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Deep Convolutional Neural Networks (DCNN) have the ability to learn complex features
and are thus widely used in the field of seismic signal denoising with low signal-to-noise
ratio (SNR). However, the current convolutional deep network used for seismic signal noise
reduction does not make full use of the feature information extracted from all convolution
layers in the network, and thus cannot fit the seismic signal with high SNR. To deal with this
problem, this paper proposes the DnRDB model, a convolutional deep network time-
frequency domain seismic signal denoising model combined with residual dense blocks
(RDB). The model is mainly composed of several RDB in series. The input of each
convolution layer in each RDB module is formed by the output of all the previous
convolution layers. Meanwhile, even if the number of layers is increased, the fusion of
the seismic signal features learned by the RDB modules can still achieve full extraction of
seismic signals. Furthermore, deepening the model structure by concatenating multiple
RDB modules enables further useful feature information to be extracted, which improves
the SNR of seismic signals. The DnRDB model was trained and tested using the Stanford
Global Seismic Dataset. The experimental results show that the DnRDB model can
effectively recover seismic signals and remove various forms of noise. Even in the case
of high noise, the denoised signal still has a high SNR. When the DnRDB model is
compared with other denoising approaches such as wavelet threshold, empirical mode
decomposition, and different deep learning methods, the results indicate that it performs
best overall in denoising the same segment of the noisy seismic signal; the denoised signal
also has less waveform distortion. Use of the DnRDB model in subsequent seismic signal
processing work indicates that it can help the phase recognition algorithm improve the
accuracy of seismic recognition through noise reduction.
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INTRODUCTION

In most cases, big earthquakes cause a large number of casualties
and extensive property loss. An early warning system can be an
effective measure to reduce disasters. Accurate seismic data can
help such systems obtain accurate arrival time, but their accuracy
is usually strongly affected by the impact of different kinds of
noise (Zhang et al., 2019). As a result, methods of seismic signal
denoising have been extensively studied by researchers at home
and abroad.

Traditional seismic signal denoising methods mainly include
Fourier transform (Ming-Yue, and Zhai, 2014; Zhang and Cai,
2014), wavelet transform (Cao and Chen, 2005; Gaci and Said,
2014; Mousavi et al., 2016), empirical mode decomposition
(EMD) (Huang et al., 1998; Bekara and Baan, 2011; Chen and
Ma, 2014; Han and Mirko, 2015) and so on. The Fourier
transform removes noise by transforming the signal from the
time to the frequency domain, analyzing the difference between
the frequency range of the noise and the clean seismic signal.
However, a Fourier transform cannot display time and frequency
information at the same time, it can obtain the global spectrum of
the signal instead of the local characteristic. This means the local
characteristics of nonstationary seismic signals cannot be
identified. Wavelet transform can reduce noise by virtue of
mapping a one-dimensional time domain signal to a two-
dimensional time-frequency domain so that it can also handle
nonstationary seismic signals, but this is highly threshold
dependent and the basis function needs to be selected
according to the actual signal. EMD uses the timescale
characteristics of the signal itself to decompose it without
using any basis function. It forms a part of the Hilbert Huang
transform proposed by Huang and others in 1998 (Huang et al.,
1998), and is also a self-adaptive signal analysis method. The
nonlinear, nonstationary signal is decomposed into a natural
mode function that satisfies the Hilbert transform, then the
natural mode function of noise is removed so as to obtain the
denoising signal. Although EMD can remove noise to a certain
extent, it also has some problems, such as mode aliasing and
difficulty in selecting an eigenfunction. The denoising results are
strongly affected by the manually selected eigenfunctions or
threshold parameters, which limit performance. This is
particularly true under the condition of low signal-to-noise
ratio (SNR). Despite these limitations, traditional denoising
methods have greatly improved the quality of seismic data.

Since AlexNet won the ILSVRC (ImageNet Large-Scale Visual
Recognition on Challenge) in 2012 (Krizhevsky et al., 2012), the
deep neural network method has been widely applied to image
recognition (Ronneberger et al., 2015; Zhang et al., 2020), image
denoising (Mao et al., 2016; Zhang et al., 2016), speech processing
(Huang et al., 2014; Weninger et al., 2014; Huang et al., 2015) and
other fields because of its strong feature learning and nonlinear
mapping abilities. It also has the advantages of requiring no
manual participation and having low computing costs. Therefore,
a large number of scholars have begun to try to apply deep neural
networks to seismic signal denoising (Jin et al., 2018; Yu et al.,
2018; Dong et al., 2020). In 2018, Yu et al. (2018) used a
multilayer convolutional neural network to perform the self-

adaptive denoising of seismic signals containing different kinds
of noise. The experimental results showed that the denoising
effect of this algorithm outperformed the traditional algorithm
while the denoising effect is limited by the number of layers in the
network. If there are fewer network layers, fewer signal features
can be learned, resulting in a low SNR. However, increasing the
number of network layers will lead to gradient disappearance and
other problems. In the same year, Jin et al. (2018) used a new
autoencoder based on a deep residual network to achieve the
random noise reduction of seismic signals. Their algorithm
combined a convolutional autoencoder with the residual
network to avoid the problem of gradient disappearance found
in the deep network. However, it is noticeable that a seismic signal
is a typical nonstationary signal, and its frequency distribution is
not fixed. When the frequency of the seismic signal is confused
with that of noise (i.e., they are the same), a general deep neural
network cannot completely separate signal from noise. This
means that the denoised signal actually contains more noise,
and the SNR remains low. In 2019, Zhu et al. (2019) studied a
seismic signal denoising method in a time-frequency domain
based on a U-Net called DeepDenoiser. According to the
characteristics of how the contraction path is used to improve
the sparseness of the input signal and the extended path is used to
extract the clean signal, some features of the contraction path can
be reused by means of the jump connection. As a result, it can
retain more features of the seismic signal and improve the
convergence speed of model training. In addition, even when
the signal and noise frequencies are confused, the latter can be
effectively suppressed. Nevertheless, the U-Net does not make full
use of the output characteristics of each convolutional layer in the
network, and thus cannot fully extract the features of the seismic
signal, resulting in an unsatisfactory improvement of the SNR of
the seismic signal.

