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A novel and efficient inverse method, named Nonlinear least squares four-dimensional
variational data Assimilation (NLS-4DVar)-based CO2 Retrieval Algorithm (NARA), is
proposed for retrieving atmospheric CO2 from the satellite hyperspectral
measurements, in which the NLS-4DVar method is used as the optimization method.
As the NLS-4DVar method works independently of the tangent linear model and adjoint
model, the time-consuming calculation of the weighting function matrix is unnecessary,
and the computation complexity is tremendously reduced while maintaining the retrieval
accuracy. This is extremely important for space-based CO2 retrievals with large data
volumes. Observing system simulation experiments (OSSEs) over four different sites
around the world showed that the NARA algorithm could retrieve XCO2 and CO2

profiles effectively. To further evaluate the NARA algorithm, it was used for real CO2

retrievals from target-mode observations of Orbiting Carbon Observatory-2 (OCO-2) over
Lamont, Oklahoma, and Darwin, Australia. The results were compared with that of ground
measurements of Total Carbon Column Observing Network (TCCON). The mean
difference of XCO2 between NARA and TCCON over Lamont, from 180 observations,
was −0.15 ppmv with a standard deviation (SD) of 0.76 ppmv. Over Darwin, the mean
difference, from 180 observations (90 points over land and 90 points over the ocean), is
−0.17 ppmv (SD: 1.26 ppmv). The preliminary results showed that the efficient NLS-
4DVar-based algorithm could provide great help for satellite remote sensing of CO2, and it
may be used as an operational procedure after further and extensive evaluations.
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INTRODUCTION

The concentration of CO2 in the atmosphere has continued to
increase since the Industrial Revolution, which has had a
significant impact on the global climate (Cox et al., 2000; Le
Quéré et al., 2016). The formulation of climate policy and control
of the future climate require a more accurate and comprehensive
understanding of the global carbon cycle (Dilling et al., 2003).
Current ground-based and aircraft observations could provide
help in modelling and understanding global sources and sinks of
CO2 (Wunch et al., 2011); however, the insufficient number and
sparse spatial coverage make it difficult to obtain accurate CO2

fluxes on regional scales (Baker et al., 2010; O’Dell et al., 2012).
To acquire CO2 fluxes with high spatial and temporal

resolutions to supplement the deficiencies of ground-based
and aircraft observations, efforts have been made to retrieve
the column-averaged dry air mole fraction of atmospheric
CO2 (XCO2) from satellite observations (Rayner and O’Brien,
2001; Miller et al., 2007). Data retrieved from the thermal infrared
spectrograph are able to provide good information of CO2 in the
mid-troposphere (Chédin et al., 2003; Crevoisier et al., 2009;
Kulawik et al., 2010), but the measurements are less sensitive to
near surface CO2 variations. Therefore measurements in Near-
infrared (NIR)- and short-wave infrared (SWIR)-band are
proposed, such as the SCanning Imaging Absorption
spectroMeter for Atmospheric CHartographY (SCIAMACHY)
(Buchwitz et al., 2005; Reuter et al., 2011), which is a mid-
resolution spectrometer. The first dedicated greenhouse gas
satellite Greenhouse gases Observing SATellite (GOSAT) and
its successor GOSAT-2, with ultra-high spectral resolution in NIR
and SWIR bands, were launched into space by Japan Erospace
Exploration Agency (JAXA) separately in 2008 (Yokota et al.,
2009) and 2018 (Nakajima et al., 2012). Similar specific satellites
such as Orbiting Carbon Observatory-2 (OCO-2) (Crisp et al.,
2004) and OCO-3 (Eldering et al., 2019) are launched into space
separately in 2014 and 2019. China also launched its first satellite,
TanSat, for Carbon dioxide measurements in 2016 (Yang et al.,
2018). These measurements from space could provide spatial
map of atmospheric CO2 and its variation both on regional and
global scales (Jiang and Yung, 2019).

A variety of algorithms have been developed for retrievals of
CO2 from NIR and SWIR spectra, including the Differential
Optical Absorption Spectroscopy (DOAS) approach for
SCIAMACHY (Buchwitz et al., 2000; Honninger et al., 2004;
Reuter et al., 2010), the National Institute for Environment
Studies (NIES) algorithm developed for GOSAT measurements
(Yoshida et al., 2011), the Atmospheric CO2 Observations from
Space (ACOS) algorithm applied to GOSAT and OCO-2
measurements (Crisp et al., 2012; O’Dell et al., 2012; O’Dell
et al., 2018), the University of Leicester Full Physics (UoL-FP)
algorithm (Boesch et al., 2011), the RemoTeC algorithm developed
by SORN Netherlands Institute for Space Research and Deutsches
Zentrum für Luft-und Raumfahrt e.V. (DLR) (Hasekamp and
Butz, 2008; Butz et al., 2011; Guerlet et al., 2013) and the
ensemble median (EEMA) algorithm (Reuter et al., 2013).

Until now, it is still a challenge to retrieve accurate CO2

concentrations and its vertical profiles from satellite

measurements (Yue et al., 2016), some of them can only
produce reasonable results under very clear skies. This is due
to limitations of parameterization and simplification in the
algorithm, i.e., first guess of CO2 profile, atmospheric
parameters and their vertical distributions, and simplification
of the weighting function matrix calculation owing to time-
consuming burden. In this paper, a novel algorithm, NLS-
4DVar-based CO2 Retrieval Algorithm (NARA), is proposed.
The NLS-4DVar method rewrites the cost function as a nonlinear
least squares problem and solves it iteratively using the Gauss-
Newton method. In the iterative process, the a priori covariance
matrix is not a fixed one but constantly updated. Moreover, the
calculations of the weighting function matrix and its
transposition are avoided through simple mathematical
transformations, which greatly reduces programming difficulty
and computational complexity while maintaining the retrieval
accuracy. This is particularly important for space-based CO2

retrievals considering the huge number of satellite measurements.
The rest of this article is organized as follows. Sect. 2 introduces

the NARA algorithm in detail, including the forward and inverse
models. Sect. 3 evaluates theNARA algorithm in terms ofXCO2 and
the CO2 profile through observing system simulation experiments
(OSSEs). Sect. 4 describes real-data retrievals using OCO-2
observations and comparisons between NARA retrieved XCO2

and coincident TCCON measurements. Finally, Sect. 5 discusses
and concludes the paper.

