date map where PALSAR low-water HV was the most important
variable for pole forest and TPI was last out of 12 input bands. For
palm swamp, PALSAR PCA1 was third in importance and TPI is
ninth of the 12 input bands. For terre firme, TPI is 12th. Only for
open peatland does TPI seem to be of significant importance,
where it is sixth, PALSAR low-water HV was fifth.

Estimating Carbon Storage
Using the multi-date map and adjusted area of each land
cover class based on the error matrix and the percentage of
area of each land cover class in the map (after Olofsson et al.,
2013) resulted in 0.48 Pg of aboveground C, 3.88 Pg of
belowground C, and a total C stock of 4.36 Pg (Table 3).
These are higher contributions to aboveground, belowground
and total peatland C across all peatland types than the Draper
et al. (2014) map (Table 3). The total C stock increased by
35%, from 3.238 to 4.360 Pg. Based on the multi-date map,
pole forest peatland contributed the most to the total C stock
with 58% (2.551 Pg) of the total carbon, followed by palm
swamp with 34% (1.476 Pg) and open peatlands with 8%

FIGURE 5 | Example of validation polygons in Pastaza Marañón Foreland Basin (PMFB) seasonally flooded forest (left), palm swamp peatland (center), and open
peatland (right) compared to the multi-date map classification. Accuracy assessment was calculated from a random sample of pixels within each cover type’s reserved
validation polygons.
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(0.33 Pg) of the total C. These proportions greatly differed
from the Draper et al. (2014) map where the palm swamp
contributed the most with 65% (2.116 Pg) of total C, followed
by pole forest with 26% (0.831 Pg) and then open peatland
with 9% (0.291 Pg) of the total C.

Much of the classified pole forest area in the multi-date
map was classified as palm swamp and Terra firme in the
Draper et al. (2014) map (Figures 4, 6). This difference led to
increased C storage in the multi-date map since pole forest
peatlands are more carbon dense than palm peatlands (Draper
et al., 2014). The classification of pole forest peatlands was
greater than triple in area (from 534,100 to 1,687,000 ha) to
that of the single date map, and this translated to a similar
increase in contributions to C stocks (from 0.831 to 2.551 Pg
of C), a 209% increase. Estimated palm swamp area decreased
by 31% in the multi-date map from the Draper et a1. (2014)
map (from 2,305,700 to 1,590,200 ha), resulting in a similar
decrease in palm swamp carbon stocks (from 2.116 to
1.476 Pg). While less dramatic than the pole forest, the

area, and C storage contributions of the open peatland also
increased (15%) in the multi-date map (398,700 and 0.291 Pg
of C to 462,000 and 0.333 Pg of C).

Deforestation/Degradation Analysis
The yearly deforestation product produced by MINAM shows
87,268 ha of forest lost between 2010 and 2018 within the PMFB
study area. The multi-date, multi-sensor map was intersected
with the deforestation product to calculate yearly forest loss by
forest cover type (Figure 8). We found that primarily seasonally
flooded forest is being harvested each year, followed by terre firme
and pole forest peatland. Palm swamp peatland is the least
affected by deforestation between 2010 and 2018.

An analysis of preferential harvesting given the availability of
cover types on the landscape was assessed with a chi-square
goodness of fit test. We found that seasonally flooded forest is
deforested at a much higher than expected rate given its
availability on the landscape (Figure 9). Terra Firme, palm
swamp peatland and pole forest peatland are all observed to

FIGURE 6 | Pastaza Marañón Foreland Basin (PMFB) zoomed-in comparison of multi-date SAR-optical-TPI map product (left) to Draper remote sensing layers
single date SAR-optical-DEM (right) both in Random Forests. This map highlights differences in the distribution of Pole forest peatland, Palm swamp peatland and
Seasonally flooded forest.
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FIGURE 7 | Plots of mean decrease in accuracy from the random forests classifier for each Pastaza Marañón Foreland Basin (PMFB) land cover type: for the single
date map (A) and multi-date map (B). All classes are shown except urban/barren which had all the Landsat classes as most important.
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TABLE 3 | Adjusted area of each land cover class estimated using the error matrix (Table 1) and the percentage of area of each land cover class in the map (after Olofsson
et al., 2013), and C-stocks for above ground C (AGC), belowground C (BGC), and total C stock for the Draper et al. (2014) and the multi-date map. Note that we clipped
the Draper et al. (2014) map (Figure 3) to match our area and thus the totals here are slightly lower than those reported in Draper et al. (2014).

