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This paper explores the adequacy of steady-state-only calibration as a precursor to use of
a groundwater model for decision-support. First, it reviews metrics by which a decision-
support model should be judged. On the basis of these metrics, it establishes the
shortcomings that a decision-support model may incur through foregoing transient
calibration. These are 1) failure to reduce the uncertainties of management-salient
model predictions to the extent that available data allows, and 2) creation of
unquantifiable bias in management-salient predictions. Two methodologies for
quantification of these deficiencies are proposed. The first of these addresses
uncertainty reduction. This is relatively easy to implement, as it requires only that
sensitivities of pertinent model outputs to a model’s parameters be calculated. The
second methodology addresses predictive bias. Implementation of this second
methodology is more expensive as it requires repeated calibration of a steady state
model against stochastic realizations of a transient model.These methods are
demonstrated using a synthetic case which explores the viability of steady-state-only
calibration of models deployed to examine the impacts of pumping on stream flows and
groundwater levels. It is demonstrated that, for some predictions of management interest,
steady-state-only calibration is more than sufficient for this kind of decision-support
modelling.
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INTRODUCTION

In this paper we address the utility of steady state model calibration. In particular, we inquire whether
a model that has undergone only steady state calibration can provide a basis for decision support,
especially in contexts where some management-salient predictions are transient in nature.

Often, in courtrooms and in other forums of public debate, a steady state model is susceptible to
challenge. An opposing party may argue that groundwater processes are never steady state, and that
the role of simulation is to replicate real-world processes on a computer. It follows that a simulator
must prove its worth by reproducing the full historical behaviour of a natural system, and not some
abstract artifact such as “average behaviour”. Unless it can do this, its decision-support role is
questionable at best and invalidated at worst.

This argument is, of course, too simplistic. However, this does not prevent its repetition, nor its
ability to influence the perceptions of those who are unfamiliar with modelling concepts. At the same
time, its refutation in the court of public opinion is not easy. Part of the reason for this is that the
metrics by which decision-support modelling should be judged are not clear—even to many in the
groundwater industry. Even if they were made clear, and were commonly accepted, assessment of a
particular modelling strategy according to appropriate metrics may not be a straightforward matter.
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The purpose of this paper is to state decision-support metrics,
and to present an example of how steady-state-only model
calibration can be assessed using these metrics. However,
before doing this, it is salient to consider some of the
problems that beset calibration of a transient model, and the
assumptions and abstractions on which transient
simulation rests.

Transient recharge processes are complex. The processes
which prevail during moderate rain events may differ greatly
from those that prevail during times of heavy rainfall. During a
significant rain event, shallow saturation, and fast vertical flow
through macropores, can deliver water rapidly to an aquifer.
Meanwhile, surficial ponding of water and overbank flow of
streams can enhance and concentrate recharge at other
locations. Nor is simulation of groundwater recharge
processes straightforward in drier times. If unsaturated
drainage of water through a vertical soil column at the
representative elementary volume scale can be described by
Richard’s equation, it does not follow that this same equation
describes spatially-averaged drainage over the many
heterogeneous soil columns which collectively fill a single
groundwater model cell (Farthing and Ogden, 2017).
Complications are increased where irrigation supplements
rainfall, and where groundwater recharge experiences
significant delays as it travels through the unsaturated zone
(Healy and Scanlon, 2010; Hocking and Kelly, 2016). All of these
processes are difficult to simulate.

Simulation of the transient behaviour of groundwater is also
beset with difficulties. Transient groundwater models take longer
to build and run than steady state models. Their numerical
stability may be compromised as a fluctuating water table
traverses multiple layers of a model. These factors render
computer-aided calibration and uncertainty analysis much
more difficult than for steady state models.

While the information content of transient water levels and
fluxes is higher than that of their static counterparts, this
information must inform many more parameters when
history-matching (also referred to as calibration or data
assimilation) is undertaken under transient conditions. The
additional parameters that must be informed through history-
matching of a transient model include those that describe
groundwater storage, as well as those that describe partitioning
of rainfall and irrigation between recharge, runoff and
evapotranspiration in the unsaturated zone. Nevertheless, if
model predictions of management interest are similar in
nature to those that comprise a transient calibration dataset,
then assimilation of this information can indeed reduce the
uncertainties of these predictions. This reduction occurs even
if individual model parameters remain nonunique, and even if
some of them must adopt roles which compensate for abstract
representations of the real world in a numerical simulator
(Schilling et al., 2014; Doherty, 2015).

In other cases, the uncertainties of predictions made by a
transient model may be reduced very little, if at all by history-
matching. This is the case if the conditions under which
predictions of future system behaviour are required are very
different from those which prevailed in the past. Under these

conditions, it is not impossible for history-matching to achieve
good replication of historical transient system behaviour while
introducing unquantifiable bias to predictions of future transient
behaviour, especially those pertaining to extremely wet and
extremely dry conditions (Doherty and Christensen, 2011;
White et al., 2014; Knowling et al., 2020a).

In contrast to transient models, steady state models generally
run quickly. They are much more easily subjected to computer-
aided history-matching and uncertainty analysis. At the same
time, reliable estimates of long-term recharge to use in these
models can often be obtained through techniques such as chloride
balance (Shaw and Thorburn, 1985; Wood, 1999; Crosbie et al.,
2017). Furthermore, an inversion process based on steady-state-
only history-matching can focus on estimation of conductance
parameters while avoiding the simultaneous estimation of
parameters which affect transient groundwater behaviour. It is
these conductance parameters that determine the final state of a
system when it is subjected to long-term stresses which are
significantly different from those which it has experienced in
the past.