In 2018, Zhang et al. (2018) proposed a residual dense block
(RDB) that can fully extract features from images. The RDB
module mainly contains a dense connection layer and feature
fusion with residual learning. The dense connection structure can
widen the network and strengthen the reuse of feature
information. Feature fusion with residual learning can
combine the extracted feature information of all convolutional
layers in the current module with the output information of the
previous module, and the fused feature map makes full use of the
feature information extracted from each convolutional layer in
the module. In 2019, Kim et al. (2019) used Grouped Residual
Dense Network (GRDN) for real image denoising. The
experimental results showed that the GRDN network
significantly improves the image denoising performance by
fully extracting image features with the RDB modules. In
2020, Li et al. (2020) used the RDB modules as the basic
module of a residual dense network for hyperspectral
reconstruction. Their experimental results proved that the
RDB modules improved accuracy. These studies indicate that
RDB modules are superior in terms of image feature extraction
and can improve the SNR of an image.

In summary, in order to improve the SNR of complex seismic
signals, this paper proposes a convolutional deep network time-
frequency domain seismic signal denoising model combined with
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a RDB (DnRDB). The model is mainly composed of multiple
RDBs connected in series. The RDBmodule is able to fully extract
the characteristics of the time-frequency domain seismic signals
through the fusion of a dense connection structure and features
with residual learning. Experiments with training and testing of
original data recorded by seismic stations emphasize that the
DnRDB model can effectively restore seismic signals and remove
various types of noise. Even in high-noise situations, the
denoising signal still has a high SNR. In comparison with
wavelet transform, EMD noise reduction, and other deep
learning algorithms, DnRDB has better denoising performance
and can improve the accuracy of a seismic phase recognition
algorithm accordingly.

DENOISING MODEL COMBINED WITH A
RESIDUAL DENSE BLOCKS DENOISING
MODEL
As time-frequency domain signals can simultaneously express
information about both the signal time and frequency domains,
converting nonstationary seismic signals from the time domain to
the time-frequency domain is more conducive to the model being
able to learn their features. This is why the DnRDB model
processes data in the time-frequency domain.

In the time-frequency domain, noisy seismic signals
containing various noises can be expressed as:

Y(t, f ) � X(t, f ) + N(t, f ) (1)

Here, Y(t, f ) represents the noise-containing seismic signal
recorded by seismic stations, X(t, f ) represents a clean seismic
signal, and N(t, f ) represents all kinds of noise contained in the
recorded data of seismic stations. The noisy seismic signal Y(t, f )
can be regarded as the superposition of the clean seismic signal
X(t, f ) and the noise N(t, f ). The purpose of noise reduction is to
remove various noises from seismic signals and clean them as
accurately as possible.

DnRDB is a supervised network which takes the seismic signal
containing noise in the time-frequency domain as input and the
time-frequency mask as the output target. The predicted time-
frequency mask, in the time-frequency domain, can effectively
retain seismic signal components and suppress noise
components, so as to achieve the purpose of noise reduction.
The work reported in this paper utilizes the amplitude-time-
frequency mask commonly used in speech noise reduction
(Huang et al., 2015), whose formula is as follows:

M(t, f ) �
∣∣∣∣X(t, f )∣∣∣∣∣∣∣∣X(t, f )∣∣∣∣ + ∣∣∣∣N(t, f )∣∣∣∣ (2)

The size of each mask is the same as the input of the time-
frequency domain seismic signal Y(t, f ), and the value is between
0–1, indicating the proportion of clean seismic signal within the
noisy seismic signal. A well-trained model can predict the time-
frequency mask M̂(t, f ) and the seismic signals in the time-
frequency domain after denoising can be calculated from the
seismic signals containing noise. The formula is as follows:

X̂ (t, f ) � M̂(t, f )Y(t, f ) (3)

The structure of the DnRDB is composed of input, middle, and
output layers. The specific model structure is shown in (Figure 1).

The input layer is composed of two convolutional layers, the
first of which is used to read the input time-frequency domain
noisy seismic signal Y(t, f ), and the second aims to further
extract the signal features as the input of the middle layer.
The feature map of each convolutional layer is set as 32, the
size of the convolution kernel as 3 × 3, and the convolution step
size as 1.