DESCRIPTION OF THE NLS-4DVAR-BASED
CO2 RETRIEVAL ALGORITHM

The NARA retrieval algorithm obtains the optimal state vector under
the joint constraints of satellite measurements and prior information.
The state vector contains the CO2 profile and several parameters to
which the spectra are sensitive. The optimal column-averaged CO2 is
calculated according to the CO2 profile. The NARA algorithm can be
applied to any greenhouse gas satellites, but requires some specific
modifications according to the satellite instruments. At present, we
use information and observations from OCO-2 satellite to make
preliminary evaluations of the NARA algorithm. The OCO-2
observations of the reflected sunlight spectra in three bands: O2 A
band at 0.76 µm, weak CO2 band at 1.61 µm, and strong CO2 band at
2.06 µm are used for retrievals (O’Dell et al., 2018). NARA algorithm
include data preparation, XCO2 retrieval and bias correction. A flow
chart of the NARA algorithm is shown in Figure 1.

1. Data Input and Pre-screening

The input data of the algorithm include the Level 1B product of
satellite measurements and meteorological data interpolated to the
observation points. The Level 1B product includes the calibrated
radiances for three spectral bands and geolocation information.
The pixels with low signal-to-noise ratio and those contaminated
by clouds and aerosols are filtered out (Taylor et al., 2016). The
meteorological data include surface pressure, water vapor profile,
temperature profile, and surface wind speed, which are from
gridded GEOS5-FP-IT (Goddard Earth Observing System,
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Version 5, Forward Processing for Instrument Teams) reanalysis
and interpolated to the observation location.

2. XCO2 Retrieval

The XCO2 retrieval is the core of the algorithm. XCO2 is the
column-averaged dry air mole fraction of atmospheric CO2, and the
unit is part per million (ppm). The a priori state vector from the
input data, as well as the initial ensemble of the state vector, are
constructed. They are then input into the forward model to obtain
simulated spectra. This information and satellite observations are
input into the inverse model, and the optimal estimate of the state
vector is obtained through the NLS-4DVar method. XCO2 is then
calculated according to the CO2 profile in the state vector.

3. Bias Correction

Currently all space-borne XCO2 retrievals have systematic biases,
mainly due to uncertainty in spectroscopy, limitations in the

information provided by the observations, imperfect modelling of
the atmosphere and surface, as well as uncertainty in instruments.
Therefore, bias correction is necessary for the retrieved XCO2

(Schneising et al., 2012; Guerlet et al., 2013; Crisp et al., 2017).
The bias correction procedure of NARA algorithm adopted from
OCO-2 consists of three main parts: first, correct the parametric
biases that is caused by the spurious correlation of the retrievedXCO2

with other retrieval parameters; second, correct the footprint-
dependent biases that are truly instrument-related; finally, apply a
global scaling to remove the remaining biases (O’Dell et al., 2018).

Forward Model
The parameters to be optimized in the forward model constitute
the state vector x. The reflected sunlight received by all channels
in the three bands constitutes the observation vector y. The
simulation of observation from a state vector can be expressed
by the following formula:

y � F(x, b) + ε, (1)

FIGURE 1 | Flow chart of the NARA algorithm.
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where F is the forward model, b is a set of fixed input
parameters, and ε is the error in both the instrument and
forward model. The forward model uses the Linearized
Discrete Ordinate Radiative Transfer (LIDORT) model
(Spurr et al., 2001; Spurr and Natraj, 2011) as the radiative
transfer model and some parameters about solar, surface and
instrument provided by the ACOS algorithm (O’Dell et al.,
2018). The state vector includes the CO2 profile defined at a set
of 20 atmospheric pressure levels, a temperature profile offset,
surface pressure, a water vapor profile multiplier, aerosol
parameters, surface albedo parameters, instrument
correction parameters, spectrum correction parameters, and
solar-induced fluorescence (SIF) parameters, which are listed
in Table 1 in detail. The atmosphere with few clouds and
aerosols can retrieve more accurate XCO2 than other conditions
because of atmospheric scattering. To account for scattering
effects of thin clouds and aerosols, the retrieval solves
simultaneously for amounts and Gaussian vertical profiles
of five different kinds of scatterers with fixed optical
properties: a water cloud type, an ice cloud type, two fixed
aerosol types, and an upper tropospheric / lower stratospheric
sulfate aerosol type. The two fixed aerosol types are chosen
from co-located GEOS-5 FP-IT aerosols. They are the types
that form the highest and second highest fraction of the AOD
(aerosol optical depth) at 755 nm for a co-located GEOS-5 grid
cell for a given sounding.

The prior value of the state vector is calculated by the ACOS
algorithm (O’Dell et al., 2012; O’Dell et al., 2018). The vertical
coordinate uses a simple sigma coordinate system, that is

Plevels � Psurf · a, a � (0.0001, 1
19,

2
19, . . . ,

18
19, 1)T

, where Plevels is

the 20 vertical pressure levels, Psurf is the surface pressure, and
a is a fixed coefficient array. For Psurf � 1000 hPa, the pressure
width of all the layers (except the top layer) is 52.63 h Pa; for the top
layer it is 52.53 hPa. The typical model lid is roughly 0.1 hPa.
Assume that the tropopause pressure is 200 hPa (Hoinka, 1998),
then the ratio of the tropopause pressure to the surface pressure is
0.2. According to the a coefficient, the CO2 profile mainly describes
the troposphere CO2 concentration, apart from about the first four
levels describing the CO2 concentration above the troposphere.

Inverse Model
The inverse model is used to obtain the minimum value of the
following cost function through the optimization algorithm:

χ2(x) � (x − xa)TS−1a (x − xa) + [F(x) − y]TS−1ε [F(x) − y] (2)

where xa ∈ Rnx (nx is the dimension of the state vector) is the a
priori state vector, Sa is the a priori covariance matrix, F(x) is the
spectra simulated by the state vector, Sε is the observation error
covariance matrix, and the superscript T stands for the matrix
transposition. The NARA algorithm uses the NLS-4DVar
method to minimize the cost function.