DECISION SUPPORT METRICS

Metrics through which the efficacy of decision-support modelling
can be assessed were presented by Freeze et al. (1990). Use of
these metrics in assessing model simplification strategies has been
discussed by Doherty and Simmons (2013), and more recently by
Doherty and Moore (2019). These metrics are based on the
premise that predictions made by a groundwater model are
uncertain. Uncertainties arise from the complex and
heterogenous processes that affect groundwater recharge and
movement through the subsurface, coupled with a deficit of
data that have the potential to inform the properties which
govern these processes. A high degree of non-uniqueness
(sometimes referred to as equifinality) therefore accompanies
the parameterization of a groundwater model. Parameter non-
uniqueness induces a high degree of uncertainty in some model
predictions, particularly those which describe a groundwater
system’s response to new stresses.

Ideally, modelling serves the decision-making process by
sampling the posterior probability distributions of predictions
of management interest (Knowling et al., 2020b; White et al.,
2020). Here we use “posterior” in the Bayesian sense. Bayes
equation states that assimilation of information that is resident
in the historical behaviour of a system reduces uncertainties
associated with predictions of its future behaviour below those
which they would possess if informed by expert knowledge alone.
When predictions of future system behaviour are accompanied by
assessments of their uncertainties, decision-makers are
acquainted with the risks associated with contemplated
management strategies.

In practice, characterization of the entire posterior probability
distribution of a prediction of management interest may be
neither possible nor necessary. Taking this into account, the
primary requirements of effective decision-support modelling
are now listed.
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• The decision-support modelling process should provide at
least an approximate characterization of the uncertainties of
decision-critical model predictions, particularly as these
pertain to unwanted aspects of system behaviour.

• Because estimates of posterior uncertainty are themselves
uncertain, they should err on the conservative side so that
risks are overestimated rather than underestimated.

• Where choices between different management options are
difficult to make, and where risks are high, the decision-
support modelling process should reduce predictive
uncertainties as much as possible through data
assimilation; this can be achieved through computer-
aided history-matching.

Application to Steady State Modelling
We now apply these metrics to a context in which a numerical
model is run under steady state conditions for the purpose of
history-matching but may be deployed tomake predictions which
are transient in nature. Obviously, some of the model’s

parameters to which management-salient predictions are
sensitive are not informed by the past transient behaviour of
the system when the model undergoes steady-state-only
calibration. Knowledge of these uninformed parameters must
therefore be based on local expertise and site characterization.

Steady-state-only history-matching impacts the ability of
decision-support modelling to satisfy the above-listed metrics
in three distinct ways. To simplify the following discussion, we
categorize these impacts as type 1, 2 and 3 in order to conform
with the convention adopted by Nicol and Doherty (2021) to
describe shortcomings induced by use of a simple model in place
of a more complex one. These are now described. Figure 1 depicts
the conceptual workflow adopted for analysing these
shortcomings in our study. The steps that comprise this
workflow are applicable to more general analyses of decision-
support model appropriateness.

Type 1 Shortcomings
A simplified model may not be able to replicate past system
behaviour as well as a more complex model. This may lead to high
levels of model-to-measurement misfit as it is calibrated. History-
matching therefore fails to assimilate all of the information that is
resident in measurements of historical system behaviour. The
uncertainties of decision-critical model predictions may not
therefore be reduced to levels that are commensurate with this
information, as the model does not hold enough parameters to
provide receptacles for it. The information that is denied entry to
the model expresses itself as so-called “structural noise”. This
manifests itself as model-to-measurement misfit which bears
significant spatial and/or temporal correlation.

Because the principal agent of model-to-measurement misfit
under these circumstances is model structural inadequacies
rather than random measurement error, its effect on posterior
parameter and predictive uncertainties is difficult to characterize.
Nevertheless, methods have been proposed that can
accommodate, to some extent, parameter and predictive
uncertainties forthcoming from model inadequacies. See, for
example, Kennedy and O’Hagan (2001), Cooley and
Christensen (2006) and Oliver and Alfonzo (2018).

We refer to modelling shortcomings arising from this source
as type 1 shortcomings. They are often of secondary concern in
steady state model calibration. This is because it is generally
possible to attain a good fit between model outputs and
(processed) field measurements that comprise a steady state
calibration dataset in a highly-parameterized, regularized
inversion setting. If a good fit cannot be achieved, this is
normally indicative of severe conceptual and structural model
inadequacies as discussed in the paragraph above. Once these
have been exposed by the steady state history-matching process,
they can be rectified.

Type 2 Shortcomings
In the present context, we classify type 2 shortcomings as those
that arise from the impaired capacity of steady-state-only model
calibration to reduce the posterior uncertainties of predictions of
future transient groundwater behaviour. When a model
undergoes steady-state-only calibration, the history-matching

FIGURE 1 | Flow chart for examining shortcomings in model design.
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process is not given access to information that has the capacity to
reduce some of these uncertainties. Inflated uncertainties may
render the choice between one management strategy and another
more difficult.

Fortunately, as is demonstrated below, the decision-support
repercussions of type 2 shortcomings are relatively easy to assess
through linear analysis (Doherty, 2015). Based on information
forthcoming from this analysis, modellers, and modelling
stakeholders, can decide whether the benefits of transient
calibration are worth the cost in their particular management
context.