The middle layer is a series of multiple RDBs which mainly
adopt dense connection layers and the local feature fusion with
the local residual learning functions to fully extract the features of
the seismic signals. In each RDB module, the dense connection
layer connects all the other layers in a feed-forward manner. In
terms of each layer, the feature maps of all previous layers are
used as the input, and its own feature maps provide the input for
all subsequent layers (Huang et al., 2016). The dense connection
merges the information from all layers as much as possible to
form a continuous memory mechanism and distribute the
information that needs to be retained. In addition to making
up the convolutional layer and the activation function ReLU [max
(0,y)] (Nair and Hinton, 2010), Batch Normalization (BN) (Ioffe
and Szegedy, 2015) is added after the convolution layer to ensure
the input of each layer has a stable distribution. As a consequence,
the generalization ability and convergence speed of the denoising
network can be improved while the gradient dispersion is avoided
effectively. Feature fusion with residual learning performs the
merging between the output information of the previous RDB
module and the information from all the convolutional layers of
the current RDB module. The convolution layer whose kernel is
1 × 1 is used to sort the feature image information, and the
information after feature fusion is added to the output
information of the previous RDB module. This can improve
the information flow and allow a larger number of features, which
helps to improve model performance. The number of
convolutional layers of each RDB module in the middle layer
is 4, the number of feature maps of each convolutional layer is 32;
the size of the convolution kernel is set as 3 × 3, and the
convolution step size is set as 1.

The output layer is also composed of two convolutional layers.
The first is used to read the signal features output by themiddle layer,
and the last outputs the results predicted by the model. Using skip
connections between the input and output layers makes the model
output retain more effective seismic signal features and enhances the
transmission of gradient information. The feature map of the first
layer is set as 32, and the number of the featuremap of the last layer is
1; that is, the time-frequency mask of the predicted clean signal. The
size of the convolution kernel of the output layer is set as 3 × 3, and
the convolution step size as 1.

During training, the network obtains the predicted time-
frequency mask by learning the input time-frequency domain
seismic signals. It then uses Eq. (2) to calculate the time-
frequency mask as the final optimization target value of the
network (the network training label). The loss function is then
applied to measure the distance between the predicted and
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desired target values by repeatedly comparing the difference
between the two and constantly adjusting the hyperparameters
of the network to minimize this. The loss function used by
DnRDB is the mean square error loss. The specific formula is
as follows:

l � 1
2N

∑N
i�1

����M̂(t, f ) −M(t, f )����
2

F

(4)

In the formula, ‖·‖ represents the Frobenius norm, M(t, f ) is the
label for network training, and M̂(t, f ) is the output of the
DnRDB model; that is, the predicted time-frequency mask.

The denoising process of seismic signals by DnRDB model
completed by training is as follows. Firstly, the noisy seismic
signal in time domain is transformed into the time-frequency
domain. Secondly, the noisy seismic signals Y(t, f ) so converted
are input into the model. After the calculation of all layers of the
model, the predicted time-frequency mask M̂(t, f ) is output.
Then, according to Eq. 4, the noisy seismic signal Y (t,f) and
the output mask M̂(t, f ) are used to calculate the predicted
denoised time-frequency domain signal X̂(t, f ). Finally, an
inverse short-time Fourier transform is performed on X ̂(t,f)
to obtain the final denoised time-domain seismic signal.

EXPERIMENT AND ANALYSIS

Determination of the Number of Residual
Dense Blocks Modules
In the DnRDB model, the increase of the number of RDB
modules also increases the depth of the network, which

theoretically helps to improve performance. However, at the
same time, it also consumes a lot of video memory, resulting
in increased training time. We therefore need to comprehensively
consider the appropriate number of RDB modules required to
determine the training time and the mean square error loss. In
our experiment, a dataset containing 600 seismic waveforms was
applied to test these variables under the five conditions of 2, 4, 6,
8, and 10 RDB modules, respectively, so as to identify the optimal
number. The number of convolution layers of each RDB is 4, the
number of convolution layer feature maps is 32, the convolution
core size is set as 3 × 3, and the convolution step size is set as 1.
The experimental results are shown in (Figure 2). This presents
the mean square error loss of the different numbers of RDB
modules, all trained 100 epoch. As can be seen from the
experimental results, an increase in the number of RDB
modules results in a gradual decrease in the mean square
error loss after the completion of training. The number of
RDB modules is proportional to the training effect; however,
the network training time increases linearly with the increase in
RDB modules, and the epoch times are 3, 6, 9, 12, and 15 s
respectively. To sum up, the selection of 8 RDB modules is
appropriate under the conditions of considering the time cost
and ensuring the reduction of the mean square error loss.

Denoising Model Combined With a Residual
Dense Blocks Model Training and Test
Analysis
The sample data used in the experiment comes from the Stanford
Earthquake Dataset (STEAD) published by Stanford University,
which is the world’s first globally labeled dataset of high-quality

FIGURE 1 | The DnRDB model structure.
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seismic and nonseismic signals recorded by seismic instruments
(Mousavi et al., 2019). Network training and testing require noisy
seismic signals. In this paper, those are synthesized by combining
clean seismic signals with noise. However, clean seismic signals
cannot be obtained in seismic data acquisition, so 82,380 seismic
event signals with high SNR in STEAD were selected as the clean
sample in this dataset. A total of 199,760 nonseismic signals in
STEAD were selected as noise samples and randomly combined
with the clean signal samples to obtain a large sample set of noisy
seismic signals. Firstly, each clean seismic signal sample was
randomly shifted. Secondly, a noise sample was randomly
selected and its amplitude scaled at random, superimposing it
on the clean seismic signal sample to generate noisy seismic
signals with different SNR levels. Finally, in order to achieve the
purpose of accelerating the convergence speed during network
training, the noisy signals were normalized by subtracting the
mean value and dividing by the standard deviation. All the signals
in the dataset were uniformly cut to a length of 30 s (longer signals
were cut from the tail) because in the selected set of high-SNR
signals, the first 30 s basically includes the main waveform of the
event. As all training and testing of the algorithm in this paper
was performed in the two-dimensional time-frequency domain, it
was necessary to convert the one-dimensional time-domain
seismic signal. The short-time Fourier transform method was
adopted for conversion, and the basic formula is as follows:

STFTx(t, f ) � ∑L−1
n�0

x(n)m(n − t)e−j2πfn (5)

Here, x(n) represents the original signal at time n, m(n)
represents the sliding window function of the original signal at
time n, and L represents the length of the window function. t
represents the time in the time-frequency domain, f represents
the frequency in the time-frequency domain. After conversion,

the two-dimensional time-frequency domain matrix of the
seismic signal obtained is 31 × 201. The pipeline from raw
data to the input of the network is shown in Figure 3.

The dataset was randomly divided into training, validation,
and testing set in a ratio of 80, 10 and 10%. The training set was
used to train the model, the validation set is only used for tuning
the hyper-parameters of the network and the test set to evaluate
the noise reduction effect.

During the training, the noisy seismic signal transformed from
the training set to the time-frequency domain is used as the input
of the network, and the time-frequency mask calculated by Eq. 2
is used as the label. In the experiment, TensorFlow was used to
build the model, and the training set was adopted to train on the
Graphics Processing Unit. It is necessary to set the initial learning
rate for training as 0.001, use the Adam optimization algorithm to
optimize the learning objectives, set the epoch as 100 times, and
set the batch size as 16. After approximately 37 h of training, a
trained model was obtained. Figure 4 shows the loss reduction
curve of the training set and the validation set. In the figure, the
model training loss and the validation loss still keep decreasing at
100 epoch, indicating that the model has not been overfitted.

In this paper, two indicators, SNR and the correlation
coefficient (r(X,Y)), are used to quantitatively evaluate the
effect of noise reduction. The formulae for each are as follows:

SNR � 10 log10(σs

σn
) (6)

r(X,Y) � Cov(X,Y)













Var[X]Var[Y]√ (7)

In Eq. 6, σs represents the energy of the clean signal, and σn
represents the energy of the noise. In Eq. 7, X is the signal before,
and Y the signal after, noise reduction; Cov(X,Y) is the
covariance of the signal before and after noise reduction; and

FIGURE 2 | The mean square error loss curves.
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Var[X] is the variance of the signal before, and Var[Y] the
variance of the signal after, noise reduction.

SNR indicates the ratio of signal to noise in the noisy signal.
The larger the SNR, the lower the noise content. The correlation
coefficient represents the degree of correlation between the
denoised and original signals. The correlation coefficient lies
between 0 and 1. The closer it is to 1, the more similar the

signal is to the original waveform, and the better the denoising
effect.

In order to verify the denoising effect of the model, the test set
constructed as above was used to test the trained model. The
results showing the improvement in the SNR and correlation
coefficient of the test dataset are shown in (Figure 5). The orange
bars represent the test dataset before noise reduction, and the blue

FIGURE 3 | The pipeline from raw data to the input of the network.

FIGURE 4 | Training loss and validation loss declining curve.
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bars after noise reduction. In Figure 5A, the SNR of the test
dataset is mainly distributed between 0 and 10 dB before noise
reduction, with an average SNR of 4.13 dB. After noise reduction,
the SNR is mainly distributed between 2 and 24 dB, with an
average value of 10.89 dB. This indicates the model can effectively
improve the SNR of the test dataset. Turning to Figure 5B, the
correlation coefficient of the test dataset is mainly between 0.7
and 0.95 before noise reduction, with an average of 0.83, and the
number of noisy seismic signals is evenly distributed across each
interval. After noise reduction, the correlation coefficient is
mainly between 0.8 and 0.99 and the number of seismic
signals in each interval trends gradually upwards with the
increase of the coefficient value, with an average of 0.95. These
figures illustrate that the model effectively enables the seismic
signal to retain the shape of the signal waveform after noise
reduction.

Performance Comparison of Two Network
Architectures
In order to verify that the RDB module helps to improve the
noise reduction performance of the network, we train and test
the DnCNN network and DnRDB network. Compared with
the DnCNN network, the DnRDB network improves the
structure of the network by using the RDB module. We use
five-fold cross-validation to test the model to ensure the
stability of the model. We randomly divide the data set into
five subsets of the same size, select one subset as the test set
without repeating each time, and use the remaining four
subsets as the training set. A total of five different sets of
training sets and test sets are generated. For five experiments,
we take the average value of the SNR and correlation
coefficient of the five test results as the indicator of the
evaluation model. The average of the five test results is
shown in Table 1. It can be seen from the data in the
Table 1 that compared with the DnCNN model, DnRDB
can obtain a higher average SNR and a higher average
correlation coefficient on the test set, which can prove that
the noise reduction performance of the network is improved by

using the RDB module. Figure 6 shows the denoising results of
DnCNN and DnRDB on the same signal. From the comparison
of C and D in Figure 6, it can be seen that the denoising signal
of the network model in this paper is closer to the original
signal in amplitude.