TABLE 1 | Standard deviations of normal distributions when generating ensembles of initial perturbations for parameters in the state vector excluding the CO2 profile.

Element No. of elements Sigma

Temperature offset (K) 1 0.5 K
Surface pressure (hPa) 1 2 hPa
H2O scale factor 1 0.1
Aerosol OD755

1 1 per type 0.5
Tropospheric aerosol type 1, 2 height2 2 0.1
Ice cloud height 1 0.1
Water cloud height 1 0.2
Stratospheric aerosol height 1 1e-7
Tropospheric aerosol type 1, 2 width3 2 0.01
Ice cloud width 1 0.0005
Water cloud width 1 0.0003
Stratospheric aerosol width 1 0.001
Albedo mean land O2 A band 1 0.4
Albedo mean land weak CO2 band 1 0.2
Albedo mean land strong CO2 band 1 0.2
Albedo slope land 1 per band 0.0005
Albedo mean ocean O2 A band 1 0.01
Albedo mean ocean weak CO2 band 1 0.01
Albedo mean ocean strong CO2 band 1 0.001
Albedo slope ocean 1 per band 2e-5
SIF mean 1 1e17
SIF slope 1 3e-8
Wind speed 1 2 m/s
Dispersion shift 1 per band 5e-7
Dispersion stretch 1 per band 1e-8
EOF amplitudes O2 A band 3 0.01, 0.005, 0.005
EOF amplitudes weak CO2 band 3 0.005, 0.005, 0.005
EOF amplitudes strong CO2 band 3 0.003, 0.002, 0.005

1Aerosol optical depth at 755 nm.
2Location of the peak height of the Gaussian vertical profile.
31-sigma width of the Gaussian vertical profile.

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6885424

Jin et al. NLS-4DVar based CO2 retrieval algorithm

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


NLS-4DVar Method
The NLS-4DVar method (Tian and Feng, 2015; Tian et al., 2018)
rewrites the cost function in Eq. 2 into an incremental format to
determine the analysis increment for the a priori state vector:

χ2(x′) � 1
2
(x′)TS−1a (x′) + 1

2
[F′(x′) − y′]TS−1ε [F′(x′) − y′], (3)

F′(x′) � F(xa + x′) − F(xa), (4)

y′ � y − F(xa). (5)

where x′ � x − xa is the perturbation of the prior field xa, y ∈ Rny ,
and ny is the dimension of the observation. To avoid the direct
inversion of the a priori covariance matrix Sa, the NLS-4DVar
method expresses the analysis increment x′,p as a linear
combination of the initial perturbations:

x′,p � Pxβ. (6)

where Px � (x′1, x′2, . . . , x′N) is the ensemble of prepared initial
perturbations, xj′ � xj − xa(j � 1, 2, . . . ,N) is the jth perturbation,
N is the ensemble size, and β � (β1, β2, . . . , βN)T is the coefficient
vector. A reasonable ensemble of perturbations Px can provide an
appropriate solution space for the analysis increment x′,p. We
further assume that the a priori covariance matrix can be
approximated by the ensemble covariance matrix Be, that is,
Sa ≈ Be � (Px)(Px)T/N − 1. As the ensemble of perturbations is
updated with iterations, the a priori covariance matrix Sa will also be
updated. Comparedwith the generalmethods that use a fixed Sa, this
constantly updated Sa tends to be more precise as the iteration
progresses. Substituting the above assumptions into Eq. 3 yields

χ2(β) � 1
2
(N − 1) × βTβ + 1

2
[F′(Pxβ) − y′]TS−1ε [F′(Pxβ) − y′].

(7)

Obviously, Eq. 7 can be solved iteratively by computing the
cost function and its gradient:

∇χ2(β) � (N − 1)β + (Px)T(K)TS−1ε [F′(Pxβ) − y′], (8)

where K � zF(x)/zx is the weighting function matrix (tangent
linear model) and (K)T is the transposition of the weighting
function matrix (adjoint model). The programming difficulty and
computational complexity of the weighting function matrix and its
transposition are huge; combined with the large number of satellite
measurements, this greatly increases the computational cost. This is
a problem faced by some other algorithms (Connor et al., 2008; Butz
et al., 2009; Yoshida et al., 2011; Butz et al., 2012; Cogan et al., 2012).

To circumvent the calculation of the weighting function
matrix and its transposition, the NLS-4DVar method converts
Eq. 7 into the following nonlinear least squares problem:

χ2(β) � 1
2
Q(β)TQ(β), (9)

Q(β) � { 					
N − 1

√
β

S−1/2ε,+ [F′(Pxβ) − y′] }. (10)

Here (S1/2ε,+ )(S1/2ε,+ )T � Sε. The Gauss-Newton iteration method
(Dennis and Schnabel, 1996) is used to minimize the cost
function. After a simple mathematical derivation, the optimal

state vector is obtained without calculating the weighting function
matrix and its transposition, which is shown in Appendix A. The
final formula is given below (Tian et al., 2018):

δβi−1 � (P#,i−1y )TS−1ε y′
,i−1 + (P#,i−1x )Tx′,i−1,p, (11)

δxi−1,p � Pi−1
x δβi−1, (12)

xi,p � xi−1,p + δxi−1,p, (13)

where y′, i−1 � y − F(xi−1,p), xi−1,p is the optimal analysis of the
state vector in the last step, and

(P#,i−1y )T � [(N − 1)I + (Pi−1
y )TS−1ε (Pi−1

y )]−1(Pi−1
y )T, (14)

(P#,i−1x )T � −(N − 1)[(N − 1)I + (Pi−1
y )TS−1ε (Pi−1

y )]−1
× [(Pi−1

x )T(Pi−1
x )]−1(Pi−1

x )T, (15)

where

Pi−1
y � (y1′,i−1, y2′,i−1, . . . , yN′,i−1), (16)

yj′,i−1 � F(xi−1,p + xj′,i−1) − F(xi−1,p) � F(xa + xj′) − F(xi−1,p),
(17)

Pi−1
x � (x1′,i−1, x2′,i−1, . . . , xN′,i−1), (18)

xj′,i−1 � xj′ + xa − xi−1,p. (19)

According to Tian et al. (2018), the cost function generally
reaches the minimum convergence standard after three iterations.
Here the optimal state vector contains the CO2 profile component,
allowing the calculation of the best estimation of XCO2.

