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Seismic activity in volcanic settings could be the signature of processes that include
magma dynamics, hydrothermal activity and geodynamics. The main goal of this study is
to analyze the seismicity of Lipari Island (Southern Tyrrhenian Sea) to characterize the
dynamic processes such as the interaction between pre-existing structures and
hydrothermal processes affecting the Aeolian Islands. We deployed a dense seismic
array of 48 autonomous 3-component nodes. For the first time, Lipari and its hydrothermal
field are investigated by a seismic array recording continuously for about a month in late
2018with a 0.1–1.5 km station spacing.We investigate the distribution and evolution of the
seismicity over the full time of the experiment using self-organized maps and automatic
algorithms.We show that the sea wavemotion strongly influences the background seismic
noise. Using an automatic template matching approach, we detect and locate a seismic
swarm offshore the western coast of Lipari. This swarm, made of transient-like signals also
recognized by array and polarization analyses in the time and frequency domains, is
possibly associated with the activation of a NE-SW fault. We also found the occurrence of
hybrid events close to the onshore Lipari hydrothermal system. These events suggest the
involvement of hot hydrothermal fluids moving along pre-existing fractures. Seismological
analyses of one month of data detect signals related to the regional tectonics,
hydrothermal system and sea dynamics in Lipari Island.
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INTRODUCTION

Seismicity in volcanic areas is commonly analyzed to understand the dynamic processes occurring at
different scales and tomonitor the seismic hazard. In subduction zones seismic signals include purely
tectonic events, tremors due to hydrothermalism, magma migration or plate interaction, volcano-
tectonic events, swarms and transients (Eiler, 2003). Therefore it is important to identify the source
of the different types of signals also from a volcanic and seismic hazard perspective, particularly
where monitoring systems are poorly developed or lacking. The southern Tyrrhenian Sea-Calabrian
Arc-Ionian Sea subduction setting is characterized by the volcanic arc including Lipari, Vulcano and
Salina islands, which form a NNW-SSE elongated volcanic ridge crossing the central portion of the
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FIGURE 1 | (A)Map of Southern Italy. The main faults and thrusts (brown lines) are from Palano et al. (2015). Slab isodepths at 50, 100, 200 and 300 km are shown
with gray lines. Red triangles are the broadband seismic stations of the INGV permanent network (http://cnt.rm.ingv.it/instruments/network/IV). The 2000–2019
seismicity from the INGV seismic catalog (http://iside.rm.ingv.it/) is shown as yellow dots. Regional Centroid Moment Tensor solutions (http://rcmt2.bo.ingv.it/) for events
larger than 4.5 are color-coded by depth. The black rectangle outlines the area shown in (B), where the main tectonic structures are shown: SAf � the Sisifo-Alicudi
fault system; ATLf � the Aeolian-Tindari-Letojanni fault system. Fromwest to east, the Aeolian islands are also labeled: Al � Alicudi; Fi � Filicudi; Sa � Salina; Li � Lipari; Vu
� Vulcano; Pa � Panarea; St � Stromboli. ISTR is the tyde station at Stromboli island. The Aeolian seismicity (orange circles) is from Gruppo Analisi Dati Sismici (2021)

(Continued )
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Aeolian Archipelago (Figures 1A,B) (De Astis et al., 2003). The
volcanic ridge formed in Quaternary times along the Aeolian
Tindari-Letojanni (ATL) fault system, a Subduction-Transform-
Edge Propagator (STEP) fault that bounds the western edge of the
subduction of the Ionian Sea below the Calabrian Arc and
transfers stress across northeastern Sicily (Govers and Wortel,
2005; Billi et al., 2006; Scarfì et al., 2018).

The ATL is a complex and heterogeneous crustal discontinuity
consisting of a broad NNW-SSE- to NW-SE-trending fault
system that cuts the south-western flank of Lipari and Salina,
borders both the western and eastern flanks of Vulcano and
extends southward to the Ionian coast of Sicily (Figure 1B)
(Palano et al., 2015). The Sisifo-Alicudi (SA) fault forms the
eastern boundary of an E-W-trending transpressional belt which
extends from far west in the southern Tyrrhenian Sea (Figure 1A)
to Lipari-Vulcano (Figure 1B) absorbing a portion of the Africa-
Eurasia convergence rate (Palano et al., 2012). A large number of
geological and geophysical observations have suggested that
magma channeling and uprising in western and central
Aeolian Islands have been controlled by the SA (∼1.3 Myr)
and the ATL fault systems (∼0.4 Myr; De Astis et al., 2003;
Ventura et al., 2013). Spatial distribution of crustal earthquake
clusters along both tectonic structures and the largest events
occurred in 1978 (M5.6) and 1980 (M5.7) on ATL and SA,
respectively (Neri et al., 1996). Focal mechanisms of
earthquakes are consistent with right-lateral slip in NNW-SSE
direction in response to a strike-slip stress regime characterized
by a N-S compression (Cintorrino et al., 2019). Deep events,
down to 200 km, also occur to the east of ATL and are associated
with the Ionian subduction zone (Milano et al., 1994).

