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Several earthquake early warning (EEW) algorithms have been developed worldwide for
rapidly estimating real-time information (i.e., location, magnitude, ground shaking, and/or
potential consequences) about ongoing seismic events. This study quantitatively
compares the operational performance of two popular regional EEW algorithms for
European conditions of seismicity and network configurations. We specifically test
PRobabilistic and Evolutionary early warning SysTem (PRESTo) and the
implementation of the Virtual Seismologist magnitude component within SeisComP,
VS(SC), which we use jointly with the SeisComP scanloc module for locating events.
We first evaluate the timeliness and accuracy of the location and magnitude estimates
computed by both algorithms in real-time simulation mode, accounting for the continuous
streaming of data and effective processing times. Then, we focus on the alert-triggering
(decision-making) phase of EEW and investigate both algorithms’ ability to yield accurate
ground-motion predictions at the various temporal instances that provide a range of
warning times at target sites. We find that the two algorithms show comparable
performances in terms of source parameters. In addition, PRESTo produces better
rapid estimates of ground motion (i.e., those that facilitate the largest lead times);
therefore, we conclude that PRESTo may have a greater risk-mitigation potential than
VS(SC) in general. However, VS(SC) is the optimal choice of EEW algorithm if shorter
warning times are permissible. The findings of this study can be used to inform current and
future implementations of EEW systems in Europe.

Keywords: earthquake early warning, PRESTo, Virtual Seismologist, SeisComp, scanloc, warning time, timeliness,
accuracy

INTRODUCTION

The goal of an earthquake early warning (EEW) system is to deliver a rapid alert about impending
strong shaking that provides sufficient time for protective, loss-mitigating actions to be taken by
targeted end users. The process of EEW generally consists of the following steps: 1) detection of an
event in the early stages of fault rupture; 2) prompt prediction of the relevant source parameters (e.g.,
location and magnitude) and/or the intensity of the consequent ground motion; and 3) warning
issuance to end users before they experience the strong shaking that might cause damage and losses.

EEW systems may be broadly classified as “regional,” “on-site,” or “hybrid.”We specifically focus
on regional systems, which are based on a dense sensor network covering a geographical area of high
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seismicity. When an earthquake occurs, these systems typically
estimate source parameters from the early portion of signals
recorded at sensors close to the rupture. Location (and resulting
source-to-site distance, R) is generally computed by accounting
for geometrical constraints associated with both triggered and
not-yet-triggered stations; earthquake magnitude (M) is typically
calculated based on empirical relationships relating the
earthquake size to parameters obtained in the first 3–4 s of P-
and (sometimes) S-wave signals. Figure 1 illustrates the
principles of a conventional regional EEW system. For a more
detailed review of various approaches to estimate location and
magnitude in regional EEW systems, interested readers are
referred to Cremen and Galasso (2020).

R and M estimates can be continuously updated (through
Bayesian approaches or otherwise) by adding new station data as
the P-wave front propagates through the regional EEW network.
The real-time values are then used to predict, with quantified
uncertainty, ground-motion intensity measures (IMs) at sites far
away from the source (where target structures/infrastructure of
interest and end users are located), by using, for example, ground-
motion models (GMMs). If probabilistic distributions of M and R
are available, the prediction of different IMs (e.g., Iervolino et al.,
2006; Convertito et al., 2008) may be performed by analogy to the
well-known Probabilistic Seismic Hazard Analysis (PSHA)
framework but in real-time, as discussed in detail in Iervolino
et al. (2009). Regional EEW systems typically require the arrival of
P-wave signals at a number of stations to provide stable early
estimates of R, M, and IM. Thus, event detection is a fundamental
task for EEW. Erroneously detected or inaccurate phases, along
with poor event associations, lead to inaccurate location and
magnitude estimates and, ultimately, possible false or missed
alerts. It is worth noting that most regional EEW algorithms

assume a point-source model of the earthquake source and
isotropic wave amplitude attenuation, which neglects the finite
geometry of earthquake ruptures. These assumptions are
generally suitable for estimating the final magnitude of events
with M 6.5 7.0 (Meier et al., 2020), which are consistent with the
largest seismicity that is typically observed in Europe (i.e.,the
focus of our study) and the range of magnitudes we consider
(5.5–6.9). We acknowledge that M > 7.0 events can occur in
Europe, like the 1755 moment magnitude (MW) 8.5 Lisbon
earthquake, which is the largest listed in the SHEEC catalog
(the “SHARE European Earthquake Catalog,” Grünthal et al.,
2013; Stucchi et al., 2013). However, these types of events were
not accounted for in this study given their very low
occurrence rate.

European approaches to regional EEW have been promoted
and progressed through recent EU-funded research projects
(Clinton et al., 2016), such as SAFER (“Seismic early warning for
Europe”) and REAKT (“Strategies and tools for real-time
earthquake risk reduction”). These two projects have
facilitated the development and testing of the PRESTo
(Probabilistic and Evolutionary Early Warning System) and
VS(SC) (Virtual Seismologist in SeisComP) regional EEW
algorithms, which are the most widely applied regional EEW
algorithms in Europe to date (Cremen and Galasso, 2020) and
are therefore the focus of our investigations in this paper.
PRESTo is currently operating in Southern Italy (Irpinia
region), Turkey, Romania, and Southern Iberia (Carranza
et al., 2017). It has also been tested for application at the
border of Italy, Austria, and Slovenia (Picozzi et al., 2015).
Instead, VS(SC) is currently operational in Switzerland and has
been tested for use in Greece, Turkey, Romania, and Iceland
(Behr et al., 2016).