Initial Ensemble Generation
Asmentioned above, theNLS-4DVarmethod assumes that the analysis
increment can be expressed as the linear combination of the initial
perturbations; the quality of the initial ensemble of perturbations is vital
to the success of the retrieval. For different components in the state
vector, we use different initial ensemble generation methods. The CO2

profile ensemble of perturbations is generated by the random state
variable (RSV) method (Zhang, 2019), the ensembles of the other
components are generated by normal distributions.

The RSV method first requires a big ensemble of perturbations.
The method then performs singular value decomposition and the
random orthogonal matrix to obtain the final small ensemble
(Evensen, 2009). The big ensemble comes from the model
simulated CO2 of GEOS-Chem (v11-01; http://acmg.seas.harvard.
edu/geos/). There are seven carbon fluxes used to drive GEOS-Chem:
fossil fuel emissions, ocean carbon fluxes, terrestrial ecosystem fluxes,
biomass burning emissions, ships emissions, aviation emissions, and
chemical oxidation production. The ocean carbon fluxes and
terrestrial ecosystem fluxes are optimized by the Tan-Tracker flux
inversion system (Tian et al., 2014a; Tian et al., 2014b) through
assimilating OCO-2 XCO2 retrievals. GEOS-Chem simulates
the CO2 profile at 47 atmospheric pressure levels, with a
horizontal resolution of 2° latitude × 2.5° longitude. The 47
pressure levels are defined using the hybrid sigma-pressure
grid, and the top atmospheric pressure level is about 0.038 hPa
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(http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_
vertical_grids#Hybrid_grid_definition, last access: June 3, 2021). In
order to avoid the size of big ensemble being too large, the CO2

profile is taken every 4 grid points along the longitude and the daily
average CO2 profile is computed. The profile is then interpolated to
the 20 pressure levels, where the CO2 profile in the NARA algorithm
is located. According to the month and latitude of the satellite
measurement, the model data of the two latitude bands above and
below the measurement latitude during an entire month are selected
as the big ensemble. For example, consider the measurement at 36.
641° N and 97.441° W on January 30, 2016. The simulation results of
GEOS-Chem at 36.0° N and 38.0° N in January 2016 show a total of
36 × 2 × 31 � 2232 CO2 profiles, which constitute the big ensemble
after subtraction of the a priori CO2 profile, denoted by Ce. Singular
value decomposition of Ce yields

Ce � U∑V, (20)

where U ∈ Rnx×nx , ∑ ∈ Rnx×αN , and V ∈ RαN×αN .

Cs � U

		
c

α

√ ∑(:, 1 : cN)ΘT. (21)

Here Cs is the initial ensemble, 1≤ c≤ α and Θ ∈ RN×cN

(Evensen, 2009). Θ is a random matrix and has orthonormal rows,
which can be constructed by extracting the firstN rows of the random
orthogonal matrix Θ ∈ RcN×cN (Evensen, 2009). Adding the a priori
CO2 profile to the initial ensemble, we obtain the initial CO2 profiles.

The initial ensembles of the other parameters in the state
vector are the random perturbations of normal distributions; that
is, the mean of the normal distribution takes the prior value. The
standard deviations (Table 1) were obtained by sensitivity
experiments and analysing OCO-2 data. The initial ensemble
of the state vector is constructed by combining the CO2 profile
ensemble and the remaining parameter ensembles together. Add
the a priori state vector to the ensemble and input it into the
forward model to obtain the simulated spectra. After preparing
the above data, we can determine the optimal estimate of XCO2

using the NLS-4DVar method introduced in Sect. 2.2.1.

OBSERVING SYSTEM SIMULATION
EXPERIMENTS FOR EVALUATING THE
(NLS-4DVAR)-BASED CO2 RETRIEVAL
ALGORITHM

In this section, we evaluated the NARA algorithm
comprehensively by performing observing system simulation
experiments (OSSEs) at four different sites around the world.
Besides, we conducted a set of experiments at one site, discussing
the effects of aerosol amounts on XCO2 retrievals.

Experimental Setup
A total of four sites around the world were selected for retrievals.
Three were near Total Carbon Column Observing Network
(TCCON) (Wunch et al., 2011) stations, specifically the
Lamont (LA), Bremen (BR), and Wollongong (WO) stations,
and the remaining one was on the North Pacific (OC).

Information on these four sites is listed in Table 2, and their
specific locations are shown in Figure 2. The impacts of surface
properties, latitudes, seasons, and land–sea distribution on
retrievals were carefully considered when selecting the retrieval
sites to ensure the comprehensiveness of the experiments.
Especially, previous studies have indicated that scenes without
aerosol contamination could yield better results, and XCO2

retrieval biases appeared to be correlated with scattering by
aerosols (Wunch et al., 2017; O’Dell et al., 2018). Thus, we
performed a set of OSSEs at the Lamont station to evaluate
retrieval results under different aerosol amounts.

We used OCO-2 version eight retrospective (i.e., 8r) data in
the OSSEs, including Level 1B data OCO2_L1B_Calibration 8r,
meteorological data OCO2_L2_Met 8r, pre-screening data
OCO2_L2_ABand 8r, and OCO2_IMAPDOAS 8r, as well as
diagnostic data OCO2_L2_Diagnostic 8r (https://disc.gsfc.nasa.
gov/datasets?keywords�oco2&sort�processLevel&page�1). The
pre-screening procedure uses ABO2 and IMAP-DOAS pre-
processors to remove scenes contaminated by clouds or
aerosols (Taylor et al., 2016). The diagnostic data provide
prior and retrieved state vectors and prior XCO2 in the OSSEs.
We used target-mode data for the three retrieval sites over land
and glint-mode data for the retrieval site over the ocean. We
generated the initial ensemble following the method introduced
in Sect. 2.2.2, and we chose 50 for the size of the ensemble after
sensitivity experiments.