Ground deformation measurements (Bonaccorso, 2002;
Mattia et al., 2008; Esposito et al., 2015) indicate the N-S
contraction of Lipari and Vulcano and an overall subsidence
with rates decreasing from the northernmost GPS stations to the
southernmost ones. Recent studies (Alparone et al., 2019;
Cintorrino et al., 2019) show that the surface ground
deformation is explained by the joint contribution of regional
(tectonic, ATL) and local (magmatic, a deflating source located
under Vulcano at a depth of ∼4 km) sources. Furthermore,
archaeological data indicate that the southern sector of Lipari
has been undergoing subsidence for the last 2,100 years at rates of
up to ∼11 mm/yr (Anzidei et al., 2016; Anzidei et al., 2017).

In the last decades, a number of studies based on seismic
reflection, marine morpho-structural and bathymetric data
(Favalli et al., 2005; Argnani et al., 2007; Bortoluzzi et al.,
2010; Cultrera et al., 2017) have mapped main fault segments,
therefore providing constraints on the structural trends and
tectonic arrangement of the southern Tyrrhenian region.

These data, complemented with the structural data on land,
have shown that Lipari and Vulcano are primary controlled by
NNW to NW-SE strike-slip faults, coupled with secondary NE-
SW and N-S striking faults (Mazzuoli et al., 1995; Ventura et al.,
1999; De Astis et al., 2003; Ruch et al., 2016). Moreover, the N-S
faults control the location of the shallow magmatic reservoirs
responsible for the more recent (<55 kyr) volcanism at Lipari and
Vulcano (Ventura et al., 1999; Ruch et al., 2016). In the case of
Lipari, volcanism occurred between 267 ka and 1,220 AD (Forni
et al., 2013) on a 20 km thick continental crust (Ventura et al.,
1999; Calò et al., 2013). Volcanic activity developed in three main
phases: 1) the early activity (267 ka to about 150 ka), mainly
focused in the western sector, with the eruption of lava flows and
scorias; 2) the 119–81 ka volcanism concentrated in the central
sector with the emplacements of lavas and pyroclastics (Monte S.
Angelo and Monte Chirica volcanoes, close to the 121 and 145
nodes, respectively, Figure 1C); 3) the more recent volcanism,
42 ka to 1,220 AD, affected the southern and eastern sectors and
comprises pyroclastic fall and flow deposits, lava flows and
domes, the latter concentrated in the southern sector. The last
eruption occurred in the NE corner of the island with the
formation of a rhyolitic pumice cone and the emplacement of
obsidian lava. A hydrothermal field is located in Lipari’s western
sector, where hydrothermal activity is concentrated on faults and
fractures that align along a N-S direction (Ruch et al., 2016; Cucci
et al., 2017). Hydrothermal output mainly consists of CO2 of
magmatic origin (Cioni et al., 1998). Although the last volcanic
eruption in Lipari occurred in 1,220 AD, volcanic features such as
hot springs and fumaroles observed at the surface prove that
volcanism is still active (Cioni et al., 1998). Very few studies have
focused on the Lipari hydrothermal system, among them Bruno
et al. (2000) observed that the fluid circulation concentrates along
the ENE-trending faults located near the Terme di San Calogero
resort (south of the fumaroles area shown in Figure 1C). Cucci
et al. (2017), analyzing the gypsum-filled vein networks in the
kaolin area (outlined black square in Figure 1C), have concluded
that the decrease of the fluid discharge in hydrothermal fields may
reflect pressurization at depth potentially preceding
hydrothermal explosions. Fumaroles and hot water, along with
a kaolin-dominated alteration zone, describe the N-S
hydrothermal belt that is characterized by magmatic CO2 with
equilibrium temperatures of 170–180°C and SO4

2− up to 780 ppm
(Cioni et al., 1988). The more recent, still active surface
hydrothermal alteration episode started at about 27 ka with
temperatures up to 90°C. The presence of active structures has
also been related to anomalies in the spatial distribution of soil gas
emissions (Camarda et al., 2016). The hydrothermal activity
accounts for the shallow depth of the magnetic bottom (Curie