FIGURE 1 | The principles of a standard regional EEW system and conceptual outline of the corresponding EEW process. Information from an EEW system sensor
network is input to an EEW algorithm to detect events and compute estimates of earthquake location, magnitude, and ground-motion amplitude. An alert may then be
issued to warn end users of impending shaking.
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Efforts to compare the performance of PRESTo and VS(SC)
are currently underway within the Early Warning Test Center of
the EPOS (“European Plate Observing System”) EU project.
However, they have so far been limited to the Irpinia region
of Italy. We build on the attempts of the Early Warning Test
Center in this study by comparing the performance of the
PRESTo and VS(SC) algorithms for multiple European
conditions of seismicity and existing seismic network
configurations (i.e., geometries and densities). We specifically
consider five European geographic areas - Southern Italy,
Pyrenees, Southwest Iceland, Western Greece, and the Vrancea
region in Romania - that represent a range of hazard levels and
various seismotectonic settings: collisional/subduction complex
with a complicated back-arc/fore-arc/trench system (Southern
Italy), continent-continent collision with the evolution of an
orogenic belt (Pyrenees), oceanic crust interplate transform
faulting (Southwest Iceland), interplate subduction zones
(Western Greece), and intermediate-depth subcrustal seismicity
(Romania).

We quantitatively assess the operational performance of the
PRESTo and VS(SC) algorithms in real-time simulation mode by
using playbacks of recorded seismic waveforms or those
simulated through a physics-based method. EEW alerts need
to be both timely and sufficiently accurate to be useful (Meier,
2017), especially in Europe, where most earthquake-prone target
sites are associated with short available lead times, significant
exposure, and earthquake-related vulnerability (e.g., Picozzi et al.,
2015). Therefore, our performance assessment focuses on the
algorithms’ capability to both quickly and correctly characterize
the earthquake source (location and magnitude). We also use
GMMs to investigate the impact of the source-parameter
predictions on the temporal trend and quality of the resulting
ground-motion amplitude estimations. Note that a further
performance assessment of the two algorithms is carried out
in our companion paper (Cremen et al., 2021), which focuses on
the accuracy and uncertainty of the underlying methods from a
theoretical perspective using similar event data.

The purpose of our comparison is to identify the best-
performing regional EEW algorithms to be implemented in
the TURNkey FWCR (Forecasting–Early
Warning–Consequence Prediction–Response) platform, a
comprehensive information system for facilitating operational
earthquake forecasting, EEW, and post-earthquake rapid
response actions across the continent. This platform is being
developed as part of the TURNkey (“Towards more Earthquake-
resilient Urban Societies through a Multi-Sensor-based
Information System enabling Earthquake Forecasting, Early
Warning and Rapid Response Actions”) EU Project and will
rely on SeisComP (version 3-Jakarta release) for waveform
acquisition. SeisComP (Helmholtz-Centre Potsdam - GFZ
German Research Centre for Geosciences and gempa GmbH,
2008) is a freely available and widely distributed standard real-
time earthquakemonitoring platform developed by the GEOFON
Program at Helmholtz Center Potsdam, GFZ German Research
Centre for Geosciences and gempa GmbH (Hanka et al., 2010). It
is based on a comprehensive software framework, which includes
waveform acquisition (SeedLink), automated earthquake

detection, source location and characterization, manual event
relocation, event alerting, waveform archiving and dissemination.
SeisComP follows a modular approach in which standalone
programs communicate through a messaging system
connected to a shared database that contains events and
station metadata. This modular structure also facilitates the
incorporation of seismological and EEW algorithms, which
can be individually used for estimating different parameters.
TURNkey will ultimately be tested for adoption across six
regions with varying characteristics of seismicity in Italy,
France, Iceland, Greece, Romania, and the Netherlands.

The paper is organized as follows. We first introduce the
considered algorithms and the relevant input data required. We
then describe the methodologies used for evaluating the
performance of the algorithms. We next assess and compare
the algorithms. The paper ends with a discussion of the results,
which includes recommendations on the most appropriate
algorithms for the TURNkey platform.

ALGORITHMS

We specifically focus on the performance of PRESTo and VS(SC)
in this study. PRESTo (Lancieri and Zollo, 2008; Satriano et al.,
2008; Satriano et al., 2011) is a free and open-source software
platform specifically developed for EEW, which was designed by
the Ricerca in Sismologia Sperimentale e Computazionale
research group (RISSC-Lab) at the University of Naples
Federico II, Italy. It processes real-time waveforms that are
streamed from stations using a SeisComP server via the
SeedLink protocol and produces hypocentral location estimates
in the form of a multivariate normal probability density function
(PDF), using the RTLoc method developed by Satriano et al.
(2008). According to the RTMag procedure proposed by Lancieri
and Zollo (2008), a Bayesian framework is used for predicting
magnitude. The RTMag regression-law coefficients that we adopt
in this study are listed in Table 1.