In OSSEs, the a priori state vector adopts the a priori value
calculated by OCO-2 according to the input data, and the
constructed true state vector adopts the OCO-2 retrieval result
of the observation point or a nearby point. The constructed true
state vector is input into the forward model to obtain the
simulated spectra. The observation error of OCO-2 is then
added to the simulated spectra to obtain the observation
spectra. The a priori CO2 profile and constructed true CO2

profile are shown in Figure 6. The spectra simulated by the a
priori state vector and constructed observation spectra are shown
in Figure 3. For the aerosol specific evaluation, we conducted a set
of OSSEs at the Lamont station on January 3, 2016 under three
different tropospheric aerosol amounts. The two tropospheric
aerosol types were sulfate and organic carbon. As the values of
ln(AOD) at 755 nm are used in the state vector, we chose three
sets of ln(AOD) for these two aerosols. For ln(AOD) of sulfate
and organic carbon, they were −4.47 and −5.97, −5.47 and −6.97,
−10.47 and −11.97, respectively in the three sets.

Experimental Results
The retrieval quality was evaluated in terms of the XCO2 and CO2

profiles.XCO2 is the product currently provided by satellite retrievals,
and accurate CO2 profiles are the goals of retrieval algorithms.

XCO2 Results
The differences between the a priori XCO2 and the true XCO2 were
relatively large; specifically, LA, BR, WO, and OC showed
differences of 1.88, 1.70, –3.15, and 2.27 ppm, respectively.
Figure 4 shows the XCO2 obtained by the NARA algorithm
after one, two, and three iterations and comparisons with the a
priori XCO2 and the true XCO2 at the four retrieval sites. The
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retrievedXCO2 gradually approached the true value as the iterations
of the NARA algorithm progressed, ultimately reaching the
optimal value at the third iteration. The differences between the
NARA retrieved XCO2 and the true XCO2 after three iterations were
0.33, 0.11, 0.11, and –1.13 ppm at LA, BR, WO, and OC,
respectively, which was a big improvement from the prior XCO2

and showed that our algorithm was effective.
The retrievals at LA andWOwere similar. At these two sites, the

retrieval of the first iteration was very effective, with subsequent
iterations approaching the true value. After three iterations, the
NARA retrieved XCO2 was quite close to the true XCO2. The results
for BR and OC were similar. The retrieval of the first iteration was
significantly changed compared with the prior value, which showed
that observation information had a huge impact on retrieval. In
subsequent iterations at BR andOC, under themutual constraints of
the prior information and observations, the retrievedXCO2 gradually
approached the true value and reached the optimal XCO2 at the third
iteration. The NARA retrieved XCO2 of the three retrieval sites over
land were closer to the true XCO2 than the NARA retrieved XCO2 at
the ocean site OC, whichwas attributable to the different observation
modes and surface properties over land and ocean and/or the
varying accuracies of the prior values.

The NARA retrieved XCO2 depended on atmospheric AODs
(Figure 5A). The prior and true XCO2 at the observation site were
402.49 ppm and 400.61 ppm. The NARA retrieved XCO2 for
scenario 1 (S1), scenario 2 (S2), and scenario 3 (S3) were
400.94, 401.13, and 401.24 ppm, respectively. S1 had the
highest AOD while S3 had the lowest AOD. It’s clear that as

the AOD decreased, the bias of retrieved XCO2 increased, which
indicated that more accurate XCO2 can be retrieved under
atmospheric conditions with less aerosols.

CO2 Profile Results
Figure 6 shows the CO2 profiles obtained by the NARA algorithm
after one, two, and three iterations and comparisons with the a
priori CO2 profile and the true CO2 profile at the four retrieval
sites. The CO2 profiles differed between the Northern and
Southern hemispheres. The vertical gradient of the CO2 profile
in the Northern Hemisphere was larger than in the Southern
Hemisphere, which is depicted in Figure 6.

First look at the retrieval results for the two Northern
Hemisphere sites LA and BR. The vertical gradient of the a
priori CO2 profile was relatively small. The true CO2 profile above
the troposphere was in good agreement with the a priori CO2

profile; however, the vertical gradient in the troposphere was
greater than that of the a priori profile. As the iterations
progressed, the NARA retrieved CO2 profile gradually
approached the true value. After three iterations, the NARA
retrieved CO2 profile was very close to the true profile, in
particular in the lower troposphere. This is particularly
important given that the carbon sources and sinks of interest
are all located in the lower troposphere. A close look at the
retrieval results for the two Southern Hemisphere sites WO and
OC shows that the vertical gradient of the a priori CO2 profile in
the troposphere was quite small. The NARA retrieved CO2

profiles roughly grasped the characteristics of the true profiles;

TABLE 2 | Information on the four retrieval sites in the OSSEs, including the observation date, sounding ID, location (listed in degrees latitude and degrees longitude), and
surface properties. (LA: Lamont; BR: Bremen; WO: Wollongong; OC: the ocean site).

Site Observation date Sounding ID Location (lat, long) Properties

LA 2016-1-3 2016010319450071 36.641, −97.441 Land; northern hemisphere
BR 2016-3-17 2016031712125573 53.088, 8.888 Land; northern hemisphere
WO 2016-2-10 2016021003570833 −34.410, 150.875 Land; southern hemisphere
OC 2016-7-1 2016070101072675 19.676, −177.231 Ocean; northern hemisphere

FIGURE 2 | Map of the four retrieval sites in OSSEs. (LA, Lamont; BR, Bremen; WO, Wollongong; OC, the ocean site).
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however, they were unable to well simulate the relatively large
vertical gradient of the true profile in the lower troposphere,
which were not as good as the results for the Northern
Hemisphere. Because the vertical gradient of the a priori CO2

profile in the Southern Hemisphere was small, the vertical
gradient of the CO2 profile ensemble decomposed on the basis
of the prior value was also small. The analysis increment was a
linear combination of the ensemble members, thus it could not
retrieve well a large vertical gradient as the true profile indicated.
This problem may be solved by providing a better prior CO2

profile. The retrieved CO2 profile can also be influenced by
aerosol contents (Figure 5B). The patterns of the CO2 profile
under different AODs were similar, but the specific CO2

concentrations at each level were various, which contributed
to the discrepancy of the column-averaged value. The above
analyses demonstrate that the NARA retrieved CO2 profiles in
the Northern Hemisphere were relatively accurate, in particular
in the lower troposphere. The retrieval results for the Southern
Hemisphere roughly grasped the characteristics of the true
profiles but still needed more improvement. The effects of
aerosol scattering should also be considered during the retrievals.