FIGURE 1 | (http://sismoweb.ct.ingv.it/maps/eq_maps/sicily/catalogue.php). Red stars are the Aeolian earthquakes that occurred during the Lipari array acquisition
time. Purple circle and stars to the west of Lipari Island, inside the black box, are the events located in this study and shown in panel (C). Bathymetric data in (A) and (B)
are fromRyan et al. (2009). (C) The Lipari-Vulcano complex. The geological map of Lipari Island ismodified after Forni et al. (2013). Red circles indicate the locations of the
seismic nodes and their ID numbers. Inset in the upper right corner shows an expanded view of the seismic nodes in the fumaroles area (indicated by a black rectangle).
ILOS on Lipari and IVPL on Vulcano are permanent stations. The purple circle is the very shallow event of 26 October 2018, while the purple stars indicate the seismic
swarm from 4 November 2018, whose main shock was originally located at the red star to the south-west (https://www.ct.ingv.it/). (D) Photos of the nodes on the day of
the removal (top) and a typical node installation (bottom) are shown.
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FIGURE 2 | Day-plots for 30 October, 2018 showing the vertical component of stations 130 (top) and 151 (bottom). P-arrivals of the teleseismic events with
magnitude larger than 5.5 that occurred on the same day are also indicated with the yellow stars. Node locations are shown in Figure 1C.
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isotherm) at Lipari, which is at about 1 km depth (De Ritis et al.,
2013). The spatial distribution of the seismicity and the shallow
Curie isotherm led De Ritis et al. (2013) to put forward the
hypothesis of the existence of a “soft” layer due to melts and/or
high temperature fluids beneath Lipari.

METHODS AND RESULTS

To investigate the seismicity in Lipari, we carried out a passive
seismic experiment from October 16 to November 14, 2018. We
deployed a nodal seismic array of 48 FairfieldNodal ZLand three-
component nodes (stations) with a 5 Hz low-corner frequency,
nominal sensitivity of 78.7 Vm−1 s−1 and battery life of about
one month (Di Luccio et al., 2019).

All the nodes, placed at distances between 0.1 and 1.5 km on
the island (Figure 1C), recorded continuously at a 4 ms sampling
rate. Nodes were buried beneath a few centimeters of soil allowing
the GPS signal to arrive at each node for time synchronization;
most of them were installed on the street side, others were placed
with homeowners, hotel owners, at the Lipari Observatory and
Lipari Museum (Figure 1D). Site selection was done before the
deployment that took two days and was completed by two groups,
each composed of two persons. The deployment and retrieval of
the cable-free node system was faster than it would have been
with a cabled system, and also cheaper in terms of costs and
personnel required. Each node is a complete recording system,
including the data logger, a flash memory card and the GPS,
without any required connection to any external device, once it
has been programmed for the specific acquisition in the
laboratory.

The Lipari array recorded over 300 Gb of data, including local
and distant earthquakes, as for instance the October 25,
2018 Mw6.8 Peloponnese event and its aftershocks (Di Luccio
et al., 2019). This is the first time that such a dense seismic array
has been deployed on Lipari Island. In Figure 2 one-day station
plots show the quality of the recorded data as well as the day and
night noise level.

Preliminary Data Inspection and Automatic
Event Detection
Data plots of October 30, 2018 show very noisy waveforms at the
nodes in the western and southern Lipari (Figure 2) with respect
to other days in which the noise level is quite low, at day and night
times. Permanent stations, ILOS at Lipari and IVPL at Vulcano
(Figure 1C for location) show the same pattern on the same day.

For fast event detection, we run a coincidence trigger
algorithm on the whole dataset based on a classical Short
Term Average/Long Term Average (STA/LTA) waveform
amplitude (Allen, 1978). The automatic coincidence-triggering
procedure has been tested using different combinations of
parameters of STA, LTA, the trigger threshold level and
station coincidence, in order to find the best values to reduce
the number of false alarms and to include signals with low SNR.
Following Trnkoczy (2002) and in order to detect the local events
that eventually occurred during the one month of recording, we

set STA � 0.4 s, LTA � 20 s; thresholds of trigger on and off are 4
and 1, respectively, and the station coincidence is set to 30. The
STA/LTA procedure has been applied to the 1-h long vertical
components of all nodes using the ObsPy code (Beyreuther et al.,
2010). Results of this analysis are shown and discussed in detail
later in Figure 5. Although the automatic triggering procedure
does not allow us to discriminate among the different types of
events, it is interesting that it detected at least four periods of
“anomalous seismicity” in late 2018, precisely October 22, 25–27,
30–31 and November 2, 4–6.

To further investigate the overall signal properties, we compute
the spectral parametrization of the whole dataset from 19 October
to 13 November in terms of central frequency and shape factor of
the power spectra (Kramer, 1996) for each node. The application of
this methodology provides an effective image of the entire time
record in a few seconds, as successfully applied in other volcanic
settings (Galluzzo et al., 2020). In Figure 3, we plot spectral results
for node 117 which shows an anomalous pattern similar to the one
described above, both in terms of central frequency and shape
factor of the spectra. A central frequency of 7–8 Hz corresponding
to a shape factor of 0.4 is observed in the continuous record around
30 October, although other days show significant minima in the
central frequency.