PRESTo uses the picker algorithm FilterPicker initially
proposed by Vassallo et al. (2012) to detect an event, which
operates on continuous data-streams by applying a multiband
signal processing procedure (i.e., the signal is analyzed in
different predetermined frequency bandwidths). The event
declaration is constrained to a predefined number of picks
within a given time window. Full details of the PRESTo

TABLE 1 | Coefficients (A, B, C) and SE of the RTMag regression law used in this
study for PRESTo (Festa, not published, implemented in the available release
of the PRESTo platform).

phase Time window
(s)

A B C SE

P 2 −7.69 ± 0.06 1.00 ± 0.00 −1.89 ± 0.03 ±0.2
P 4 −7.69 ± 0.06 1.00 ± 0.00 −1.89 ± 0.03 ±0.2
S 2 −7.30 ± 0.06 1.00 ± 0.00 −1.80 ± 0.03 ±0.2

This law has the form: M � (log10(Pd) − A − C · log10(R/10))/B, where Pd is the peak
displacement (m) in different time windows and R is the hypocentral distance in km. See
Lancieri and Zollo (2008) for more details about the functional form of the regression law.
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platform can be found in its technical manual (http://www.
prestoews.org/documentation.php).

VS(SC) (Virtual Seismologist in SeisComP) (Behr et al., 2016) is
the magnitude likelihood component of the Virtual Seismologist
EEW algorithm (Cua, 2005; Cua and Heaton, 2007; Cua et al.,
2009) that is implemented in SeisComP. It incorporates phase picks
and location estimates provided by other SeisComP modules. The
coefficients for magnitude estimation are hard-coded in SeisComP
(scvsmag module) and provided in Cua (2005).

SeisComP allows a free configuration of recursive filters and
filter chains before picking, which is performed by the scautopick
module. Several types of filter can be applied, but we use the
default option in this study that involves subtraction of the
running mean for a given time window, a single application of
a one-sided cosine taper at the beginning of new data streams, a
Butterworth bandpass filter, and a Short Time Average over Long
Time Average (STA/LTA) filter, i.e., the ratio of a short-time
average signal amplitude to a long-time average calculated
continuously in two partially overlapping time windows of
different length. The STA/LTA approach is used as the basis
for many triggering algorithms (Allen, 1982). A trigger is declared
when the STA/LTA exceeds a certain threshold. A second-stage
picker can refine the final pick of the phase. We use the Akaike
Information Criterion picker for this purpose, which implements
the non-AR algorithm (Maeda 1985; Zhang et al. 2003). The
picker is re-initialized after a data gap.

SeisComP location estimates are typically performed using the
scautoloc module, which is optimized for teleseismic phase
association and requires at least 6 P-wave detections to
determine a location estimate. However, we instead pair
VS(SC) with the scanloc location module of SeisComP
(Roessler et al., 2016; Grigoli et al., 2018) in this study, which
is more appropriate for EEW purposes. scanloc can produce fast
location estimates with very few P- and S- wave detections from
nearby stations (i.e., 2 to define the general epicentral area and 3
to obtain a unique epicenter). It makes use of an advanced cluster
search algorithm (DBSCAN) to automatically associate phase
detections to potential earthquakes; when a cluster of at least a
prescribed minimum number of P-wave picks is identified, all
picks within configured time windows and maximum epicentral
distance ranges are provisionally associated with it. It should be
noted that the cluster search itself is based on P phases only;
however, in a second step, more P and S phases are associated and
used for locating the earthquake.

For the sake of simplicity, the suite of modules used to produce
EEW estimates from SeisComP (which include scanloc and
VS(SC)) are referred to as the “VS(SC) algorithm” throughout
the rest of the paper. To maintain consistency in our terminology,
we herein refer to the PRESTo platform as the “PRESTo algorithm.”

INPUT DATA

Seismic Waveforms
We use observed recordings from past events and physics-based
synthetic seismograms to test the two algorithms’ performance.
Specifically, we consider observed recordings from Southwest

Iceland, Western Greece, and Romania, while synthetic
seismograms are computed for Southern Italy and the
Pyrenees to compensate for the lack of empirical data from
moderate-to-large events in these regions. The use of
seismograms from different regions enables the performance
of the considered EEW algorithms to be evaluated across a
wide range of focal mechanisms, magnitudes, hypocentral
depths, and seismic network densities/configurations.

We select observed seismograms from earthquakes with Mw

greater than 5.5 that occurred in the last 20 years and were
recorded by at least eight of the seismic stations we examined in
this study, which were constrained by the availability of
recordings in the consulted databases. Recordings for Greece
and Romania are retrieved from the European Integrated Data
Archive (EIDA, see Data Availability Statement). We consider
only strong-motion and broadband sensors. We use one sensor
per station, which is always the strong-motion instrument (where
present); in all other cases, the broadband seismograms are
clipped to prevent the use of saturated velocigrams. Strong-
motion recordings from Iceland are obtained from the
Internet Site for European Strong-motion Data (ISESD, see
Data Availability Statement).