REAL-DATA RETRIEVALS AND
COMPARISONS WITH TOTAL CARBON
COLUMN OBSERVING NETWORK DATA
In this section, we evaluated the XCO2 retrieved by the NARA
algorithm using OCO-2 version 8r target-mode observations at
two target locations and compared the NARA retrieved XCO2

with coincident TCCON data. TCCON is a global network of
ground-based instruments that can retrieve accurate and precise
XCO2, which provides an essential validation resource for space-
based measurements (Wunch et al., 2011). In addition, we
performed real retrievals using the normal 4DVar method,
which requires the calculation of the pressure weighting
function and its transposition, and compared the retrievals
with NARA retrieved ones.

Experimental Setup
Target mode is designed to evaluate biases in the OCO-2 XCO2

product, whose strength is that thousands of spectra can be
obtained in a short period of time over a small region (about
0.2° latitude × 0.2° longitude for the densest measurements)

FIGURE 3 | Spectra simulated by the a priori state vector and constructed observation spectra in three bands. The first column is the O2 A band, the second
column is the weak CO2 band, and the third column is the strong CO2 band. The first to fourth rows are the spectra at LA, BR,WO, andOC, respectively. The name of the
observation point is in the upper left corner of each subplot.
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FIGURE 4 | NARA retrieved XCO2 after one, two, and three iterations and comparisons with the a priori XCO2 and the true XCO2 at (A) LA, (B) BR, (C) WO, and
(D) OC.

FIGURE 5 | The prior and true values as well as NARA retrievals with different atmospheric AODs. (A) depicts the CO2 profiles, and (B) depicts the XCO2. S1, S2,
and S3 indicates scenario 1, scenario 2, and scenario 3, respectively.
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(Wunch et al., 2017). The target locations are mostly selected to
be coincident with ground-based stations, typically at TCCON
sites (Wunch et al., 2011). Given the differences between the
Northern and Southern hemispheres, the two target locations
selected for validation were Lamont, Oklahoma, in the central
United States and Darwin, Australia, on the northern coast. The
Lamont location has relatively uniform surface properties and is
reasonably far from anthropogenic CO2 sources, and the ground
cover changes with the seasons (Wunch et al., 2017); in contrast,
target-mode measurements at the Darwin location contain
observations over both land and ocean. Information on these
two target locations is shown in Table 3. OCO-2 measurements
over about 1 year were selected for validation at each of the two
locations. The observation dates are listed in Table 4.

Restricted by our computational resources, we randomly
selected 10 observation points from OCO-2 pre-screened
measurements for retrievals each day at the Lamont location;
for the Darwin location, we randomly selected 10 observation
points over land and 10 observation points over the ocean each
day. For the 4DVar retrievals, we performed experiments at the
Lamont station on November 24, 2014. We retrieved XCO2 at the
same 10 observation points and used the same prior values as the

NARA algorithm. We assumed that TCCON data were
coincident with OCO-2 target-mode measurements when they
were recorded within ±30 min of the target-mode maneuver. If
there were fewer than five TCCON measurements within that
time frame, the period was extended to ±120 min. Then we
compared the median of the NARA retrieved XCO2 of the 10
selected observation points with the median of coincident
TCCON measurements. In the real retrievals, the size of the
initial ensemble was 50, and the number of iterations was three.
Then we corrected the NARA retrieved XCO2 for bias using the
OCO-2 bias correction method (O’Dell et al., 2018).

Experimental Results
Figure 7 shows the median of the NARA retrieved XCO2 and
comparisons with the median of the OCO-2 retrieved XCO2 using
the ACOS algorithm for the same observation points and the
median of the coincident TCCON measurements at Lamont and
Darwin locations. Retrievals over the land and ocean at the
Darwin location were evaluated separately because land and
ocean surface reflections were modelled differently as purely
Lambertian over land and Cox–Munk with a Lambertian
component over water (O’Dell et al., 2018). The XCO2

FIGURE 6 | NARA retrieved CO2 profiles after one, two, and three iterations and comparisons with a priori and true CO2 profiles at (A) LA, (B) BR, (C) WO, and
(D) OC.
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retrieved by the NARA algorithm and OCO-2 were generally
smaller than TCCON data, in particular over land. It is common
for OCO-2 that a retrieved XCO2 will be smaller than TCCON
data. The NARA algorithm uses similar state vector setting and
aerosol characterization as the ACOS algorithm; thus, some

features of NARA retrievals are similar to OCO-2 results. This
problem may be mitigated by fitting an intensity offset for all
three bands and improving aerosol treatments (Wu et al., 2018).

To better evaluate the retrieval quality, we defined the bias (b)
as the mean difference between the retrieved XCO2 from satellite
measurements and coincident TCCON data and the sounding
precision (σ) as the standard deviation of the difference (Wu
et al., 2018). The bias and sounding precision obtained by NARA
retrievals and OCO-2 retrievals at the Lamont and Darwin
locations are shown in Table 5. As shown in Figure 7 and
Table 5, medians of the NARA retrieved XCO2 were generally
closer to the TCCON measurements than the OCO-2 retrievals,
which demonstrates that the NARA algorithm was effective and
the retrievals from NARA were comparable to those from OCO-
2. For the NARA algorithm, the retrieval results (i.e., bias and
sounding precision) differed at the Lamont and Darwin locations,
which indicated the existence of location-dependent biases. The
location dependence of the target-mode retrievals further showed
that spurious variability in the NARA retrieved XCO2 can be
caused by variability in surface properties, such as altitude,
albedo, and surface roughness. The NARA retrievals also
differed over the land and ocean at the Darwin location; this
was attributed to the different surface properties and modelling of
the surface reflections.