Type 3 Shortcomings
Despite achieving a good fit with field measurements, a simplified
model may not represent all processes and/or parameters that
affect these measurements. Fitting them with abbreviated
processes/parameters may introduce parametric and predictive
bias. We denote calibration-induced bias as type 3 shortcomings
herein. This is muchmore difficult to recognize and quantify than
the other two types of shortcomings.

In the context of the present discussion, type 3 shortcomings
arise from the fact that the “steady state” condition is a conceptual
artifact. As groundwater levels rise and fall with season, the
direction of groundwater flow may change as discharge
locations shift. Selection of a time, or averaging process, that
can be decreed as “steady state” may be questionable if recharge
and discharge processes are nonlinear (as they usually are).
Consequently, the assumption that temporally-averaged
borehole water levels comprise a system’s response to
temporally-averaged recharge may be questionable.
Alternatively, a modeller may assume that borehole heads that
prevailed over a time period when they were relatively static can
be considered to be steady state for the purpose of model
calibration; however, the groundwater recharge that prevailed
over this time may be difficult to quantify.

Conceptually, uncertainties in “steady state recharge” and in
“steady state heads” can be acknowledged by ascribing
appropriate uncertainties to these quantities when undertaking
computer-based data assimilation. These uncertainties are then
propagated to model parameters, and thereby to model
predictions. However, head and recharge uncertainties that
describe departures from the steady state assumption are likely
to exhibit high degrees of spatial correlation. In practice, their
uncertainties will be very difficult to characterize.

Means through which parameter and predictive biases
incurred by history-matching of a defective model can be
characterized are described by Doherty and Christensen (2011)
and White et al. (2014). We briefly discuss the latter method first.

White et al. (2014) demonstrate that, for the purpose of
analysing calibration-induced predictive bias, the relationship
between a simple model and a “correct” model is that the
former can be derived from the latter by fixing certain of its
parameters at incorrect values. As noted above, this may not
impair the ability of the history-matching process to attain a good
fit between simple model outputs and field measurements,
especially in highly parameterized contexts. However, in
attaining this fit, estimated parameters of the simple model

may adopt roles which compensate for its defects. To the
extent that decision-critical model predictions are sensitive to
either the defect parameters, and/or to the parameters that
compensate for these defects as the model is calibrated, they
may inherit bias. In theory, this bias can be quantified using linear
analysis. In practice this procedure is difficult to implement when
exploring the repercussions of steady-state-only model
calibration as “defect parameters” cannot be readily defined in
this context.

In contrast, the methodology proposed by Doherty and
Christensen (2011) to explore the impacts of model defects on
post-history-matching predictive bias does not require
identification of “defect parameters”. However, implementation
of this method requires much greater numerical effort. It also
requires definition of a “correct” model and a complementary
simple model. The propensity for predictive bias can be evaluated
through paired-model analysis. We base our analysis of type 3
shortcomings arising from steady-state-only calibration on this
methodology.

METHODOLOGY

Details of analyses used for exploration of drawbacks incurred by
steady-state-only calibration are now provided. We do not
address type 1 shortcomings herein as we assume that
parameters of a steady state model can be adjusted in order
for its outputs to provide a satisfactory fit with a steady state
calibration dataset.

Analysis of Type 2 Shortcomings
If the action of a model on its parameters is approximated by the
action of a matrix on a vector, its action during the calibration
process can be described by the following equation.

h � Zk + ε (1)

In Equation 1, the vector h denotes observations comprising a
calibration dataset, while the vector k denotes model parameters.
The vector ε expresses noise associated with the measurement
dataset. Each column of the matrix Z is comprised of sensitivities
of a calibration-relevant model output to a single parameter (Z is
also often referred to as the Jacobian matrix).

Let C(k) denote the prior covariance matrix of model
parameters. The diagonal elements of this matrix represent the
squares of prior parameter standard deviations, i.e. the
uncertainties of model parameters when the latter are
informed by expert knowledge alone. Off-diagonal elements of
C(k) reflect prior parameter correlation. For spatial parameters
such as hydraulic conductivity, spatial correlation reflects a
tendency for above- and below-average values of this hydraulic
property to exhibit spatial continuity.

Let C(ε) (another covariance matrix) denote the statistical
properties of whatever is responsible for model-to-measurement
misfit. When calibrating a steady state model, C(ε) receives
contributions from errors in field measurements, as well as
from errors in the assumption that a particular field
measurement represents a steady state condition. For
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convenience, this matrix is often assumed to be diagonal, this
implying that measurement errors are independent of each other
(a tenuous assumption when its relationship to model structural
and conceptual imperfections is recognized). The magnitudes of
the elements of C(ε) dictate the level of model-to-measurement fit
that should be pursued through history-matching.

Suppose that the model makes a prediction. We denote it as s
(a scalar). Its action in making this prediction can be
characterized by the equation:

s � ytk (2)

In this equation, the elements of the vector y are sensitivities of
the prediction s to each of the elements of k. Let us characterize
the post-calibration variance of s by the symbol σ2s . (Variance is
the square of standard deviation.) In a linear world, the variance
of prior uncertainty of s can be computed using the following
matrix equation.

σ2s � ytC(k)y (3)

Meanwhile, the variance of posterior predictive uncertainty
can be computed using either of the following two equivalent
matrix equations.

σ2s � ytC(k)y − ytC(k)Zt[ZC(k)Zt + C(ε)]−1ZC(k)yt (4)

σ2s � yt [ZtC−1(ε)Z + C−1(k)]−1y (5)

Equation 4 is particularly revealing. The second term of this
equation quantifies the extent to which history-matching reduces
the uncertainty variance of s. See Doherty (2015) for further
details.