The synthetic seismograms for Southern Italy and the
Pyrenees are computed from physics-based numerical
simulations, using the broadband ground-motion simulation
code described in Crempien and Archuleta (2015), which can
simulate the high-frequency content of seismic waves and has
already proved to be suitable for EEW feasibility studies (Zuccolo
et al., 2016). We specifically generate seismograms for one
scenario earthquake on each active fault in both regions.
Faults parameters are retrieved from the European Database of
Seismogenic Faults (ESDF; Basili et al., 2013). The magnitude of
each scenario earthquake is randomly determined by assuming a
uniform distribution between 5.5 and the maximum magnitude
associated with the fault. The hypocentre is assumed to be located
in the center of the fault plane’s horizontal projection, at the
minimum fault depth plus 2/3 of the fault’s vertical width (i.e., the
difference between the maximum and minimum fault depths).
The focal mechanism is defined based on the average strike, dip,
and rake values. Rupture fault dimensions are estimated from the
Wells and Coppersmith (1994) relationships, and the position of
the hypocentre on the fault plane (i.e., along the width and along
the length of the fault) is established using the distributions by
Causse et al. (2008). The average rupture velocity is determined
by assuming a uniform distribution between 65 and 85% of the
shear wave velocity on the fault plane. The corner frequency is
estimated from the stress drop (Allmann and Shearer, 2009),
which is assumed to be equal to 3 MPa (Caporali et al., 2011) for
both regions. The seismograms are computed at the location of
currently operating permanent stations according to the
Incorporated Research Institutions for Seismology (IRIS)
database (see Data Availability Statement), up to a maximum
epicentral distance of 100 km. Finally, white noise is added to the
computed seismograms to facilitate the STA/LTA algorithm’s
operation. A detailed engineering validation of these physics-
based simulated ground motions (e.g., Galasso et al., 2012;
Galasso et al., 2013) is outside the scope of this study.
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We consider 27 events in total; their locations are
highlighted in Figure 2, and their main features are listed
in Table 2, along with the considered seismic networks.
Throughout the rest of the paper, we refer to all
magnitude, longitude, latitude, and depth values listed in
Table 2 as “bulletin” values (for both observed and
simulated events).

Velocity Models
We use rocky regional velocity models from the literature (see
Table 3) for both location estimation and the computation of
synthetic seismograms. Where not explicitly defined, P-wave
velocities are converted into S-wave velocities (and vice-versa),
using the Poisson solid’s approximation. Densities are converted
from P-wave velocities using the Nafe-Drake relationship
(Ludwig et al., 1970). The quality factors (QS and QP),
necessary for the computation of synthetic seismograms, are
set as follows: QS � 100 × VS, where VS is the shear wave
velocity (km/s), and QP � 9/4 × QS (Lay and Wallace, 1995).

To run PRESTo, we compute 3D travel-time grids for both P-
and S-waves at all stations (introduced in Seismic Waveforms),
using the NonLinLoc software (Lomax et al., 2000). Grid
dimensions adopted for the NonLinLoc software are defined
according to the size of the considered regions (1 × 1 × 1 km
for Iceland, 2 × 2 × 2 km for the remaining regions). For
SeisComP, the locator is user-defined; we apply LocSAT (Bratt
and Nagy, 1991) with travel-time tables prepared by replacing the
shallow layers of the IASP91model (Kennett and Engdahl, 1991)
with the local velocity models of Table 3.

Ground-Motion Models
The most appropriate IM to characterize ground motion for
earthquake engineering applications of EEW systems is
application-specific. Since we compute ground-motion
estimates only for comparison purposes in this study, we use
Peak Ground Acceleration (PGA) as the selected IM in all cases,
given its widespread use in the literature. The choice of GMM also
has a significant impact on the estimated IM. Despite the
availability of region-specific GMMs for various European
regions (e.g., Zuccolo et al., 2017; Huang and Galasso 2019),
we use European and global GMMs to estimate PGA, since
identifying optimal GMMs for each target site is outside the
scope of this paper. We specifically use the hypocentral distance
version of the GMM by Akkar et al. (2014) for all earthquakes
with hypocentral depth <30 km and the model of Youngs et al.
(1997) for the intermediate-depth Vrancea earthquakes
(Vacareanu et al., 2013). Note that we approximate the
rupture distance metric of the Youngs et al. (1997) GMM
using hypocentral distance, which is a valid assumption for
the magnitude range of the deep events considered in this
study (Cauzzi et al., 2015).

We estimate PGA values at the following target sites
(Figure 2): port of Gioia Tauro (15.91 E, 38.46 N) for
Southern Italy, Andorra (1.60 E, 42.54 N) for the Pyrenees,
Reykjavík (21.94 W, 64.15 N) for Southwest Iceland, Patras
(21.73 E, 38.25 N) for Western Greece and Bucharest (26.10 E,
44.43 N) for Romania. We assume representative rock ground
conditions for all target locations, given that site class is not
relevant for the comparative analyses performed in this paper.

FIGURE 2 | Locations of the earthquakes (red circles) and target sites (green squares) considered in this study. Blue triangles represent the considered seismic
stations. The target sites are the Port of Gioia Tauro for Southern Italy, Andorra for the Pyrenees, Reykjavík for Southwest Iceland, Patras for Western Greece and
Bucharest for Romania.
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METHODOLOGY FOR COMPARISON

We run playbacks of the seismic waveforms associated with the
27 considered events (Figure 2) through the PRESTo and VS(SC)
algorithms. We evaluate and compare the performance of both
algorithms in terms of their source-parameter estimates and the
corresponding ground-shaking predictions at the selected target
sites.