Define the daily standard deviation (σd) as the standard
deviation of retrieved XCO2 from 10 selected satellite
observation points within a day or the standard deviation of
coincident TCCON measurements within a day. Because XCO2

can be assumed to be constant spatially and temporally during a
target maneuver, the daily standard deviation is considered an
artifact and can be used to discern biases caused by the

TABLE 3 | Information on the two validated target locations for real retrievals. The target location is listed in degrees latitude, degrees longitude, and altitude above sea level
in km.

Target Target location
(lat, long, alt)

Target active dates Data References

Lamont, Oklahoma 36.604, −97.486, 0.3179 July 2014–present Wennberg et al. (2016)
Darwin, Australia −12.375, 130.917, 0.0049 July 2014–present Griffith et al. (2014)

TABLE 4 | Dates of the target-mode observations selected for real retrievals at the two validated target locations.

Target Date

Lamont, Oklahoma 2014-10-3, 2014-10-30, 2014-11-24, 2015-2-10, 2015-2-19, 2015-3-3, 2015-6-20, 2015-9-4, 2015-10-10, 2015-11-2, 2015-12-2
Darwin, Australia 2014-9-8, 2014-9-15, 2014-9-22, 2015-3-19, 2015-5-15, 2015-6-5, 2015-8-1, 2015-8-10, 2015-9-11

FIGURE 7 | The median of the NARA retrieved XCO2 and comparisons
with median of the OCO-2 retrieved XCO2 for the same observation points and
the median of the coincident TCCON data at (A) the Lamont location, (B) the
Darwin location over land, and (C) the Darwin location over the ocean.

TABLE 5 | Bias (b) and sounding precision (σ) of NARA and OCO-2 real retrievals
at the two validated target locations. The units for b and σ are ppm.

Target Bias (b) Sounding precision (σ)

NARA OCO-2 NARA OCO-2

Lamont −1.93 −2.95 0.91 1.49
Darwin −2.60 −3.10 1.30 1.31

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 68854211

Jin et al. NLS-4DVar based CO2 retrieval algorithm

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


algorithm’s processing of parameters. Figure 8 shows the σd of
the NARA retrieved XCO2 and comparisons with σd of the OCO-2
retrieved XCO2 of the same observation points and σd of the
coincident TCCON measurements at the Lamont and Darwin
locations. Whether over land or ocean, σd of the two satellite
retrievals were larger than that of coincident TCCON
measurements. Sometimes σd of satellite retrievals can be
particularly large, such as σd on September 4, 2015, at the
Lamont location or σd on March 19, 2015, at the Darwin
location, which greatly exceeded ground-based values.
Although retrievals of 10 randomly selected satellite
observation points cannot fully represent the target-mode
retrieval, the outcome indicated to a certain extent that
ground-based measurements were more robust than satellite
retrievals. Comparing the two satellite retrieval results, we
found that σd of NARA retrievals were generally larger than
those of OCO-2, in particular for measurements at the Darwin
location over the ocean. The robustness of the NARA algorithm
needs to be improved further, in particular over the ocean, which
may be achieved by optimizing the ensemble generation method

or imposing more constraints on the parameters of the state
vector in the process of minimizing the cost function.

For the further contrast between different optimization
methods, the medians and standard deviations of retrievals
from 4DVar, NARA, OCO-2, and TCCON at the Lamont
station on November 24, 2014 were compared. Without bias
correction, the medians of XCO2 from 4DVar, NARA, OCO-2,
and TCCON were 403.28, 397.25, 396.19, and 398.26 ppm,
respectively. The corresponding standard deviations were 8.85,
1.70, 1.15, and 0.65 ppm, respectively. The 4DVar retrieved XCO2

was much higher than TCCON estimate, and the standard
deviation was also bigger than other methods. The NARA
median XCO2 was closest to the TCCON median, and OCO-2
retrievals had the smallest standard deviation. We additionally
compared the computational time consumed by each method.
The retrieval time of one iteration (excluding forward simulation)
from the NARA algorithm was about 0.2–0.3 s. The retrieval time
of one iteration for the 4DVar method varied under different
circumstances, but most exceeded 1 s. The retrieval time of
OCO-2 was close to the 4DVar method.

Figure 9 shows the variation over time in NARA retrieved
XCO2 and coincident TCCON measurements at the Lamont and
Darwin locations. As can be seen from the results for the Lamont
location, the NARA retrievals captured well the seasonal variation
in XCO2. In addition, the retrieval results improved greatly after
bias correction. After bias correction, the bias (b) was −0.15 ppm,
and the sounding precision (σ) was 0.76 ppm. The seasonal
variation in XCO2 was much smaller in the Southern
Hemisphere than in the Northern Hemisphere, and the
observation data distribution for the Darwin location was
inhomogeneous; therefore, the retrievals at the Darwin location
did not show obvious seasonal variation, but XCO2 increased
steadily over time. The bias correction was very effective for
observations over land at the Darwin location; however, it was
not quite ideal for ocean observations. After the bias correction,
the bias (b) was -0.17 ppm, and the sounding precision (σ) was
1.26 ppm. In this case, we used the bias correction method from
OCO-2. Future work will focus on formulating a dedicated bias
correction method for the NARA algorithm.

Figure 10 shows the relationship between the median of
NARA target-mode retrievals and the median of coincident
TCCON data. The best fit straight lines were computed in a
least squares sense. Figure 10A shows the relationship prior to
bias correction and had a correlation coefficient of R2 � 0.89.
Figure 10B shows the retrieval results after bias correction and
had a correlation coefficient of R2 � 0.90. Both correlation
coefficients passed the significance test at the 5% level. This
demonstrates that the retrieval results were credible and that
bias correction was effective, although some residual biases
required further investigation.