Draper
area
(ha)

Draper
AGC
(Pg)

Draper
BGC (Pg)

Draper
total

C stock
(Pg)

Multi-date
area
(ha)

Multi-
date
AGC
(Pg)

Multi-date
BGC (Pg)

Multi-date
total

C stock
(Pg)

Pole
forest

mean ±
95% CI

534,100 ± 78,500 0.087 ±
0.054

0.744 ± 0.250 0.831 ± 0.304 1,687,600 ± 66,700 0.250 ±
0.144

2.301 ± 0.543 2.551 ± 0.687

Palm
swamp

mean ±
95% CI

2,305,700 ± 107,800 0.310 ±
0.207

1.806 ± 0.580 2.116 ± 0.787 1,590,200 ± 77,400 0.230 ±
0.143

1.246 ± 0.403 1.476 ± 0.546

Open
peatland

mean ±
95% CI

398,700 ± 20,800 0.000 0.291 ± 0.146 0.291 ± 0.146 462,000 ± 23,900 0.000 0.333 ± 0.174 0.333 ± 0.174

Total mean ±
95% CI

3,238,500 ± 207,200 0.397 ±
0.261

2.841 ± 0.976 3.238 ± 1.237 3,739,900 ± 168,100 0.480 ±
0.287

3.880 ± 1.120 4.360 ± 1.407

FIGURE 8 | For the Pastaza Marañón Foreland Basin (PMFB): (A) Forest loss by class for each year from 2010 to 2018. (B) Forest loss by peatland class for each
year (2010–2018). Note the large y-axis change in area for peatland forest loss (B) in comparison to all forest loss (A).
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be deforested less than expected based on their total distribution
(Figure 9). Pole forest peatlands and palm swamp peatlands
accounted for 12.3 and 11.9% of forested area in the classified
map, respectively, while they accounted for only 2.2 and 0.4% of the
deforested areas. Similarly, Terra firme/occasionally flooded forest
accounted for 46.2% of the mapped area, yet only accounted for
27.8% of the deforested area. In contrast, seasonally flooded forest
comprised 29.4% of the mapped area while accounting for 69.5% of
the deforested area between 2010 and 2018.

The MINAM deforestation maps show that significant forest
loss occurred along the road between the largest cities of Iquitos
and Nauta as well as along roads near other towns, such as San
Lorenzo and Yurimaguas. However, given the absence of roads in
most of the area, most forest loss appears to occur along the river
corridors (Figure 10). The Ucayali and Marañón have numerous
large tributaries flowing into them, creating a vast network of
streams and rivers throughout the region allowing navigation.
Satellite imagery and MINAM products show that agricultural
and timber harvest activity is clearly concentrated in these
corridors (Figure 10).

FIGURE 9 | Chi-gram showing residuals for the four Pastaza Marañón
Foreland Basin (PMFB) forested classes.

FIGURE 10 | Deforested areas in relation to rivers and large settlements in the Pastaza Marañón Foreland Basin (PMFB) study area, color coded by ecotype.
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An analysis of the distance of deforestation from roads and
rivers (Figure 11) demonstrates that of the area classified as
deforested between 2010 and 2018, 38,725 ha (42.5% of total
deforested area) occurred less than 1 km from a river or a road
(Figures 11A,B). Of these deforested areas within 1 km of rivers
and roads, 88.8% was classified as seasonally flooded forest. Thus,
it is not surprising that it is the cover type most affected. Since
seasonally flooded forests occur along the meandering rivers
which are dynamically changing, a visual inspection of the
forest loss along rivers was conducted to determine if changes
appeared to be due to harvest or natural changes. Potapov et al.
(2014) reported that 6% of the gross forest loss mapped was due
to flooding or river meander, but a majority of loss (92.2%)
occurred as a result of clearing for agriculture. To assess this in the
MINAMmaps of 2010–2018 and within the PMFB, we chose 100

random deforested locations within 1 km of the waterways to
determine probable causes of forest loss and found through image
interpretation (Figure 12) that 32% were associated with flooding
or river meander while the remainder were likely attributed to
anthropogenic disturbance. Thus, the loss of seasonally flooded
forests appears to be a combination of natural change due to
dynamic hydrologic conditions and anthropogenic change due to
timber harvesting (Figure 12), with a greater percentage due to
the latter.