Performance in Terms of Source
Parameters
The comparison of the algorithms’ performance is first
assessed in terms of both the timeliness and accuracy of
location and magnitude estimates. We specifically examine
the most probable hypocentral estimates and the maximum
likelihood magnitude estimates of each algorithm at two
specific temporal instances:

a) time of the first estimate, which is the time, with respect to the
actual origin time, required to produce the first joint estimate
of location and magnitude;

b) time of stable estimate, which is the time at which the EEW
estimates stop changing significantly, i.e., the time from

which the difference between the estimated and final
values is consistently less than a prefixed difference
threshold. Different stable estimate times are defined
with respect to the epicenter, depth, and magnitude
estimates. For epicentral distance, the difference
thresholds are fixed at 5 km if the final estimated depth
is less than 30 km and are fixed at 10 km for larger depths.
For depth and magnitude, the thresholds are fixed at 5 km
and 0.2 units, respectively.

Figure 3 demonstrates the temporal evolution of the
algorithms’ source-parameter performance for two sample
earthquakes (i.e., the 2000-06-17 South Iceland event in the
left column and the 2016-09-23 Vrancea event in the right

TABLE 2 |Magnitude, longitude, latitude, and depth of the events considered in this study (retrieved from the seismological agencies provided in the table footnote), along
with the seismic networks used in each region.

Region Fault ID Origin time Mw Lon (°) Lat (°) Depth (km) Seismic networks

Southern Italya ITCS042 5.6 15.03 38.35 17.0 IV, AM, MN
ITCS016 6.9 15.60 38.03 9.3
ITCS053 6.2 16.19 38.63 8.3
ITCS055 5.9 15.91 38.23 9.0
ITCS068 6.4 16.49 38.87 11.0
ITCS080 5.6 16.18 38.42 9.0
ITCS082 6.3 16.02 38.37 8.3

Pyreneesa ESCS071 5.6 2.47 42.10 6.8 AM, CA, ES, FR
ESCS112 6.0 3.26 42.04 6.8
FRCS007 6.2 2.07 42.48 10.3
ESCS126 5.7 0.64 42.64 6.3
FRCS002 6.0 2.77 42.51 10.3
ESCS125 6.5 0.89 42.67 6.7

Southwest Icelandb 1998-06-04T21:36:53 5.5 −21.29 64.04 5.9 SM
2000-06-17T15:40:41 6.4 −20.37 63.97 6.4
2000-06-17T15:42:50 5.7 −20.45 63.95 5.4
2000-06-21T00:51:47 6.5 −20.71 63.97 5.0
2008-05-29T15:45:58 6.3 −21.07 63.97 5.1

Western Greecec 2014-01-26T13:55:43.0 6.0 20.53 38.22 16.4 AC, CL
2014-02-03T03:08:44 5.9 20.40 38.25 11.3 HA, HC
2015-11-17T07:10:07 6.4 20.60 38.67 10.7 HI, HL
2018-10-25T22:54:49 6.7 20.51 37.34 9.9 HP, HT
2018-10-30T15:12:02 5.8 20.45 37.46 5.5 MN

Vrancea, Romaniad 2014-11-22T19:14:17.2 5.6 27.16 45.87 39.0 BS, GE
2016-09-23T23:11:20.2 5.7 26.62 45.71 92.0 MD, RO
2016-12-27T23:20:56.3 5.6 26.61 45.72 91.0
2018-10-28T00:38:10.8 5.5 26.40 45.60 151.0

Details on the seismic networks can be retrieved from The International Federation of Digital Seismograph Networks (FDSN; see Data Availability Statement). European Database of
Seismogenic Faults (EDSF) fault IDs and origin times are also provided for simulated and observed earthquakes, respectively.
aEvent parameters of simulated earthquakes.
bEvent parameters retrieved from a catalog assembled and revised by Panzera et al. (2016).
cEvent parameters retrieved from the National Observatory of Athens (NOA) earthquake catalog.
dEvent parameters retrieved from the European Mediterranean Seismological Center (EMSC) earthquake catalog.

TABLE 3 | Regional velocity models used in this study.

Region Velocity model

Southern Italy Barberi et al. (2004)
Pyrenees Theunissen et al. (2017)
Southwest Iceland Tryggvason et al. (2002)
Western Greece Rigo et al. (1996)
Vrancea region, Romania Raykova and Panza (2006)–Vrancea cell
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column) that capture the range of magnitudes and depths
considered in this study. These plots demonstrate the full
temporal evolution of the epicentral error, the depth error,
and the magnitude error. Bulletin values are assumed to be
correct, such that magnitude and depth errors are computed
by subtracting these values from the corresponding estimates of
the algorithms, while epicentral errors are estimated as the
distance between the bulletin and estimated epicenter
locations. The timeline plots enable us to assess the timeliness
of EEW (i.e., how quickly each algorithm can produce the first
joint location-magnitude estimate and the time necessary to
achieve stable source estimates, as defined above), and the
accuracy of the source parameters (i.e., how much these
parameter estimates deviate with respect to the bulletin values
listed in Table 2).

Performance in Terms of Ground Motion
We also explore the effect of location and magnitude
estimates on the corresponding PGA predictions at the
selected target sites. We compute the ground shaking for
both algorithms by applying a GMM to the algorithms’
location and magnitude estimates, as described in Ground-
Motion Models. We perform two analyses in terms of ground
motion. The first analysis examines the temporal evolution of
PGA estimates, and the second analysis investigates their
accuracy.