SUMMARY AND DISCUSSION

In this study, we developed a novel CO2 retrieval algorithm,
NARA, which used the NLS-4DVar method as the optimization
method, and adopted the LIDORT radiative transfer model and

FIGURE 8 |Daily standard deviation (σd) of the NARA retrieved XCO2 and
comparisons with σd of the OCO-2 retrieved XCO2 for the same observation
points and σd of the coincident TCCON data at (A) the Lamont location, (B)
the Darwin location over land, and (C) the Darwin location over the
ocean.
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necessary parameters provided by the ACOS algorithm in the
forward model. The advantages of the NARA algorithm are its
simplicity and efficiency given the NLS-4DVar method as its
basis, as there is no need to calculate the weighting function
matrix and its transposition during the retrieval process. This
greatly reduces computational complexity while maintaining
retrieval accuracy, which is extremely important for satellite
retrievals whose data volume is quite huge.

OSSEs and real-data retrievals were carefully designed to
evaluate the NARA algorithm. The OSSEs showed that the
NARA retrievals of both XCO2 and the CO2 profile were
greatly improved compared to prior values and were close to
the true values. In particular, the retrieved CO2 profiles of the two
sites in the Northern Hemisphere over land captured well the real
situation in the lower troposphere, where CO2 sources and sinks
are located. The effect of aerosol concentrations on XCO2 retrieval

FIGURE 9 | Variation over time in NARA retrieved XCO2 over land (red squares) and ocean (blue squares) and coincident TCCONmeasurements (black stars) at the
Lamont and Darwin locations. The NARA retrievals in (A) and (C) are before bias correction, and those in (B) and (D) are bias-corrected. In each subplot, the site location
in latitude and longitude, bias (B) and sounding precision (σ) are presented. The units for b and σ are ppm.

FIGURE 10 | Relationships between the median of NARA target-mode retrievals and the median of coincident TCCON data. (A) Data before bias correction. (B)
Data after bias correction. A one-to-one line is indicated by the dashed line, and the best fit line is indicated by the solid line.
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was also discussed. We performed a set of three OSSEs with
different AODs, and the results indicated that the retrieved XCO2

was more accurate with lower aerosol concentrations. Then we
performed real-data retrievals using OCO-2 target-mode
observations and compared the NARA retrieved XCO2 with
coincident TCCON measurements at the Lamont and Darwin
locations. Before bias correction, the mean difference between the
NARA retrieved XCO2 and coincident TCCON measurements
was –1.93 ppm (SD: 0.91 ppm) at the Lamont location; the mean
difference was –2.60 ppm (SD: 1.30 ppm) at the Darwin location.
These results were not inferior to the OCO-2 retrieval results for
the corresponding observation points. We also compared the
XCO2 retrievals with the normal 4DVar method. The retrieval bias
and standard deviation of 4DVar method were bigger than
NARA and OCO-2 results. Besides, the computational time
consumed by one iteration from NARA was the least.

At present, the NARA algorithm is demonstrated effective, but
still needs further improvements. The daily standard deviations of
NARA XCO2 retrievals were relatively large, especially over the
ocean. In future work, we intend to further optimize the NARA
algorithm, such as improving the prior state vector and
generation of the initial ensemble, to enhance its robustness.
Moreover, the algorithm was tested at several TCCON stations,
next it will be tested through all TCCON stations to evaluate the
retrieval results of target-, nadir-, and glint-mode observations. In
addition, we plan to construct and incorporate data filtering and
bias correction components customized to the NARA algorithm,

and make the algorithm become an operation procedure to
produce mature XCO2 products.
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APPENDIX A

The following mathematical derivation exhibits how the optimal
state vector is obtained without calculating the weighting function
matrix and its transposition.

The first-derivative matrix JacQ(β) of Q(β) can be computed
as follows:

JacQ(β) � zQ(β)
zβ

� ( 					
N − 1

√
I

S−1/2ε,+ KPx
), (A1)

where I denote the N × N identity matrix. The Gauss-Newton
iterative solution for the nonlinear least squares problem is
defined by (Dennis and Schnabel 1996):

βi � βi−1 − {[JacQ(βi−1)]TJacQ(βi−1)}−1 × [JacQ(βi−1)]TQ(βi−1).
(A2)

Substituting Eqs. 10, A1 into Eq. A2, we obtain

[(N − 1)I + (KPx)TS−1ε ]Δβi � −{(KPx)TS−1ε [F′(Pxβ
i−1) − y′]

+ (N − 1)βi−1}.
(A3)

where Δβi � βi − βi−1. The linear system Eq. A3 can be solved
using the conjugate gradient (CG) method or a preconditioned
CGmethod. Since (KPx)T can be obtained simply by transposing
KPx, the transposition of weighting function matrix is nicely
avoided.

We substitute Py � KPx and
βi−1 ≈ [(Py)T(Py)]−1(Py)TK(Pxβ

i−1) into Eq. A3 and obtain:

Δβi � (P#y )TS−1ε [F′(Pxβ
i−1) − y′] + (Pp

y)TK(Pxβ
i−1), (A4)

where

(P#y )T � −[(Py)TS−1ε (Py) + (N − 1)I]−1(Py)T, (A5)

and

(Pp
y)T � −(N − 1)[(Py)TS−1ε (Py) + (N − 1)I]−1

× [(Py)T(Py)]−1(Py)T. (A6)

Here Δβi can be computed explicitly by Eq. A4 and the CG
iterations are thus avoided.

To further reduce the implementation complexity by
abandoning the use of the weighting function matrix, we
rewrite Eq. A4 into

Δβi � (P#,ay )TS−1ε [F′(Pxβ
i−1) − y′] + (Pp,a

y )TF′(Pxβ
i−1), (A7)

where

(P#,ay )T � −[(Pa
y)TS−1ε (Pa

y) + (N − 1)I]−1(Pa
y)T, (A8)

(Pp,a
y )T � −(N − 1)[(Pa

y)TS−1ε (Pa
y) + (N − 1)I]−1

× [(Pa
y)T(Pa

y)]−1(Pa
y)T, (A9)

Pa
y � (y′a1 , . . . , y′aN), (A10)

and

y′aj � F(xi−1,p + xj′) − F(xi−1,p). (A11)
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