Use of the above equations requires that a modeller fill the Z
matrix and y vector with model-output-to-parameter
sensitivities. This can normally be done by running the model
repeatedly with each of its parameters in turn varied
incrementally from a reference value. Model outputs are
divided by parameter differences to obtain sensitivities.

It is important to note that when undertaking linear uncertainty
analysis, the reference parameter fields on which finite-difference
model runs are based do not need to express heterogeneity that is
embodied in C(k); in fact, these parameter fields can be homogeneous.
The effect of parameter heterogeneity on predictive uncertainty is
expressed solely through Equations 3, 4 and 5. It is also important to
note that these equations do not include k. Nor do they include the
observation vector h nor the prediction s. This has an important
repercussion. It means that the ability of a history-matching process to
reduce the uncertainty of a prediction of interest can be gauged
without actually gathering the data that comprises the history-
matching dataset, nor actually subjecting the model to history-
matching. The above equations require only the sensitivities of
model outputs that would be matched to a notional calibration
dataset. The calibration dataset does not have to actually exist. (We
note, however, that model nonlinearities are best accommodated by
evaluating sensitivities using calibrated parameter values.)

Assessment of type 2 shortcomings that beset steady-state-
only calibration is therefore a relatively simple matter. It requires
only that the following steps be undertaken.

1. Construct a transient model to run over an historical time
period, and then over a predictive time period.

2. Identify measurements comprising a transient history-
matching dataset. As stated above, these measurements
may have been taken only in our imagination.

3. Build a representative C(ε) matrix on the basis of likely
misfits between model outputs and respective members of
the history-matching dataset.

4. Build a parameter covariance matrix C(k) based on
experience, and knowledge of the area that the model
represents. Construction of this matrix is normally based
on one or a number of variograms. Utility software from the
PEST (Doherty, 2020) and PyEMU (White et al., 2016) suites
can be used for this task.

5. Populate the Z and y matrices of Equations 4, 5 through
repeated model runs based on finite parameter differences.

6. Compute the posterior uncertainty of a prediction s, or of a
number of predictions of interest, using Equation 4 or 5.

7. Configure the model to run under steady state conditions;
specify a notional steady state calibration dataset.

8. Build a C(ε) matrix for this steady state calibration dataset, this
reflecting the fit that the modeller expects to attain with it.

9. Populate the steady state Z and y matrices through repeated
model runs based on finite parameter differences.

10. Compute the posterior uncertainty of s again using Equation
4 or 5 on the basis of steady-state-only calibration.
Presumably this uncertainty will be greater than that
calculated under the presumption of transient calibration.

11. The difference between these two posterior uncertainties
quantifies type 2 shortcomings as they pertain to steady-
state-only calibration.

Analysis of Type 3 Shortcomings
As stated above, we employ the method developed by Doherty
and Christensen (2011) for exploration of predictive bias incurred
through steady-state-only calibration. Steps are as follows; see the
above publication for theory.

1. Populate a transient model with a suite of random parameter
fields sampled from the prior parameter probability
distribution, of which C(k) is the covariance matrix.

2. Run the transient model under both calibration and predictive
conditions using each of these parameter fields. For a prediction s,
model outputs obtained in this way constitute samples of its prior
probability distribution.We denote the value of this prediction as
calculated using the i’th random parameter set as si.

3. Formulate a steady state history-matching dataset for each
random parameter set, using transient heads and fluxes
computed by the model at steady state measurement
locations. Steady state measurements can generally be
computed from transient model outputs by temporal averaging.

4. Populate a C(ε) matrix to characterize steady state history-
matching. Calculate a target least-squares objective function
that reflects this C(ε).

5. For each parameter set i, calibrate a steady state version of the
model against the steady state calibration dataset obtained

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 6926715

Moore and Doherty Adequacy of Steady State Calibration

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


from the transient model. Employ Tikhonov regularization as
described by Doherty (2003) to ensure that the objective
function is not less than the target.

6. For each parameter set i, make the model prediction si using
steady-state-calibrated parameter values whenmaking transient
predictions; use prior mean values for storage parameters that
were not estimated through steady state calibration.

7. Create a scatter plot in which the si prediction made by the
transient model is plotted on the y axis while the si prediction
made by the complementary steady-state-calibrated model is
plotted on the x axis for all i.

Doherty and Christensen (2011) explain how an “s vs s” plot
obtained in this manner should be interpreted. Refer to Figure 2.
The total vertical scatter of smeasures the prior uncertainty of this
prediction. Meanwhile, points in the scatter plot should ideally be
disposed symmetrically about a line whose slope is unity. To the
extent that parameters must adopt roles that compensate for model
defects in order to fit the calibration dataset, the s vs s scatter plot
endures a sideways shift. Often this shift is parameter-dependent
and results in a best-fit slope of less than unity. This shift is a
measure of predictive bias; as such, it specifies the magnitude of
type 3 shortcomings as it pertains to the prediction. Meanwhile, the
vertical scatter about the line of best fit is indicative of the posterior
uncertainty of the prediction; because the model is nonlinear, this
can vary with the value of the prediction.

Obviously, this process is numerically intensive. However, the
numerical burden is somewhat mitigated if the steady state model
runs quickly.

A SYNTHETIC CASE STUDY

General
We now apply these methodologies to a simple synthetic case.
The issue that is addressed in this example is the effect of
groundwater extraction on groundwater levels and stream
flows, particularly on low stream flows. We identify a number
of management-pertinent predictions that are required of the
modelling process. Some of these are time-averaged quantities

that characterize the long-term effects of groundwater extraction
on a stream. Other predictions, though long term, have transient
overtones, in particular the fraction of time over which flow in the
stream is below a certain threshold.