Because of the temporal evolution of the location and
magnitude estimates (Figure 3), the resulting computation
of PGA also changes in time. This is an important
consideration, as some EEW systems trigger an alert based
on a prefixed threshold associated with the predicted ground
shaking (Cremen and Galasso, 2020). For example, a warning
may be issued if there is an unacceptable probability of a
critical PGA value (PGAc) being exceeded, according to
Iervolino (2011):

Pr[PGA> PGAc] � 1 − ∫IMc

−∞
f (PGA)dPGA≥ Prc 1

where Prc is a critical risk threshold related to potential damage
associated with the incoming event (Cremen and Galasso,
2020), and f (PGA) is the PDF of PGA, which is dependent
on real-time estimates of location and magnitude at a given
temporal instant.

Since location and magnitude estimates can evolve in time
in a non-monotonic way, the predefined ground-motion-
related threshold can be exceeded at a certain instant, but
not exceeded at a subsequent instant, then exceeded again

FIGURE 3 | Temporal evolution (starting from the origin time) of the estimates by the PRESTo and VS(SC) algorithms for two example earthquakes: (A) the 2000-
06-17 observed event in South Iceland; and (B) the 2016-09-23 observed event in Vrancea. Top: epicentral error timeline; middle: depth error timeline; and bottom:
magnitude (M) error timeline. All error values are computed by subtracting the bulletin values from the corresponding estimates of the algorithms. Different symbols
distinguish the two algorithms.

FIGURE 4 | Demonstration of the GMM evaluation procedure, which
measures the difference between the true and estimated GMM CDF for a
given set of location and magnitude predictions. The light gray shading
indicates PGA exceedance thresholds for which the predicted ground
shaking is greater than the true value, which may lead to a false alert. The dark
gray shading indicates exceedance thresholds for which the predicted
shaking is less than the true value, which may lead to a missed alert.
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later in time, and so on (Wu et al., 2013; Wu et al., 2016). This
behavior can raise questions about the integrity of an issued
alarm and should be addressed when designing a decision-
support system for EEW. Therefore, we perform a
comparison by evaluating the number of trend inversions
in the temporal evolution of the predicted PGA at the selected
target sites provided in Ground-Motion Models.

In line with our companion paper (Cremen et al., 2021),
ground-shaking prediction accuracy is quantified using the
MD metric for sensitivity analyses (Chun et al., 2000), which
has already been leveraged to examine the performance of
GMMs (Cremen et al., 2020). MD measures the difference
between the cumulative distribution function (CDF) of PGA
produced when the bulletin source parameters are used in the
GMM and the CDF obtained for a given algorithm’s source-
parameter estimates at a prescribed temporal instant
(considering the total standard deviation of the GMM in
both cases); see Figure 4. Since the GMMs used in this
study provide lognormal distributions of PGA, we calculate
MD according to the following equation:

MD �

�������������������������������������
~y2i exp(2β2i ) + ~y2o exp(2β2o) − 2~yi~yoexp((βi+βo)22 )√

~yoexp(β2o
2) 2

The i and o subscripts respectively refer to the GMM CDF
computed using the algorithmic source-parameter estimates and
the GMM CDF produced by the bulletin source parameters. ~y is
the median predicted PGA and β is the total logarithmic standard
deviation of the PGA prediction. A lower MD value indicates a
higher similarity between the GMM distributions based on
estimated and bulletin source parameters. This type of
comparison is useful, as discrepancies in the CDFs indicate the
potential for erroneous decisions by an end user, if EEW alerts are
issued based on a given probability of exceeding a prescribed
value of PGA, as discussed above.

PERFORMANCE ASSESSMENT: RESULTS
AND DISCUSSION
Timeliness of Location and Magnitude
Estimates
The timeliness comparison of both algorithms is provided in
Figure 5. Our analysis reveals that the first EEW estimates are
provided slightly faster by PRESTo, with an average time-to-first-
estimate ratio between PRESTo and VS(SC) of 0.94. This is
partially related to the fact that VS(SC) requires 3 s of P-wave
information at a single station to estimate magnitude, while

FIGURE 5 |Comparison between the PRESTo and VS(SC) algorithms in terms of timeliness. The average ratio between the times of PRESTo and VS(SC) estimates
is: (A) 0.94; (B) 1.3; (C) 1.5; and (D) 0.7. Note that times shown are relative to actual event times. Filled and empty markers indicate observed and simulated events,
respectively. Diamond and circle markers indicate shallow and deep events, respectively.
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RTMag uses only 2 s of P-wave signal to deliver a first magnitude
estimate. VS(SC) location estimates retrieved from scanloc
converge to stable values faster than those of PRESTo (the
average time-to-stable-estimate ratio between PRESTo and
VS(SC) is 1.3 for the epicenter and 1.5 for the depth); in
contrast, VS(SC) magnitude estimates require a longer time to
become stable (the average time-to-stable-estimate ratio between
PRESTo and VS(SC) is 0.7), which confirms a similar observation
by Chung and Allen (2019).

Accuracy of Location and Magnitude
Estimates
The comparison in terms of accuracy is given in Figure 6 and
Table 4 for the temporal instances associated with the first and
stable estimates.