Further insights into the anomalous periods are given in the
next sections, where we discuss different approaches that have
been used to study the seismic signals recorded during the Lipari
array acquisition time. The evolution of the seismicity for selected
stations is also discussed below.

Machine Learning Approaches
The continuous seismic signal, which can be seen as seismic noise
or tremor also depending on the SNR (Carniel, 2010) is very
information-rich due to its persistence and memory (Jaquet and
Carniel, 2003; Jaquet et al., 2006). We apply unsupervized and
supervised machine learning techniques to rapidly identify
possible coherent regimes in the continuous seismic stream at
Lipari. This allows us to identify discrete volcano-seismic events
in terms of feature vectors based on amplitude, shape and
frequencies (Carniel, 2014; Carniel and Guzman, 2021, for a
review). Supervised tools need a model previously trained on a
catalog of labeled data, and they are therefore more suitable to
detect and classify discrete events (Malfante et al., 2018). They can
be considered an evolution of the concept of template matching
in which similar events are detected on the basis of the similarity
with given examples (templates). Template matching is often
used to detect aftershocks (Peng and Zhao, 2009), but also in
volcano seismology to detect VT swarms (Passarelli et al., 2018),
to characterize pre-eruptive sequences (Lengliné et al., 2016) or
Long Period subevent multiplets (Matoza et al., 2015). The
unsupervized approach on the other hand is usually more
useful for tackling the analysis of continuous data (Seydoux
et al., 2020). The first task is to recognize the possible
presence of coherent regimes in the Lipari dataset.

Self-Organized Maps and Cluster Analysis
A suitable approach to unsupervized classification of continuous
seismic data is provided by Kohonen maps or Self Organizing
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Maps (SOM) (Kohonen, 2001), a type of Artificial Neural
Network aimed at producing a 2D discretized representation
of the feature vector space that describes the data as several
clusters or subspaces of vectors with similar values. The
unsupervized training is based on a combination of
competitive and collaborative learning, using a neighborhood
function to preserve the input topological properties. In volcano-
seismology, SOM have been applied to several volcanoes in
New Zealand, such as Raoul Island (Carniel et al., 2013a),
Ruapehu (Carniel et al., 2013b) and Tongariro (Jolly et al.,
2014). In the last two cases a hierarchical clustering was
applied to the results of SOM to provide a simpler
categorization of different regimes. A similar approach was
applied to the Etna volcanic tremor (Messina and Langer,
2011). The determination of the number of clusters to be used
is not straightforward, although several criteria can facilitate the
choice, such as elbow, silhouette, gap statistics and other
heuristics (Carniel and Guzman, 2021). We used SOM
routines based on the SOMPY Python library (Moosavi et al.,
2014).

Each data stream collected by the Lipari array is
parametrized as a sequence of vectors describing consecutive
data segments of 1-min with 31 static features (10 statistical, 11
characterizing the waveform shape and 10 determining the
distribution of the cepstral energy) and another 31 dynamic
components (the time derivative of the static components).
Those feature vectors are then classified and clustered using
an unsupervized SOM. Results are shown in Figure 4 using 10
clusters. Time evolution shows coherent appearance and
disappearance of clusters indicated by the number on the
vertical axis. Cluster colors are only used to facilitate the
visualization of the cluster evolution in time. In the time

period of October 30–31, frames are mostly classified in
only a few clusters. This “anomalous” behavior does not
seem to be correlated with rainfall, temperature and wind
conditions which are also shown for comparison in Figure 4.
Differently from what was observed on the near Stromboli
island (Figure 1B for location) (Carniel and Tárraga, 2006),
there is no evident correlation of regime transitions (shown as
vertical lines in Figure 4) with the INGV earthquake catalog
(http://iside.rm.ingv.it/); this because no significant seismicity
was recorded in the time frame of the Lipari experiment (stars in
Figure 1B).

Seismicity Evolution From Supervised Recognition
Systems
As we mentioned above, to detect and classify discrete
seismic events of the different classes we use the
supervised Machine Learning approach. Volcano Seismic
Recognition (VSR) systems are generally trained on a
single station of a single volcano, decreasing their
efficiency when used to recognize events from another
station, in a different eruptive scenario or at different
volcanoes. However, in the case of Lipari a catalog of
previously manually labeled events is not available for
training. This is a common situation at many volcanoes
that are poorly monitored or lack recent volcanic activity.
Specifically for these cases, an innovative, multi-volcano
approach was developed by the recent EU funded
VULCAN.ears project (Cortés et al., 2021). A Volcano-
Independent VSR (VI.VSR) system was proposed, in
which universal recognition models are trained with data
of several volcanoes to become portable and robust. The
VI.VSR technology represents therefore a major