Noise Reduction Analysis of Different Kinds
of Noise
In the process of seismic monitoring, the performance of the
network is tested using some of the different kinds of noise.
(Figure 7) depicts narrow-band noise, which has a strong
frequency in a narrow range and always carries an
accompanying signal. The DnRDB can identify and remove
the noise for a variety of frequency bands. (Figure 8) shows
low-frequency noise, the presence of which can result in strong
fluctuations in seismic signals. It can be seen that the fluctuations
it causes can be effectively suppressed by the DnRDB model.
(Figure 9) illustrates high-frequency noise, which has a high
main frequency band and a high amplitude. High-amplitude
noise has a negative influence on the accuracy of event
detection, but the DnRDB model can remove it effectively.
Broadband noise, as shown in (Figure 10), has a wide
frequency range, covering all the frequency ranges of seismic
signals and also including nonseismic signals. The DnRDBmodel
can accurately identify the former and remove the latter.
(Figure 11) denotes spike pulse noise, the presence of which
in seismic signals influences the extraction of the seismic phase
and arrival time. Again, the DnRDB can remove spike pulse noise
accurately. The noise in (Figure 12) has no fixed frequency band
and no constant amplitude. The DnRDB model can recognize
such complex noise and remove it from noisy seismic signals. It

FIGURE 5 | Histogram of the SNR and correlation coefficient for the test dataset: (A) SNR improvement histogram; (B) correlation coefficient improvement
histogram.

TABLE 1 | Five-fold cross-validation average results of the two networks.

Model SNR (dB) r

DnCNN 7.87 0.8412
DnRDB 10.55 0.9335
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can therefore be seen from these figures that the DnRDB model
can deal effectively with all kinds of noise. For a single type of
noise, it can generally increase the SNR by more than 10 dB, with
the correlation coefficient increasing to more than 0.95. This
indicates that the DnRDB model is able to remove various forms
of noise and improve the SNR of seismic signals while retaining
the waveform shape of the signal. Not only can it remove a single
type of noise, but it can also remove multiple types
simultaneously. As shown in (Figure 11), when the signal

contains both spike pulse and low-frequency noise, the model
can remove both.

Comparison With Other Methods
In order to further evaluate the denoising performance of the
DnRDB model, we compared it with the other three denoising
methods; wavelet threshold, EMD, and the DeepDenoiser
model. The SNR and correlation coefficient were again
adopted as evaluation indicators. We used the same test

FIGURE 6 |Comparison of denoising results of DnCNN and DnRDB on the same signal. (A) is original signal;(B) is noisy signal;(C) is DnCNN denoising result;(D) is
DnRDB denoising result.

FIGURE 7 | Narrow-band noise reduction performance. (A,C,E) are the original signals, the noise signal, and the signal after noise reduction in the time domain;
(B,D,F) are the time-frequency domain data of (A,C,E); the signal SNR after adding noise � 0.50 dB, r � 0.7087, SNR after noise reduction � 16.54 dB, r � 0.9899.
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dataset, the criteria for selection being seismic signals with
high SNR and random noise with a wide bandwidth. The
selected data length was 3,000 sampling points. The selected
seismic signals and noise waveforms are shown in (Figure 13).
The noise and seismic signals were synthesized into noise-
enhanced seismic signals with SNR of −6, −4, −2, 0, 2, 4, 6, 8,
and 10 dB. The results of using the different denoising
algorithms are shown in (Table 2).

In terms of (Table 2), compared with the wavelet threshold
and EMD methods, the DnRDB model produces relatively
higher SNR and correlation coefficients under different noise
levels. In comparison with DeepDenoiser, both have a good
denoising effect. Although there is a small gap in the SNR

improvement achieved by the DnRDB model when the SNR
of the noisy signal is higher than 4 dB, it is able to obtain a
higher SNR; the average SNR of the output is also relatively
high when the SNR of the noisy signal is low. For different
noise levels, the correlation coefficient of the DnRDB model
is higher than that of DeepDenoiser, indicating that it not
only achieves a higher level of noise reduction, but also
results in less waveform distortion. In summary, compared
with the other three methods, the SNR and correlation
coefficient of the DnRDB denoising results indicate a
significant overall improvement and a higher denoising
ability. This shows that the DnRDB model can improve
the level of seismic signal denoising by fully extracting the

FIGURE 8 | Low-frequency noise reduction performance. (A,C,E) are the original signals, the noise signal, and the signal after noise reduction in the time domain;
(B,D,F) are the time-frequency domain data of (A,C,E); the signal SNR after adding noise � 0.21 dB, r � 0.7011, SNR after noise reduction � 12.84 dB, r � 0.9778.

FIGURE 9 | High-frequency noise reduction performance. (A,C,E) are the original signals, the noise signal, and the signal after noise reduction in the time domain;
(B,D,F) are the time-frequency domain data of (A,C,E); the signal SNR after adding noise � −0.11 dB, r � 0.6961, SNR after noise reduction � 15.22 dB, r � 0.9861.
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features of seismic signals using the RDB module. Relative to
the average SNR, the DnRDB model improves SNR by 3.22,
2.93, and 0.12 dB compared with the wavelet threshold, EMD,
and DeepDenoiser methods, respectively. The average
correlation coefficients increase respectively by 0.1049,
0.0832, and 0.0093.

(Figure 14) shows the waveform after noise reduction using
various methods when the SNR of the noise-added signal is 4 dB.
As can be seen, the denoising results of the wavelet threshold and
EMD are relatively poor. While DeepDenoiser has a better effect,
some noise has not been removed before the signal P arrives at the
time point. The denoised signal of the DnRDBmodel contains the
least noise residue of all the tested models, especially before the

signal P arrival, which is helpful for the detection of subsequent
seismic events and phases.