DISCUSSION AND CONCLUSION

The PMFB multi-date map showed improvement in statistical
accuracy as compared to the single date map for all of the

FIGURE 11 | (A) Actual area of PMFB deforestation with proximity to rivers (water) or roads in 1 km increments by ecotype; (B) percentage of deforested areas by
ecotype relative to the total available area of that ecotype in 1 km increments.
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peatland and non-peatland ecotype classes. We attribute this to the
inclusion of low- and high-water season SAR images in the multi-
date map which provides information about seasonal hydrological
dynamics, i.e., inter-seasonal changes in the extent of inundation
and soil moisture. Similarly, use of multiple dates of SAR and
Landsat imagery resulted in improved peatland map accuracies in
boreal peatland ecotypes (Bourgeau-Chavez et al., 2017) and
tropical mountain peatland systems (Hribljan et al., 2017). The
results of the band importance (mean decrease in accuracy) plots
(Figure 7) for the single-date vs. multi-date maps showed that the
inclusion of two seasons of data reduced the importance of SRTM
greatly across many of the classes. In particular, for pole forest, the
SRTM DEM had the greatest importance for the single date map,
and for the multi-date map PALSAR L-HV was of greatest
importance and the SRTM TPI moved to 12th.

The multi-date map resulted in over 1.1 million ha greater area
of pole forest peatland mapped than Draper et al. (2014). This
increased area is particularly noticeable in the northern part of the
study area where field data were sparse. Pole forest peatlandwas the
class Draper et al. (2014) had the most difficulty mapping. It had
the lowest accuracies in the SVM map (Draper et al., 2014), with
Draper reporting 36% commission and 20% omission error
estimated from their field data. Although this was slightly
improved in the RF single date map of this study, using
20–30m resolution data and an expanded field training dataset
(23% commission and 25% omission error), the multi-date map
made significant improvement in mapping this class (<6%
commission and omission error). The increase in mapped area
of pole forest peatland resulted in a correspondingly large decrease
in the palm swamp peatland class. The multi-season map shows
palm swamp peatland to be more closely associated with large and
dynamic rivers which better matches how they were described in
Draper et al. (2014). The open peatlands are geographically similar
in both maps. The multi-date map also showed differences in areas
mapped for the two forested non-peatland classes, seasonally
flooded forest and Terra firme, in comparison to the single-date
and Draper et al. (2014) maps.

Another class that has large changes in the multi-season map
product is the seasonally flooded forest, which increased largely by

mapping into areas previously mapped as Terra firme in Draper
et al. (2014). With a single date of SAR data, it is difficult to
distinguish the seasonally flooded forest from the Terra firme class,
likely accounting for the large differences, particularly in the northern
and western parts of the study area. Draper et al. (2014) reported a
20% omission error in their map for seasonally flooded forest. They
found that their SAR-optical-SRTM mapping of seasonally flooded
forest had lower user’s accuracy than what was mapped with Landsat
alone or Landsat and PALSAR. It was the only ecotype for which they
did not have improvement by adding PALSAR and SRTM.

The estimates of PMFB C stocks, based on the higher accuracy
multi-date map, increased by 35% from a total of 3.238 (Draper et al.,
2014) to 4.26 PgC. Themajor contributor to the total C stockwas pole
forest peatland with 58% (2.551 Pg), followed by palm swamp with
34% (1.476 Pg) and open peatlandswith 8% (0.33 Pg). This increase in
total C stocks from the previous estimates (Draper et al., 2014) is
primarily attributed to the 1,153,500 ha increase in area of pole forest
peatland mapped (216% increase in area) and the fact that pole forest
peatlands are more carbon-dense than palm swamp peatlands
(Draper et al., 2014). Although the area of palm swamp forest that
was mapped decreased by 715,500 ha (31% decrease), this is more
than offset by the 216% increase in mapped area of pole forest
peatland. This large difference in C stock estimates between the
two mapping approaches warrants additional field collection in the
pole forest peatlands. Coincident research by Coronado et al. (2021),
including field surveys of pole forest peatland, also expands the
distribution of peatland pole forest in the PMFB, but mainly along
the Tigre River. Understanding the vegetation structural differences in
pole forest peatlands across the region, as well as the underlying
ecohydrological processes resulting in their formation in low and high
flow areas need further investigation, warranting additional field data
collection in the upper PMFB, especially in the northwestern part of
the basin associated with the geomorphologically distinct Pastaza fan.
Our results exemplify the need for high resolution (<30m), multi-
season SAR and optical imagery for high accuracy maps, and
complementary field data across all peatland types to produce
more accurate and high confidence estimates of peatland carbon.