In this example, subsurface properties, stream flows, rainfall
and potential evaporation rates reflect those encountered in many
New Zealand studies that have been undertaken to explore this
issue (see, for example, Knowling et al., 2019; White et al., 2019;
Hemmings et al., 2020). The authors do not claim that
conclusions drawn from this single study can be applied in all
management contexts. However, the methodologies that are
outlined herein are generally applicable.

Figure 3A shows the rectangular domain of a synthetic model
whose dimensions are 7 km by 12 km. The model includes a
single layer which represents an unconfined aquifer. The land
surface is planar and slopes to the south west; highest and lowest
elevations are 11.96 and 0.05 m respectively. A perennial stream
flows along the bottom of the model domain. Its bed is incised
6 m into the land surface; this is referred to as “reach 1” in the
discussion that follows. Another stream, referred to as “reach 2”,
flows down the western border of the model domain. Its incision
varies between 5 m at its southern end where it joins the larger
stream, and 0 m at a distance of 6 km upstream. All other model
boundaries are of the no-flow type.

Flow of water within the model domain is simulated using
MODFLOW-NWT (Niswonger et al., 2011) based on a uniform
grid whose cells are 100 m by 100 m. Its streamflow routing (SFR)
package simulates stream flow and inflow of groundwater to
reaches 1 and 2. Figure 4A shows flow of water into the upstream
end of reach 1 over a 9 year period, this being the model’s
simulation time; there is no external inflow to reach 2. Water
level variations within reach 1 induced by variations in
streamflow span a range of about 2.8 m during the 9 year
simulation time.

Figure 3A depicts 18 observation wells. In assessment of type 2
model shortcomings, steady state heads in nine of these wells (4,
5, 6, 10, 11, 12, 16, 17, 18) were selected for inclusion in the
calibration dataset. Heads in these and other wells comprise
model predictions. In analysis of type 3 model shortcomings,
all 18 observation wells comprise the calibration dataset.

Model Parameters
Hydraulic property heterogeneity is represented using pilot
points, the locations of which are shown in Figure 3A. Log-
average values of 60 m/day and 0.01 are assumed for hydraulic
conductivity and specific yield respectively. Spatial variability of
both of these quantities is expressed by a log-exponential
variogram with a range of 4.5 km; the sill of the log (to base
10) hydraulic conductivity variogram is 0.25 while that of the log
specific yield variogram it is 0.0625. The high values of hydraulic
conductivity and the low values of specific yield reflect conditions
that prevail in many New Zealand catchments wherein
groundwater flows through open framework gravels of
extremely high permeability embedded in pervasive, clay-
bound gravels of low specific yield.

Streambed and drain conductances along all of reaches 1 and 2
respectively are set to a uniform value of 1.0 m2/d. This is high

FIGURE 2 | Comparison of predictions made by transient models and
complimentary steady state models.
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FIGURE 3 | Rectangular domain of the synthetic model. (A) Reach 1 runs along the bottom of the model domain (dark blue) and reach 2 runs along the side of the
model domain (turquoise). Observation wells are depicted as red circles, and the two pumping wells are depicted as black circles. (B) Spatial distribution of soils across
the model domain; brown soils are red, pallic soils are pink, and the twomoderate soils are blue (moderate 1) and green (moderate 2). Pilot point locations are depicted as
green circles.

FIGURE 4 | Time series of inputs for the synthetic model. (A) Upgradient inflows into reach 1, (B) rainfall; and (C) potential evaporation.
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enough to present minimal impediment to groundwater efflux
into these streams. Nevertheless, these conductance parameters
are included in the analyses described herein. The prior standard
deviation attributed to the log of each of these conductances
is 0.25.

Transient groundwater recharge is simulated using the
LUMPREM lumped-parameter model. This is described by
Watson et al. (2013) and Moeck et al. (2016). It is publicly
available as Doherty (2020). LUMPREM simulates water
balance within the plant root zone. It receives rainfall on a daily
basis; water is lost as evapotranspiration, drainage recharge,
macropore recharge and runoff. Nonlinear, user-parameterizable
relationships govern the rates of evapotranspiration and below-
root-zone drainage recharge as functions of soil moisture content.
Time series of rainfall and potential evapotranspiration are shown
in Figures 4B,C. The domain of the groundwater model is divided
into four zones that are characterized by four different soil types,
namely brown, pallic and twomoderate soil types; see Figure 3B. A
different instance of LUMPREM calculates recharge within each of
these zones. Stochastic parameterization of these LUMPREM
instances reflects the properties of these soil types, and a
pasture vegetation type.

Model Timing
Time series of stream flow, rainfall and potential
evapotranspiration for the 9 year simulation period which is
the focus of the present study were extracted from much
longer time series based on a much longer simulation time.
This particular simulation time window was selected for the
current study because of its following desirable features.

1. Borehole water levels show considerable variation over this
time, with a range of more than 2 m at the upper extent of the
model where this variation is greatest, this reflecting the
transient nature of the simulated system.

2. Borehole water levels at the end of this time period are not too
different from those at its beginning, no more than 0.01 m at
the upper extent of the model.

The first requirement contributes to the integrity of the study
documented herein, and conclusions drawn from it. The second
underpins our use of average heads as steady state heads. In real-
world practice, where the quality and quantity of borehole water
level measurements can vary over a model domain, a modeller
may adopt a different, and perhaps somewhat subjective, scheme
for assignment of steady state heads to different wells. In our case,
the use of averaging as a mechanism for representation or steady
state conditions eliminates subjectivity, at the same time as it
explores the relationship between “steady state” and “average”.