FIGURE 3 | Spectral parametrization of the dataset recorded from 19 October to 13 November 2018 at node 117, in terms of central frequency (top) and shape
factor (bottom).
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FIGURE 4 | 1-min long frames for stations 117 (top), 130 (middle) and 151 (bottom). Time evolution (horizontal axis) shows coherent appearance and
disappearance of clusters, indicated by the number on the vertical axis. Cluster colors are only used to facilitate following their time evolution. Note the “anomalous”
period of 30 October–1 November 2018, where frames are mostly classified in only a few clusters. Cluster numbers do not correlate with weather data as shown in the
top panels of each figure.
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breakthrough, as on one side the approach remains
conceptually supervised (as it requires labeled data in
order to build class models), but in practice it becomes
virtually unsupervized, because the models used are
already trained through labeled data recorded at other
volcanoes.

To study the evolution of the seismic activity, after a careful
inspection of the seismic signal at different stations, we run an
algorithm on the vertical components of the recordings to

automatically detect and classify (recognition stage) volcano-
seismic events at the following stations (Figure 1C for station
location): 117, the best station in terms of SNR after a visual
inspection, in the north-western sector of Lipari on tuffs; 151, in
the fumarole field; and 130, the southernmost and one of the most
noisy stations.

The VI.VSR approach aims to automatically search typical seismic
events in continuous data streams recorded at any volcano (Cortés
et al., 2021). The VI.VSR algorithm requires previously modeling of

FIGURE 5 | Seismic evolution for nodes 117 (top), 130 (middle), 151 (bottom) (see Figure 1 for locations). Plot of the type and duration of events (long periods –
LPs, tectonics – TECs and volcano-tectonic – VTs earthquakes) automatically recognized by the Volcano-Independent Seismic Recognition (VI.VSR) system. For
comparison the number and duration of the event triggers found by the classic STA/LTA algorithm are also shown. The VI.VSR classified and STA/LTA detected events
show a similar pattern in all stations.
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each different type of seismic events or classes prior to recognizing
them. To achieve the volcano-independent feature, robust state-of-
the-art Hidden Markov Models are built analyzing thousands of
manually classified events from different volcanoes, different
stations and different epochs (Cortés et al., 2009), resulting in
convenient volcano-independent model sets. To characterize the
seismicity of Lipari Island we need to select among the
available model sets those that most closely resemble the
expected type of seismicity found in the observed signals.
Our first trial uses two VI.VSR model sets: 1) the “closed-
vent” one, composed of data recorded at three well-studied
volcanoes, all with a closed-vent, specifically the Cotopaxi, in
the Andes in Ecuador, La Grande Soufrière, in the Guadeloupe
Island, and Deception Island, in Antarctica, and, 2) the VI.VSR
“Deception” models, with labeled data gathered at different
locations of Deception Island in the 1995, 1998 and 2009 field
campaigns (Carmona et al., 2014). If one event “X” is found to
belong to one class “C,” it means that, according to a given
VI.VSR model set, “X” will statistically belong to the class “C”
instead of the class “D” of the same set. This approach
recognizes lots of events even in noisy data with the same
probability of occurrence as those with clean and high SNR
events (Cortés et al., 2019). Nevertheless, in low SNR
conditions, the reliability of the detection and classification
tasks is much lower than in the case of high SNR data.

Once the VI.VSR has terminated, we manually inspect the
“anomalous” time windows where specific events have been
found. Results of this analysis are shown in Figure 5.
Different volcano-seismic classes have been automatically
detected. LPs are long-period events, which are very
commonly observed in active volcanoes, but are not easily
interpreted. These signals can be explained by different
proposed models that include oscillations of sub-horizontal
gas-filled cracks (Molina et al., 2004), stick–slip magma
motion (Iverson, 2008), fluid-driven flow (Julian, 1994) and
slow ruptures (Harrington and Brodsky, 2007; Bean et al.,
2014). TECs are signals assigned to purely tectonic events; and
VTs are related to volcano-tectonic models. Figure 5 suggests
that signals on days October 22, 26 and 30 and November 4–5 are
worth further investigating.

To explain the “anomalous” behavior of the seismic signals as
derived from a classical STA/LTA approach, from the SOM and
cluster analysis, we compare the sea level as measured nearby
Lipari, at the closest station ISTR (Figure 6) of Ginostra (about
40 km NE of Lipari), located in western Stromboli (Figure 1B for
locations). In Figure 6 it is straightforward to note a clear
correlation between the seismic signal and the pattern of
hydrometric level recorded at Ginostra. In particular, a
remarkable increase of the seismic noise is associated with
periods of larger oscillations of the sea level, as observed