APPLICATION OF SEISMIC SIGNAL
DENOISING—SEISMIC PHASE
IDENTIFICATION OF WENCHUAN
AFTERSHOCKS

The presence of a large amount of noise in a seismic signal can
have an influence on the detection algorithm. This is commonly
applied to the acquisition of seismic phases and reduces the

FIGURE 10 | Broadband noise reduction performance. (A,C,E) are the original signals, the noise signal, and the signal after noise reduction in the time domain;
(B,D,F) are the time-frequency domain data of (A,C,E); the signal SNR after adding noise � −0.52 dB, r � 0.6902, SNR after noise reduction � 9.78 dB, r � 0.9595.

FIGURE 11 | Spike noise reduction performance. (A,C,E) are the original signals, the noise signal, and the signal after noise reduction in the time domain; (B,D,F)
are the time-frequency domain data of (A,C,E); the signal SNR after adding noise � 0.01 dB, r � 0.7013, SNR after noise reduction � 10.02 dB, r � 0.9578.
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FIGURE 12 | Other types of noise reduction performance. (A,C,E) are the original signals, the noise signal, and the signal after noise reduction in the time domain;
(B,D,F) are the time-frequency domain data of (A,C,E); the signal SNR after adding noise � 0.34 dB, r � 0.7125, SNR after noise reduction � 13.07 dB, r � 0.9822.

FIGURE 13 | High SNR seismic signal and noise signal waveform; (A) seismic signal; (B) noise waveform.

TABLE 2 | Comparison of the denoising effects of different algorithms for different SNR.

Algorithm Wavelet EMD DeepDenoiser DnRDB

SNR SNR r SNR r SNR r SNR r

−6 0.36 0.5488 −0.14 0.5907 3.55 0.7751 4.59 0.8078
−4 1.73 0.6533 1.74 0.6950 4.96 0.8344 5.75 0.8582
−2 3.02 0.7416 3.48 0.7822 6.53 0.8833 6.82 0.8952
0 4.24 0.8014 5.01 0.8385 8.02 0.9188 8.09 0.9229
2 5.79 0.8631 6.63 0.8874 9.39 0.9429 9.45 0.9451
4 7.23 0.9025 8.21 0.9215 10.66 0.9590 10.65 0.9606
6 8.95 0.9374 9.43 0.9412 12.07 0.9712 11.56 0.9715
8 10.57 0.9555 10.58 0.9554 13.27 0.9728 12.92 0.9796
10 12.17 0.9795 11.72 0.9665 14.52 0.9856 14.23 0.9858
Average 6.01 0.8203 6.30 0.8420 9.22 0.9159 9.34 0.9252
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accuracy and recall rate of the recognition process. Accuracy
indicates that the seismic phase picked up by the algorithm is
within the error range and consistent with the reference phase.
The recall rate illustrates the completeness of the time selected
compared with a reference. For instance, the performance of the
short-/long-term average (STA/LTA) seismic phase identification
algorithm is easily affected by noise. (Figure 15) shows the
recognition effect of the STA/LTA seismic phase before and
after denoising using the DnRDB model. Figures 15A,B shows

the waveforms of the seismic signals before and after noise
reduction, Figure 15C the STA/LTA eigenfunction values of
the original signal, and Figure 15D the STA/LTA
eigenfunction values of the denoised signal. By comparing the
eigenfunction values before and after noise reduction, it can be
seen that these are more prominent and easier to identify for the
denoised signal of both P and S to time point. Therefore,
denoising seismic signals helps to improve the seismic phase
identification ability of the algorithm. In order to test the practical

FIGURE 14 | Waveform comparison of the noise reduction results of various methods for SNR of 4dB. (A) Original data; (B) Noisy data; (C) Wavelet denoising
result; (D) EMD denoising result; (E) DeepDenoiser denoising result; (F) Denoising result of the DnRDB model reported here.

FIGURE 15 |Comparison of the seismic phase recognition effect before and after denoising; (A) seismic signal before noise reduction; (B) signal after DnRDB noise
reduction; (C) the eigenfunction of the STA/LTA before noise reduction; (D) the eigenfunction of the STA/LTA after noise reduction.
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impact of the DnRDBmodel for noise reduction, it was applied to
the Wenchuan earthquake aftershock dataset from May to
September 2008.

Data Sharing Infrastructure of National Earthquake Data Center
(http://data.earthquake.cn). This dataset consists of a total of 2026
seismic phase data from 76 stations, including seismic events and
related seismic phase data. The signal in the dataset was resampled to
100 Hz, and the length of the intercepted waveform set at 30 s. The
SNR level of the dataset before noise reduction was between 2 and
5 dB, and that after noise reduction by the DnRDB was between 7
and 11 dB. (Table 3) shows the recognition accuracy rates of Pg and
Sg after noise reduction were 70 and 77%, and the recall rates 79 and
84% respectively, representing a significant improvement through
noise reduction. Therefore, the DnRDBmodel can help improve the
performance of the seismic phase recognition algorithm in practical
applications.