Our efforts to understand vulnerability of these peatlands to
deforestation activities showed that between 2010 and 2018, 38.4% of

FIGURE 12 | Digital globe images of forest clearing with plantation (A); meandering rivers (B), and a field photo example of erosion/forest loss from a meandering
river (C); all in the Pastaza Marañón Foreland Basin (PMFB).
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deforestation occurred less than 1 km from a river in predominantly
(83%) seasonally flooded forest (Figure 11C). This ecotype is
deforested more than expected given its availability on the
landscape (chi-square goodness of fit, Figure 9). Seasonally
flooded forest is primarily known as non-peat forming, although
in a few cases extensive peat deposits have been found (Lahteenoja
et al., 2009b; Draper et al., 2014). The field data have been too sparse
to quantify what differentiates peat storing and non-peat storing
seasonally flooded forests and their contributions to C stocks. We
found overall low rates of deforestation in the peatlands of this region
which is consistent with previous studies (e.g., Lilleskov et al., 2019).
The extensive peatlands and other wetlands, and resulting absence of
roads in most of the area, combined with the intensity of seasonal
water table changes associated with the larger rivers, and the
relatively low timber value of peatland tree species (Roucoux
et al., 2017) has likely focused recent deforestation to the non-
peatland river corridors.

Partitioning natural and human disturbance indicated that a
majority of the disturbance was anthropogenic, although
immediately along rivers natural disturbance was also an
important contributor. The large rivers meander substantially,
leading to erosion and forest loss (Figure 12). These riparian
corridors are a focus of economic activity, including slash and
burn agriculture, creating small clearings in the forest for
temporary plantations (Figure 12). Although, as detected by the
Potapov et al. (2014) method, deforestation within the peatlands is
limited, these forests are also subject to economically unsustainable
degradation caused by cutting of femaleM. flexuosa to harvest their
fruits (Hergoualc’h et al., 2017; Bhomia et al., 2019; Hergoualc’h
et al., 2020). We expect that as road networks at the margins of the
peatland area expand, associated rates of deforestation will likely
increase dramatically (Coronado et al., 2020). The extent to which
this happens will depend on the type and enforcement of land
protections put in place including those via: 1) Ramsar designation
or as national reserves with associated ecological-economic zoning;
2) initiatives to provide alternative approaches for the harvest of
palm fruits (Roucoux et al., 2017; Lilleskov et al., 2019); and 3) other
national initiatives to protect the carbon in peatlands, such as those
likely to arise from current efforts to establish nationally determined
contributions (NDCs) to the Paris Agreement (Murdiyarso et al.,
2019; López Gonzales et al., 2020; Wiese et al., 2021).

The huge reservoir of organic carbon currently harbored in
tropical peatlands is particularly vulnerable to loss due to both
climate and land use change (López Gonzales et al., 2020). Much
of the literature on peatlands focuses on the need to accurately
map their distribution, measure peat stores in the field and to
monitor change for C accounting. While we demonstrate the
gains in map accuracy through the use of multi-date L-band SAR
and optical imagery, there remains a need for additional field
sampling to improve estimates and reduce uncertainties in
quantifying the distribution of peatlands and carbon stocks. In
addition, there is a growing need to monitor effects of climate and
land use change in peatlands. Land use change is predicted to play
a key role in future shifts of peatlands from a net sink to a net
source of C to the atmosphere (Loisel et al., 2021). As global
populations continue to grow, pressures on peatlands for deforestation

and farming will likely ensue, but the need to conserve peat may
outweigh these pressures through policy and management decisions
(Loisel et al., 2021). In the present study, the 216% increase in area of
pole forest peatland mapped in the PMFB, taken together with our
understanding of the greater vulnerability of pole forest peatland to
drainage (because of their position above regional water tables—peat
domes), raises concerns of an even larger scale on the potential impact
of peatland drainage and land use change (e.g., to tree plantations) in
the region. This fact is an important consideration for national efforts
to incorporate peatlands into government policy.
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