For the numerical experiments which comprise the present
investigation, the model is run twice over its 9 year simulation
period—once for calibration purposes and once for predictive
purposes. To eliminate extraneous contributions to model-
calculated quantities, the same set of starting conditions is
employed for both of these runs. These starting conditions were
calculated during the longer model run from which the 9 year
simulation period was extracted. For the 9 year calibration run

(i.e., the first of the model runs), conditions are as described
above. During the 9 year prediction period, two pumping wells
are introduced to the model domain. Their locations are depicted in
Figure 3A. Each of these wells pumps at a uniform rate of 2,500 m3/
day for 6months of each year; these are summer months in which
evaporation is high and rainfall is low. The first pumping period
commences at the start of the simulation; subsequent pumping
periods begin on the same day of each subsequent year. Joint yearly
extraction from these two wells amounts to about 14% of long-term
average recharge into the entire model domain.

Steady State Model Calibration
As stated above, steady state quantities are calculated as averages
of respective transient quantities over the 9 year simulation
period. In particular:

• Average LUMPREM-calculated recharges are supplied as
steady state recharges in each of the four recharge zones.

• Average stream inflows are used as up-catchment flows into
reach 1.

• The calibration dataset is comprised of average heads in 9 of
the 18 observation wells (see Figure 3A above), average
groundwater inflows into reach 1, and average groundwater
inflows into reach 2.

• However, in analyzing type 3 model shortcomings, average
heads in all 18 observation wells comprise the calibration
dataset.

Predictions
Analyses described in the previous section are applied to the
following four transient predictions:

• Time-averaged heads in the 18 observation wells depicted in
Figure 3A.

• Time-averaged drawdowns in each of these wells.
Drawdown is calculated as average head over the 9 year
simulation time when pumps are not operating (i.e., the
calibration period) minus average head over the 9 year
prediction period when pumps are operating.

• Average depletion of groundwater inflow into each of reaches 1
and 2. Depletion of groundwater inflow is calculated as average
groundwater inflow over the calibration period minus average
groundwater inflow over the prediction period.

• Total time during the 9 year prediction period over which flow
in each of reaches 1 and 2 is less than the Q95 threshold for
each of these reaches. The Q95 threshold is the value of flow
that is exceeded 95 percent of the time during the 9 year
calibration period.

This suite of predictions is typical of those that are commonly
employed to examine the effects of proposed pumping on the
health of nearby rivers and streams.

Spatial heterogeneity of hydraulic conductivity affects the direction
of groundwater flow in the south western part of the model domain.
The disposition of areas of high and low hydraulic conductivity in any
hydraulic property realization that is drawn from the prior parameter
probability distribution determines howmuch groundwater leaves the
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system through each of reaches 1 and 2. The distribution of specific
yield also influences flow into both of these reaches; higher, up-
catchment groundwater levels induce greater amounts of reach 2
inflow. The presence of reach 2 therefore induces the direction of
groundwater flow to change with season; furthermore, seasonal
variation in its flow direction is realization-dependent. Hence, as
well as introducing uncertainty to predictions of groundwater inflow
into both of reaches 1 and 2, hydraulic property heterogeneity also
introduces uncertainty to the notion of “steady state”.

The fourth of the above predictions is sensitive to the timing of
the growth and decay of cones of groundwater depression that
surround the two pumping wells. Parameters which govern this

process have the capacity to be informed by transient calibration.
Uncertainties associated with predicted durations of low stream
flow are therefore expected to be higher when they are made by a
model that has been calibrated under steady state conditions, than
by a model that has been calibrated under transient conditions.

RESULTS

Model Predictions
Time series of heads in a number of representative wells during
the 9 year calibration period in which pumps are not operating,

FIGURE 5 | Time series of heads in two representative wells during the 9 year calibration period in which pumps are not operating, and during the 9 year prediction
period during which pumps are operating. (A)Observation bore B2 located in the upper part of the groundwater model domain, and (B) observation bore B14 located in
the lower part of the groundwater model domain.

FIGURE 6 | Time series of aquifer inflow into stream reaches 1 and 2 during the calibration and prediction periods for: (A) reach 1; and (B) reach 2.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 6926719

Moore and Doherty Adequacy of Steady State Calibration

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


and during the 9 year prediction period during which pumps are
operating, are provided in Figure 5. Time series of aquifer inflows
into reaches 1 and 2 during the calibration and prediction periods
are provided in Figure 6. The mean parameters used to calculate
values of predictions of management interest are listed in the
Supplementary Material Table S1. The calculated predictions
are listed in the Supplementary Material Tables S2, S3 and S4.

Linear Analysis
Parameter Estimability
Before presenting the results of linear analysis as they pertain to
the present study, we present a number of figures that depict other
easily-achieved outcomes of linear analysis. They demonstrate the
comparative capacity of steady state and transient calibration to
reduce the posterior uncertainties of model parameters. It must
be borne in mind, however, that the use of a model in decision-
support depends on its ability to reduce the uncertainties of
specific predictions, and not necessarily of parameters. Reducing
the uncertainties of parameters to which predictions of
management interest are not sensitive is therefore of
secondary importance; this is further discussed below.