FIGURE 6 | Plots of seismic signal at three different nodes (117, 138 and 130) and height of the sea wave at the tide gauge of Ginostra (ISTR) (https://www.
mareografico.it) for three-time intervals in 2018: (A) 20 to 26 October 2018; (B) 27 October to 2 November 2018; (C) 3 to 9 November 2018. Red stars indicate the daily
trigger counts recorded during each period. See text for details.
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FIGURE 7 | (A) Day-plots for 4 November 2018 are shown side by side for stations 117 and 138. The ML1.1 earthquake that occurred at 18:44 UTC southwest of
Lipari Island and ∼8 km away from Vulcano is also shown (more details in the text). (B) Record section of the ML1.1 event. Distance scale is exaggerated to improve the
visualization. (C)Ground velocities (top of each subplot) and spectrograms (bottom) of the 4 November 2018 event at 117 and 138. Spectrograms are computed using a
2 s window length for the fft with 80% overlap.
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FIGURE 8 | (A) Example of the detection algorithm applied to a 1-h record of the vertical component of selected stations. The stations are labeled in the upper left of
each panel. The similarity template plots are also shown. The orange and green vertical lines are the beginning and end, respectively, of the detection window, while the
blue horizontal line indicates the detection height. (B) Array analysis of the swarm recorded on 4 November 2018 in the time window 18:40–18:48 (top). Back-azimuth,
slowness, correlation coefficient and RMS of the data are shown. Larger circles show back-azimuth, slowness and RMS of the data relative to correlation
coefficients larger than 0.6.
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between October 22 and 23, and between October 29 and 31. This
correlation is poor at station 117 and remarkable at stations 138
and 130. Interestingly, for the duration of the experiment, the sea
wave height due to storms is likely causing the high noise
observed in the cluster analysis and in the evolution of the
seismic signal as well as in the day-plots shown in the
previous section (Figure 2). In addition, it is also worth
noting that node 130 is noisier than nodes 117 and 138
(which is located in the hydrothermal area). Furthermore, the
relatively low noise at station 117 seems to be of anthropic origin,
as it always recurs on a daily pattern.

Seismological Analysis
We focus on two kinds of signals that are clearly observed at most
stations and can help in understanding the dynamics of Lipari:
the volcano-tectonic (VT) events, which are a common feature in
volcanic and tectonically active areas, and the hybrid
monochromatic signals, which are usually seismic transients
produced by magmatic and/or hydrothermal fluids (Ohminato,
2006; Chouet and Matoza, 2013). A hybrid event is defined as a
signal with a clear onset typical of VT events and a harmonic coda
characteristic of LP signals, so a hybrid event is related to a shear-
failure triggering mechanism and to a resonance effect created by
a fluid-filled crack (Lahr et al., 1994).

In light of the results from previous analyses, we chose to
closely inspect the waveform data of 4 November, since the
INGV-OE bulletin (http://sismoweb.ct.ingv.it/maps/eq_maps/
sicily/catalogue.php) reported a ML1.1 earthquake at 18:44
UTC located offshore the western coasts of Lipari and
Vulcano (Figure 7A). A record section of the VT event at the
Lipari array is shown Figure 7B, where traces are normalized by
the global maximum. This small event was preceded and followed
by even smaller events as shown in Figure 7C along with the
spectrograms in 10 min long time windows, where most of the
seismic energy is above 4 Hz.

We apply a multi-station detection of swarm earthquakes with
multiple templates (Figure 8A) to possibly detect other VT
signals that occurred closely in time and space. The detector
algorithm cross-correlates the data stream with each of the
template streams. Defining the similarity as the mean of all
cross-correlation functions for each template, if the similarity
is above a certain threshold then a detection is triggered. The
procedure uses a SciPy function (Virtanen et al., 2020) whose
parameters are the cross-correlation threshold, which defines the
detection of a new event, and the distance between detections in
seconds. These two parameters are fixed to 0.4 and 10 s,
respectively. The detection is carried out on the vertical
component of the data, band-passed between 3 and 10 Hz for
stations located in the hydrothermal area and in western portion
of Lipari. In a first run, we use 1 h of data recorded on 4
November from 18:00 UTC when the ML1.1 occurred at 18:44
UTC offshore the western coast of Lipari-Vulcano. Then we also
select the event at 18:42:47 UTC since it shows 90% similarity for
all stations. Using these two events as templates, we are able to
detect the seismic swarm that occurred on 4 November and find
the hypocentral locations of those with a similarity above 90%.
The automatic detections of the swarm are listed in

Supplementary Table S1 (top). Then, we manually picked the
∼580 P and S arrivals at the Lipari array stations as well as at the
permanent stations of ILOS and IVPL to build a phase file that is
used as input for the Hypoinverse location algorithm (Klein,
2014), along with a 1D velocity model available for the Lipari-
Vulcano region (Ventura et al., 1999). Hypocentral locations are
shown in Figure 1B (white diamonds) and listed in
Supplementary Table S1 (bottom), where ML is estimated
using the Hutton and Boore (1987). The occurrence of the
seismic swarm on 4 November is also confirmed by the array
analysis discussed in the next paragraph.