CONCLUSION

In this paper, we have described the use of a convolutional deep
network seismic signal denoising (DnRDB) model based on RDB
to remove noise from the seismic waveform by using the noisy
data to learn the complex features of seismic signals. The network
utilizes the RDB module as the basic component, which can fully
extract the characteristics of seismic signals and improve their
SNR. The results of testing the model on noisy seismic waveform
data illustrates that this method has good denoising ability for
various types of seismic noise. Compared with traditional
denoising methods and other deep learning methods, the
DnRDB model can achieve higher average SNR and
correlation coefficient. When the model is applied in practice
to seismic data, it can lead to improved seismic phase recognition
ability through noise reduction.

Although this method achieved a good level of noise
reduction, some shortcomings still deserve attention. Firstly,
due to resource constraints, the number of convolution layer
feature maps and RDB modules used in the DnRDB model
reported here is relatively small. Increasing the number of
layers and the size of the model could improve its
performance to a certain extent. Secondly, this was a
supervised model and so strongly reliant on clean seismic
data; however, clean seismic waveforms cannot be obtained,
which limits the denoising ability of the neural network.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

ZG analyzes data and proposes methods; SZ perfects the model
and writes manuscripts; JC proposes and participates in design
research and reviews papers; LH improves and perfects papers; JZ
participates in model experiment. All the authors approved the
final version of the manuscript.

FUNDING

This work was supported by Scientific Research Project Item of
Hebei Province Education Department (Grant No. QN2018317),
The National Key Research and Development Program of China
(Grant No. 2018YFC1503801), and the Special Fund of
Fundamental Scientific Research Business Expense for Higher
School of Central Government (Grant No. ZY20180111).

ACKNOWLEDGMENTS

Acknowledgement for the data support from “China Earthquake
Networks Center, National Earthquake Data Center. (http://data.
earthquake.cn).

REFERENCES

Bekara, M., and Baan, M. (2011). Random and Coherent Noise Attenuation by
Empirical Mode Decomposition. Geophysics 74 (5), V89–V98. doi:10.1190/
1.3157244

Cao, S., and Chen, X. (2005). The Second-Generation Wavelet Transform and its
Application in Denoising of Seismic Data. Appl. Geophys. 2 (2), 70–74.
doi:10.1007/s11770-005-0034-4

Chen, Y., and Ma, J. (2014). Random Noise Attenuation by F-X Empirical-Mode
Decomposition Predictive Filtering. Geophysics 79 (3), V81–V91. doi:10.1190/
geo2013-0080.1

Dong, X., Zhong, T., and Li, Y. (2020). A deep-learning-based denoising method
for multiarea surface seismic data. IEEE Geoscience and Remote Sensing Letters,
(99), 1–5. doi:10.1109/LGRS.2020.2989450

Gaci, S. (2014). The Use of Wavelet-Based Denoising Techniques to Enhance the
First-Arrival Picking on Seismic Traces. IEEE Trans. Geosci. Remote Sensing 52
(8), 4558–4563. doi:10.1109/tgrs.2013.2282422

Han, J., and van der Baan, M. (2015). Microseismic and Seismic Denoising via
Ensemble Empirical Mode Decomposition and Adaptive Thresholding.
Geophysics 80 (6), KS69–KS80. doi:10.1190/geo2014-0423.1

Huang, G., Liu, Z., Laurens, V., and Weinberger, K. Q. (2016). 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
Honolulu, HI, 2261–2269. doi:10.1109/CVPR.2017.243

TABLE 3 | Comparison of the seismic phase acquisition results of the original and
denoised signals by STA/LTA.

STA/LTA Correct rate Recall ratio

Pg (%) Sg (%) Pg (%) Sg (%)

Original signal 52 68 36 42
Denoised signal 70 77 79 84

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 68186913

Gao et al. Seismic Signal Denoising

http://data.earthquake.cn
http://data.earthquake.cn/
http://data.earthquake.cn/
https://doi.org/10.1190/1.3157244
https://doi.org/10.1190/1.3157244
https://doi.org/10.1007/s11770-005-0034-4
https://doi.org/10.1190/geo2013-0080.1
https://doi.org/10.1190/geo2013-0080.1
https://doi.org/10.1109/LGRS.2020.2989450
https://doi.org/10.1109/tgrs.2013.2282422
https://doi.org/10.1190/geo2014-0423.1
https://doi.org/10.1109/CVPR.2017.243
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998).
The Empirical Mode Decomposition and the hilbert Spectrum for Nonlinear
and Non-stationary Time Series Analysis. Proc. R. Soc. Lond. A. 454 (1971),
903–995. doi:10.1098/rspa.1998.0193

Huang, P. S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2014). “Deep
Learning for Monaural Speech Separation,” in IEEE International Conference
on Acoustics, Florence, Italy, 4-9 May 2014 (IEEE). doi:10.1109/
icassp.2014.6853860

Huang, P. S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2015). Joint
Optimization of Masks and Deep Recurrent Neural Networks for Monaural
Source Separation. IEEE/ACM Trans. Audio Speech Lang. Process. 23 (12),
2136–2147.

Ioffe, S., and Szegedy, C. (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in The 32nd
International Conference on Machine Learning (ICML 2015), July 6–11,
2015, Lille, France, 448–456.

Jin, Yuchen., Wu, Xuqing., Chen, Jiefu., Han, Zhu., and Hu, Wenyi. (2018). “Seismic
Data Denoising by Deep-Residual Networks,” in 2018 SEG International Exposition
and Annual Meeting, 14-19 October 2018, Anaheim, CA. doi:10.1190/segam2018-
2998619.1

Kim, D. W., Ryun Chung, J., and Jung, S. W. (2019). “GRDN: Grouped Residual
Dense Network for Real Image Denoising and gan-based Real-World Noise
Modeling,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 15-20 June 2019, Long Beach, CA, 0.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. NIPS, 25, December 3-8, Harrahs and
Harveys, Lake Taho. Curran Associates Inc.