Figure 7A maps the relative posterior uncertainty of the log
(to base 10) of hydraulic conductivity throughout the model
domain attained through steady-state-only calibration. The
relative posterior uncertainty, r, of a parameter is calculated as:

r � σpost

σpre
(6)

where σpre is the standard deviation of prior uncertainty of the
parameter and σpost is its standard deviation of its posterior
uncertainty.

Figure 7B maps this same statistic following transient
calibration. These figures demonstrate the enhanced capacity
of a transient dataset to inform hydraulic conductivity
parameters, notwithstanding the fact that it must also inform
other parameters.

Figure 8 maps the relative posterior uncertainty of the log of
specific yield achieved through transient model calibration. This
parameter type is not informed by steady-state-only model
calibration. The ability of transient model calibration to reduce
the uncertainty of this parameter type is readily apparent from
this figure.

Figure 9 charts relative posterior uncertainties of parameters
belonging to the four soil-specific instances of the LUMPREM
recharge model achieved through both steady state and
transient calibration of the composite recharge/groundwater
model. The back row of this figure shows relative posterior
uncertainties achieved through steady-state-only calibration,
whereas the front row shows relative posterior uncertainties
achieved through transient calibration. Even though recharge is
a transient phenomenon, steady-state-only calibration has a
small capacity to reduce the uncertainties of LUMPREM
parameters because time-averaged LUMPREM-calculated
recharges are provided to the steady state version of the
groundwater model.

FIGURE 7 | Maps of the relative posterior uncertainty of the log of hydraulic conductivity throughout the model domain attained through: (A) steady-state-only
calibration, and (B) transient calibration.
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Analysis of Type 2 Shortcomings
We now consider the predictions which are the focus of the
present study.

Figures 10A,B show the uncertainties associated with heads
and drawdowns in all of the wells depicted in Figure 3A. Each
of these figures has three rows. The back row provides standard
deviations of prior prediction uncertainty. The middle row
provides prediction standard deviations posterior to steady-
state-only calibration. The front row provides prediction
standard deviations posterior to transient calibration. These
figures indicate that steady-state-only calibration considerably
reduces the uncertainties of average head predictions, and that
further uncertainty reductions accrued through transient
calibration are small. The same does not apply to
predictions of drawdown. These predictions benefit from
the ability of transient history-matching to access extra
information.

Figures 11A,B depict uncertainties associated with stream
flow predictions in reaches 1 and 2. The same protocols are
adopted for the three rows of each of these figures as are adopted
for those of the previous figure. Figure 11A pertains to average
stream flow depletion while Figure 11B pertains to flow duration
below the Q95 level.

It is apparent from Figure 11A that transient calibration adds
little to the ability of steady state calibration to reduce
uncertainties associated with predictions of average stream
flow depletion in each of the reaches. This follows from the
sensitivity of this prediction to local hydraulic conductivity
(especially in the south west of the model domain), and from
the ability of steady state calibration to inform this hydraulic
property.

FIGURE 8 |Map of the relative posterior uncertainty of the log of specific
yield achieved through transient calibration.

FIGURE 9 | Relative reduction in LUMPREM parameter uncertainties achieved through history-matching to transient (back row) and steady state data (front row).
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Factors that affect prolongation of low-flow conditions are
more complex however (Figure 11B). The prior uncertainty of
flow duration below the Q95 threshold is greater for reach 2 than
for reach 1. This is because groundwater inflows are smaller into
reach 2 than into reach 1, and because these inflows are sensitive
to local aquifer properties. Steady-state-only calibration reduces
the uncertainty of this prediction considerably because of its
capacity to illuminate these local aquifer properties. For reach 1
however (for which groundwater inflows are much greater and
are less affected by local aquifer properties), transient calibration
is more effective, as it informs hydraulic properties that affect
timing of drawdown propagation from the two pumping wells.

Nonlinear Analysis
In implementing the nonlinear methodology described in the
previous section, a total of 200 parameter sets were drawn from
the prior parameter probability distribution. As has already been
discussed, for each of these realizations, a set of steady state
observations was generated by running the transient model over
the 9-year calibration period, and then averaging pertinent model
outputs. A steady state model was calibrated against each of these

sets of outputs. For each parameter realization, both pairs of
model parameters (original and calibrated) were then used to
make predictions which are the subject of this synthetic study.

Predictions made by all model pairs can be compared in a
scatter plot. For a given parameter realization, a prediction made
by the model which was calibrated under steady state conditions
is plotted on the x axis. The prediction made using the original
parameter realization is referred to the y axis.

We select two observation wells to exemplify the outcomes
of this analysis, namely wells B2 and B14. These wells
demonstrate worst and best performance of steady-state-only
calibration in terms of its propensity to induce bias in these
types of model prediction. Figures 12A,B pertain to average
heads in these two wells over the prediction period in which
pumps are operating, while Figures 13A,B pertain to average
predicted drawdowns.

The results for well B2 indicate a consistent bias for heads
predicted by the steady-state-calibrated model, and an opposite
bias for predicted drawdowns. In contrast, no such bias is
apparent for well B14. Well B2 is situated in the upper part of
the catchment, while B14 is situated closer to its outlet.

FIGURE 10 | Uncertainties associated with predictions of pumping impacts on: (A) average groundwater levels in monitoring wells 1–18; and (B) average
drawdowns in monitoring wells 1–18.

FIGURE 11 | Uncertainties associated with predictions of: (A) the average stream depletion rate in reach 1 and reach 2; (B) the proportion of days below the low
flow threshold (Q95) in reach 1 and reach 2.
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FIGURE 12 | Nonlinear analysis of groundwater level predictions in: (A) upgradient bore B2; and (B) downgradient bore B14. Predictions made using the steady-
state-calibrated parameter set are plotted on the x axis while those made using the original parameter set are plotted on the y axis.