On 26 October at 02:36 UTC the event shown in Figure 9 was
recorded at most stations located in a NNW-SSE aligned area in
western Lipari, on the oldest lithologies affected by active
hydrothermal processes. We classified this event as a hybrid
event because the P phase is clearly picked, whereas the S
arrivals cannot be detected. The dominant frequency is ∼5 Hz.
Applying the same location procedure used above, we located the
26 October event offshore node 114, ∼2 km west of the
hydrothermal field, at very shallow depth (<1 km), which may
explain the clear surface waves following the onset of the initial
waveform.

Array Analysis
We use seismic array techniques as a tool for detecting,
analyzing and locating the complexities of the seismic
wavefield in Lipari. The application of array processing
methods requires high signal coherence across the array,
because the inhomogeneous geology and topography of the
sites can produce significant differences in the observed
waveforms. The array resolution depends on its geometry,
in particular on its aperture. The larger the array aperture the
more coherent is the observed signal and the higher is the
slowness resolution.

Considering the different types of observed seismic signals
discussed above, we applied array analysis techniques in the time
(Zero Lag Cross Correlation, ZLCC) and frequency domain (high
resolution method, Capon, 1969). The analysis of array data in
the frequency domain is a useful tool to highlight coherent signals
of small amplitude in well-defined frequency bands originating
from one or more sources, which can be identified in terms of
slowness and back-azimuth of the propagation field (La Rocca
and Galluzzo, 2017). For the application of array techniques, a
subset of stations (SUBA) was selected in a restricted area close to
the degassing area. SUBA consists of stations 101, 102, 103, 138,
151 and 115.

Time Domain
As described earlier, a small swarm of VT events was identified
on November 4, 2018, for which the most energetic seismic
event (ML 1.1) was located about 4 km away from the SUBA
subarray (southwest direction) at a depth of about 5 km
(Supplementary Table S1, bottom). The multichannel
analysis technique was applied to 10-min long signals from
the events that were filtered in the 6–8 Hz band. Results in
Figure 8B show that the signal windows characterized by
higher correlation values (cross-correlation > 0.6, indicated
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by larger circles in the figure) identify back-azimuths in the
range [210°, 220°] and slowness of 0.2 s/km. Furthermore, in
correspondence of the more correlated signals, the RMS curve

(bottom in Figure 8B) shows some relative maxima in
amplitude and indicates the presence of transients with
amplitudes above the seismic noise.

FIGURE 9 |Ground velocity waveforms for the 26 October 2018 02:36 UTC event (top) and corresponding spectrograms (bottom) for stations 114, 123 and 138.
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Frequency Domain
The clustering analysis and the frequency content observed in the
day-plots highlight evident anomalies in specific time periods. In
particular, as previously noted, 30 October was one of the
anomalous days; therefore we investigated the possible
presence of coherent tremor in the seismic wavefield. To this
aim, a high-resolution array method was applied to the signals of
SUBA for the whole day of 30 October at the frequency of 8 Hz.
Results in Figure 10 show that where the coherence is larger than
0.6 (larger circles), the propagation vector (back-azimuth and
slowness distribution) is not well-defined and therefore the
presence of a coherent tremor wavefield generated in the
island cannot be proved for this particular day.

DISCUSSION AND CONCLUSION

We investigated the seismicity of Lipari Island by using different
techniques on a onemonth dataset recorded by a 48 node array (Di
Luccio et al., 2019). We located a seismic swarm that occurred on
November 4, 2018 off the western coast of Lipari (Figure 1C)
where the volcano-tectonic events define a NE-SW striking rupture
zone. According to the structural model of Lipari proposed by
Mazzuoli et al. (1995), faults with NE-SW strike represent second-
order shears moving in response to the strike-slip movements of
themain, NNW-SSE striking ATL shear zone. Swarms with similar
characteristics in the frequency and time domains to those detected
at Lipari have been observed in other volcanic and hydrothermal

FIGURE 10 | High resolution array analysis for 1-h signal at 02:00 UTC (top) and 22:00 UTC (bottom) for 30 October 2018 at the SUBA stations (101, 102, 103,
138, 151 and 115 in Figure 1C). Larger colored circles show back-azimuth, slowness and spectral amplitude values for coherence estimates larger than 0.6.
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areas, such as Nisyros, Greece (Caliro et al., 2005), where both VT
and long period events are related to fluid migration caused by the
reactivation of pre-existing fractures (Caliro et al., 2005). The
occurrence of swarms in other active volcanic and tectonic
areas has been related to hydrothermal alteration of rocks
weakened by water-rich CO2 solutions. In these weak
microfractured zones, swarms can occur by stress accumulation
or triggered by pore pressure changes (Heinicke et al., 2009).