The first estimates of epicentral distance and depth by VS(SC)
are more accurate than those provided by PRESTo (by
approximately 5 km for the epicenter and 3 km for the depth).
The location performance of both algorithms is fairly similar at the

FIGURE 6 |Comparison between the PRESTo and VS(SC) algorithms in terms of (A,B) epicentre; (C,D) depth; and (E,F)magnitude (M) accuracy. Each histogram
contains results for all 27 considered events. The left column provides errors associated with first estimates. The right column provides errors associated with stable
estimates. Magnitude and depth errors are computed by subtracting the bulletin values from the corresponding estimates of the algorithms, while epicentral errors
represent the distance between the bulletin and estimated epicentre locations.
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stable instant, although the dispersion of the stable depth estimate
error for PRESTo (9.28) is almost 2.5 times that for VS(SC) (3.82).

The first magnitude estimate is generally underestimated with
respect to the bulletin value for both algorithms due to a sparsity of
recorded data. The corresponding error distributions for PRESTo
and VS(SC) have respective medians of −0.32 and −0.49 and
respective means of −0.46 and −0.55, which imply that the
underestimation of VS(SC) is larger than that of PRESTo.
However, PRESTo magnitude estimate errors are associated
with a larger standard deviation (0.84) than those of VS(SC)
(0.59). In contrast, the stable magnitude estimates computed by
VS(SC) are more accurate than those computed by PRESTo; the
corresponding error distributions for VS(SC) and PRESTo have
respective medians of 0.01 and 0.20, and respective means of 0.03
and 0.13. However, accurate magnitude estimations from VS(SC)
require a significantly longer time (Figure 5), whichmay not justify
the greater amount of accuracy achieved.

It should be highlighted that the accuracy of the computed
location and magnitude estimations is directly affected by the
performance of each algorithm’s event-detection capability
(i.e., phase picking and the seismic phase association
methodology). Phase detection and association are difficult
and error-prone tasks, especially during intense aftershock
sequences (Meier et al., 2020). The event-detection algorithms
(for both PRESTo and VS(SC)) are optimized consistently for
each region of interest through an ad-hoc tuning of the relevant
parameters that considers overall seismicity and the network
geometry. However, discrepancies in phase picking and event
association can still remain due to differences in the parameters
and related procedures used in both algorithms. It should also be
noted that the most appropriate tuning for a certain area could be
different from that used in this study, which was calibrated using
only the small sample of events analyzed.

Moreover, it should be mentioned that we do not consider an
optional Bayesian prior distribution for PRESTo, to be consistent

with the format of the VS(SC) magnitude calculation. Inclusion of
this prior may improve PRESTo’s magnitude estimates. Finally, it
should be highlighted that the empirical scaling relationships used
for magnitude computation in RTMag and VS(SC) may not be
appropriate/optimal for the regions considered in this study,
especially for the deep events of the Vrancea region (for
example, the VS(SC) relationships were calibrated for Californian
events by assuming a depth of 3 km). The need for conducting
region-specific recalibration of the relationship coefficients should
always be investigated when implementing an EEW system in a new
region (see, for example, Carranza et al., 2013). Otherwise, it may be
most practical to simply evaluate and add empirically derived offsets
(if any) to the magnitudes estimated for particular regions.

Trend of PGA Estimates
Figure 7 shows the number of trend inversions that occur over
time for themedian PGA predictions computed using the locations
and magnitudes estimated by both algorithms. To eliminate
insignificant changes in trend, we only consider inversions that
result in at least a 20% change with respect to the previous PGA
estimate. Our analysis shows that the number of inversions for
VS(SC) is lower on average (1.52, compared to 3.37 for PRESTo)
and has a smaller standard deviation (1.69, compared to 4.45 for
PRESTo). VS(SC) has also a slightly greater number of cases with
zero inversions, which correspond to situations in which there is no
significant variation of the computed PGA in time (ideal case, in
which the maximum possible lead time is achieved if the alert
threshold is exceeded and the PGA is predicted correctly), or there
is a near monotonic increase of its estimated value. Conversely,
PRESTo has some cases with more than ten trend inversions,
corresponding to two Greek offshore events and one event located
in the central Pyrenees. They are related to erroneous PRESTo
location predictions due to particular geometric network
conditions that have a significantly negative effect on ground-
motion estimation, thus contributing to the multiple inversion
cases observed. Therefore, we conclude that the integrity of the

TABLE 4 |Median (η), mean (μ), and standard deviation (σ) of the error distributions
shown in Figure 6.

Component/time Algorithm

PRESTo VS(SC)

a) Epicentre: First estimate (km) η � 7.97 η � 2.48
μ � 11.00 μ � 8.68
σ � 12.14 σ � 15.27

b) Epicentre: Stable estimate (km) η � 2.05 η � 1.75
μ � 3.51 μ � 3.02
σ � 3.14 σ � 3.61

c) Depth: First estimate (km) η � −5.54 η � −1.72
μ � −13.10 μ � −6.29
σ � 32.46 σ � 16.85

d) Depth: Stable estimate (km) η � −0.59 η � −0.83
μ � 0.01 μ � −0.23
σ � 9.28 σ � 3.82

e) Magnitude: First estimate η � −0.32 η � −0.49
μ � −0.46 μ � −0.55
σ � 0.84 σ � 0.59

f) Magnitude: Stable estimate η � 0.20 η � 0.01
μ � 0.13 μ � 0.03
σ � 0.30 σ � 0.19

FIGURE 7 | Number of trend inversions in the evolution of PGA
estimates for both considered algorithms. The median (η), mean (μ) and
standard deviation (σ) of the distributions are: η � 2.00, μ � 3.37, σ � 4.45 for
PRESTo, and η � 1.00, μ � 1.52, σ � 1.69 for VS(SC).
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EEW alarm issued by the VS(SC) algorithm is higher than that for
PRESTo.