Li, S., Zhao, M., Fang, Z., Zhang, Y., and Li, H. (2020). Image Super-resolution
Using Lightweight Multiscale Residual Dense Network. Int. J. Opt. 2020, 1–11.
doi:10.1155/2020/2852865

Mao, X. J., Shen, C., and Yang, Y. B. (2016). Image Restoration Using
Convolutional Auto-Encoders with Symmetric Skip Connections. arXiv
preprint arXiv:1606.08921.

Ming-Yueand Zhai (2014). Seismic Data Denoising Based on the Fractional Fourier
Transformation. J. Appl. Geophys. 109, 62–70. doi:10.1016/j.jappgeo.2014.07.012

Mousavi, S. M., Langston, C. A., and Horton, S. P. (2016). Automatic Microseismic
Denoising and Onset Detection Using the Synchrosqueezed Continuous Wavelet
Transform. Geophysics 81 (4), V341–V355. doi:10.1190/geo2015-0598.1

Mousavi, S. M., Sheng, Y., Zhu,W., and Beroza, G. C. (2019). STanford EArthquake
Dataset (STEAD): A Global Data Set of Seismic Signals for AI, 99. IEEE
Access, 1.

Nair, Vinod., and Hinton, Geoffrey. E. (2010). “Rectified Linear Units Improve
Restricted Boltzmann Machines.” In The 27th International Conference on
Machine Learning (ICML 2010), June 21-24, 2010, Haifa, Israel, 807–814.

Ronneberger, O., Fischer, P., and Brox, T. (2015).U-net: Convolutional Networks
for Biomedical Image Segmentation. International Conference on Medical
Image Computing and Computer-Assisted Intervention, October 5-9, 2015,
Munich, Germany. Cham: Springer.

Weninger, F., Eyben, F., and Schuller, B. (2014). Single-channel Speech Separation
with Memory-Enhanced Recurrent Neural Networks. Florence, Italy: IEEE.
doi:10.1109/icassp.2014.6854294

Yu, S., Ma, J., and Wang, W. (2018). Deep Learning Tutorial for Denoising.
Geophysics 84 (6), V333–V350. doi:10.1190/igc2018-113

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Lei, Z. (2016). Beyond a Gaussian
Denoiser: Residual Learning of Deep Cnn for Image Denoising. IEEE Trans.
Image Process. 26 (7), 3142–3155. doi:10.1109/TIP.2017.2662206

Zhang, Y., Lin, H., Li, Y., and Ma, H. (2019). A Patch Based Denoising Method
Using Deep Convolutional Neural Network for Seismic Image, 7. IEEE Access,
156883–156894. doi:10.1109/access.2019.2949774

Zhang, Y, Tian, Y, Kong, Y, Zhong, B, and Fu, Y. (2021). Residual Dense Network for
Image Restoration. IEEE Trans Pattern Anal. Mach Intell. 2020 Jul; 43 (7):
2480–2495. doi:10.1109/TPAMI.2020.2968521

Zhang, Y., Tian, Y., Kong, Y., Zhong, B., and Fu, Y. (2018). Residual Dense Network
for Image Super-resolution 43. Salt Lake City, UT: IEEE. doi:10.1109/
cvpr.2018.00262

Zhang, Zongbao., and Cai, L. I. U. (2014). Application of Fractional Fourier
Transform in Seismic Data Denoising. Glob. Geology. 17 (2), 110–114.

Zhu, W., Mousavi, S. M., and Beroza, G. C. (2019). Seismic Signal Denoising and
Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote
Sensing 57 (11), 9476–9488. doi:10.1109/TGRS.2019.2926772

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Gao, Zhang, Cai, Hong and Zheng. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 68186914

Gao et al. Seismic Signal Denoising

https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/icassp.2014.6853860
https://doi.org/10.1109/icassp.2014.6853860
https://doi.org/10.1190/segam2018-2998619.1
https://doi.org/10.1190/segam2018-2998619.1
https://doi.org/10.1155/2020/2852865
https://doi.org/10.1016/j.jappgeo.2014.07.012
https://doi.org/10.1190/geo2015-0598.1
https://doi.org/10.1109/icassp.2014.6854294
https://doi.org/10.1190/igc2018-113
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/access.2019.2949774
https://doi.org/10.1109/TPAMI.2020.2968521
https://doi.org/10.1109/cvpr.2018.00262
https://doi.org/10.1109/cvpr.2018.00262
https://doi.org/10.1109/TGRS.2019.2926772
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Research on Deep Convolutional Neural Network Time-Frequency Domain Seismic Signal Denoising Combined With Residual Dense B ...
	Introduction
	Denoising Model Combined With a Residual Dense Blocks Denoising Model
	Experiment and Analysis
	Determination of the Number of Residual Dense Blocks Modules
	Denoising Model Combined With a Residual Dense Blocks Model Training and Test Analysis
	Performance Comparison of Two Network Architectures
	Noise Reduction Analysis of Different Kinds of Noise
	Comparison With Other Methods

	Application of Seismic Signal Denoising—Seismic Phase Identification of Wenchuan Aftershocks
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