The hybrid event that occurred in Lipari on October 26, 2018
has been located near node 114, close to the hydrothermal field
(Figure 1C), at very shallow depth (<1 km). This depth
corresponds to that of the magnetic bottom below Lipari, where
the 500°C isotherm is supposed to be located (De Ritis et al., 2013).
Therefore the source mechanism of the October 26, 2018 event
could be explained as due to a fluid-filled crack process in
agreement with observations in laboratory experiments (Julian,
1994; Fazio et al., 2017), which may account for the distinctive
surface waves packet following the onset of the initial waveform.
Seismic signals with similar characteristics in time and frequency
domains have been recorded in the hydrothermal areas of Vulcano
Island, south of Lipari and interpreted as due to fluid migration
processes (Alparone et al., 2010). Hybrid earthquakes have been
also detected close to the hydrothermal system of Deception Island,
related to the local response of the volcanic complex to regional
tectonics (Carmona et al., 2012). According to Harrington and
Brodsky (2007) shallow events like that of October 26, 2018 at
Lipari could be also due to shallow tectonic sources combined with
low rupture velocities, without excluding the possible involvement
of fluids. We conclude that the shallow Lipari earthquake is
associated with the dynamics of the local hydrothermal system
and, in particular, with fluid pressurization within pre-existing
cracks. Field evidence of such processes in the Lipari hydrothermal
area is provided by the occurrence of gypsum-filled cracks formed
by the pressurized injection of brine-type fluids along a N-S
striking fault zone (Cucci et al., 2017). The shallow depth of the
magnetic bottom (De Ritis et al., 2013), the equilibrium
temperature of hydrothermal fluids (170–180°C; Cioni et al.,
1988) and the active gas emissions from fumaroles suggest the
involvement of high temperature fluids.

The increase in seismic noise detected on October 22, 26 and 30
andNovember 4 and 5 during periods of sea wave heights indicates
that Lipari is subjected to shaking during storms. Generally, sea
cliffs are zones mainly exposed to the ground motion generated by
the direct sea wave impact and nearshore wave period (Adams
et al., 2005). During storm events, microcracking episodes can
generate microseismic ground displacements that reduce the rock
cohesion. This does not occur during periods of normal sea level
(Adams et al., 2005; Brain et al., 2014). Such weakening may act as
an additional driver to coastal erosion processes, favoring cliff
collapse as observed in Southern California (Young et al., 2016).
These phenomena are also common on Lipari andmostly affect the
eastern coast of the island (https://www.geologidisicilia.it/public/
bollettino/pdf/giugno-2016.pdf).

The main conclusions of this study are:

• Lipari is a dynamically active volcanic area as derived from
seismological analysis, implying the importance of the

systematic survey of the seismic activity and the
geochemical monitoring, which can provide useful
information for the overall comprehension of the seismic
signals. The day plots, cluster analysis and the time evolution
of the seismicity in one month of data show that sea wave
dynamics, in terms of wave height and frequency of
occurrence, causes an increase of the background seismic
noise due to the shaking of the island.

• Single frequency and volcano-tectonic events suggest the
occurrence of brittle deformation and fluid involvement in
the earthquake generation mechanism. Such activity could be
explained by the dynamics of the hydrothermal fluids within
the NNW-SSE to NE-SW striking deformation belt affecting
the western sector of the island. We have shown that seismic
swarms, which are common in volcanic and hydrothermal
areas, are also a typical feature of the Aeolian Islands. The
availability of a dense array allowed us to better constrain the
locations of the November 4, 2018 swarm that occurred on a
secondary fault of the main NNW-SSE shear zone in the
south-western offshore. Thus, we suggest that a dense seismic
network operating for a longer time window would give the
opportunity to study in detail the seismic wavefield, in terms of
its kinematics and dynamics, its correlation with the pre-
existing tectonic structures and the interaction with the
neighboring Vulcano Island.

Seismological and cluster analyses suggest the coeval action of
different processes such as hydrothermal fluidmigration, regional
tectonics, sea erosion and subsequent cliff instabilities in volcanic
islands. In the Southern Tyrrhenian Sea the detailed investigation
of seismic signals at the local scale allows us to infer interesting
features of the distribution and evolution of the seismicity in one
month of recordings. We propose that a monitoring system
combining geochemical campaigns, tide gauge and seismic
arrays like the one adopted here could contribute to better
evaluate the progressive weakening of the rocks and study the
steps needed to reduce the hazard related to rock instabilities in
coastal areas (Ramalho et al., 2013). In conclusion, integrating
measurements from both seismic and geochemical monitoring
systems at Lipari will allow for a full investigation of the dynamics
affecting the area with direct benefits for hazard evaluation.
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