Ground-Shaking Prediction Accuracy
We specifically investigateMD values for the algorithms’ source-
parameter estimates at temporal instances that correspond with
three different lead times at target sites: 15, 10, and 5 s. The lead
time at a given target site is defined as the time difference between
the S-wave arrival and the first EEW estimate; a 1 s transmission
delay is also accounted for. For each lead-time analysis, only the
scenario events capable of providing that lead-time at the target
site of interest are considered. This means that 16 events are
examined for the 15 s lead time, 19 events are examined for the
10 s lead time, and 23 events are examined for the 5 s lead time.
The results of the ground-shaking prediction assessments are
presented in Figure 8. It can be observed that PRESTo provides
more accurate ground-motion estimates at the largest lead times
considered; PRESTo averageMD (MD) value for 15 s lead time is
0.45, whereas the corresponding VS(SC) MD value is 0.86.
However, VS(SC) produces more accurate ground-shaking
predictions than PRESTo for the smallest considered lead time
(5 s); in this case, the PRESTo MD value is 0.82 and the VS(SC)
MD value is 0.42. The average MD values are similar for the
intermediate considered lead time (10 s). Note that the temporal
variations in the optimal algorithm for ground-motion accuracy
reflect those observed for magnitude accuracy in Accuracy of
Location and Magnitude Estimates.

CONCLUDING REMARKS

This study used scenario earthquakes across five European
regions to quantitatively compare the performance of the
PRESTo and VS(SC) (using scanloc for location) regional
EEW algorithms. Our overall aim was to identify the best
options for EEW location and magnitude estimation in the
TURNkey platform, a multi-sensor-based information system

to be implemented in Europe for earthquake forecasting, EEW,
and post-earthquake rapid response actions.

We first assessed the ability of PRESTo and VS(SC) to
produce rapid and accurate source (i.e., location and
magnitude) estimates of events. We then evaluated the
accuracy of the algorithms’ corresponding ground-shaking
predictions for various lead times at prescribed target sites.
We found that PRESTo may have a greater risk-mitigation
potential than VS(SC) in general. This is because PRESTo
produces faster and more accurate early magnitude estimates,
which result in better ground-motion estimates for long lead
times (15 s) that potentially enable significant earthquake
preparation actions to take place, such as shutting down
industrial equipment, evacuating the ground floors of
buildings, and stopping surgical procedures (Goltz, 2002).
Predictions by VS(SC) are eventually more accurate than
those of PRESTo; however, the length of time this requires
results in smaller warning windows that may only allow
stakeholders to take simple automatic risk-mitigation
actions like stopping traffic (i.e., turning lights red) or
switching on semi-active control systems for structures
(Goltz, 2002; Iervolino et al., 2008). It is also important to
note that we did not use an optional Bayesian prior
distribution for the RTMag magnitude algorithm of
PRESTo. Its inclusion may have resulted in an even better
performance of the PRESTo magnitude estimates and the
associated ground-motion predictions.

We, therefore, ultimately recommend that, out of the two
considered regional EEW algorithms, PRESTo is used for EEW
in the TURNkey platform, which is consistent with the
conclusions of our companion paper (Cremen et al., 2021).
Alternatively, the PRESTo RTMag algorithm could be
independently implemented within SeisComP (and,
therefore, the TURNkey platform) as an additional module
for EEW magnitude evaluation. This configuration would also
enable scanloc to be used within the TURNkey platform, which
we found to be the best algorithm for location estimation.

FIGURE 8 |Comparing the ground-shaking prediction accuracy of both considered algorithms for three lead times: (A) 15 s, (B) 10 s, and (C) 5 s. The averageMD
(MD) estimate is: (A) MD � 0.45 for PRESTo and MD � 0.86 for VS(SC), (B) MD � 0.47 for PRESTo and MD � 0.47 for VS(SC), (C)MD � 0.82 for PRESTo and
MD � 0.42 for VS(SC).

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 68627211

Zuccolo et al. Performance of Regional EEW Algorithms in Europe

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Therefore, the combination RTMag plus scanloc may facilitate
more accurate EEW ground-motion estimates than those
provided by the full PRESTo algorithm.

This study’s results were obtained through playbacks of the
seismic waveforms and EEW parameters associated with 27
historic/simulated earthquakes representative of different
tectonic environments and regional European variation in
station distributions and densities. We used actual network
configurations for testbeds where synthetic seismograms were
used (i.e., Southern Italy and the Pyrenees). The availability of
recordings constrained the number of considered stations for
all other regions examined (i.e., Greece, Romania, and
Iceland). Therefore, the study’s outcome should be
interpreted as an average performance of the examined
algorithms across different seismicity and network
geometries in Europe. A more detailed feasibility study is
recommended for target- or region-specific applications of
the algorithms.
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