FIGURE 13 | Nonlinear analysis of groundwater drawdown in: (A) upgradient bore B2; and (B) downgradient bore B14. Predictions made using the steady-state-
calibrated parameter set are plotted on the x axis while those made using the original parameter set are plotted on the y axis.

FIGURE 14 |Nonlinear analysis of stream depletion predictions in reach 1 and reach 2: (A)Mean stream depletion rate in reach 1; (B)mean stream depletion rate in
reach 2. Predictions made using the steady-state-calibrated parameter set are plotted on the x axis while those made using the original parameter set are plotted on the
y axis.
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Under-prediction of B14 heads by the steady-state-calibrated
model suggests a consistent overestimation of hydraulic
conductivities in parts of the model domain. An examination of
experimental results demonstrates that this is indeed the case. For
some realizations, during very wet events the water table rises to the
surface for a short period of time over parts of the model domain,
this inducing saturated overland flow. Groundwater heads are
thereby clipped. This introduces nonlinearity into the averaging
process whereby average heads are derived from transient heads.
With some averaged heads thereby biased low, local hydraulic
conductivities inferred from these heads through steady state
calibration are biased high.

Figures 14A,B show s vs s scatter plots for average groundwater
inflow depletion into reaches 1 and 2. Predictions for reach 1 exhibit
some degree of bias; there is tendency for the steady-state-calibrated
model to over-predict pumping-induced flow depletion in this reach.
We attribute this to the same phenomenon as that discussed above
for B2 heads. Steady state calibration has a tendency to overestimate
hydraulic conductivities in parts of the model domain, including
those parts where extraction wells are situated. Higher hydraulic
conductivities enable faster drawdown propagation to river reaches
when these pumps are operating. This applies particularly to reach 1,
as large parts of reach 2 are disconnected from the groundwater
system during dry times when pumping occurs.

Figures 15A,B provide s vs s scatter plots for the fraction of
time over which flows in reaches 1 and 2 are less than their
respective Q95 thresholds. Little steady-state-calibration-induced
bias is apparent in this prediction for reach 1; however, there is a
tendency for underestimation of this quantity in reach 2 by the
steady-state-calibrated model.

DISCUSSION

The results presented above suggest that steady-state-only model
calibration can indeed reduce uncertainties associated with the
predicted effects of pumping on nearby groundwater heads and

inflows to streams. Furthermore, this reduction is significant. This
reflects the high information content of steady state measurements
with respect to conductance parameters such as hydraulic conductivity.
Other studies (for example Gallagher and Doherty, 2007; Soltanian
and Ritzi 2014) describe how hydraulic conductivity is often the major
contributor to the uncertainties of many predictions of management
interest. This follows from the large range of values that it may take,
and its high degree of spatial variability.

However, where timing is important to a prediction, transient
calibration can reap further uncertainty reduction benefits.
Whether these benefits justify the construction and calibration
of a transient model is a site-specific matter. The study reported
herein demonstrates that this matter can be rapidly investigated by
constructing a representative transient model, and then using that
model for linear analysis. This is a far less onerous process than
building a more detailed transient model, and then calibrating that
model against actual field measurements. Linear analysis
undertaken on the representative transient model can be used
to explore whether the latter process is worth the effort.

Of greater concern is the propensity for steady-state-only
calibration to induce bias in some decision-critical model
predictions. The propensity for bias depends on the
prediction, for some predictions are more susceptible to it
than others. It also depends on the uncertainty associated with
that prediction. If a prediction is highly uncertain, then errors
introduced by bias may be small in comparison with this
uncertainty. On the other hand, analyses such as those
presented by White et al. (2014) suggest that the errors
introduced by bias could be large for some predictions whose
post-calibration uncertainties are apparently small.

In the present study, bias arises from the artificial nature of the
steady state condition. It also arises from themanner in which steady
state observations are computed from real observations. If steady
state observations suffer bias, then inferences of hydraulic
conductivity drawn from steady state calibration also suffer bias.
This is demonstrated in the synthetic case discussed above where
steady state heads are calculated by averaging transient heads.

FIGURE 15 | Nonlinear analysis of stream depletion predictions in reach 1 and reach 2. (A) Proportion of days below the low flow threshold in reach 1; (B)
proportion of days below the low flow threshold in reach 2. Predictions made using the steady-state-calibrated parameter set are plotted on the x axis while those made
using the original parameter set are plotted on the y axis.
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Occasional surface clipping of the latter during times of high rainfall
introduces nonlinearities into the averaging process that bias
calibrated hydraulic conductivities in parts of the model domain.

Removal of this particular source of bias would require that the
calibration process eschew as close a fit with average heads as was
achieved in the present study. This can be achieved in a number of
ways. For example, the target objective function can be set to a
higher value than that employed herein, lower weights can be
assigned to time-averaged heads that are most likely to be affected
by this process, or these heads can be removed from the calibration
dataset altogether. More sophisticated accommodation of this
source of bias may account for temporal correlation of head-
averaging errors by designing a C(ε) matrix with appropriate
off-diagonal elements. All of these options would induce higher
uncertainties in some, if not all, management-salient predictions.
This trade-off of increased uncertainty against reduced propensity
for bias is not uncommon in data processing generally.

Steady state model calibration offers other opportunities for
introduction of predictive bias. Whether this bias is any greater
than that introduced through transient calibration is a matter of
conjecture. In the present example we compute steady state
recharge by averaging LUMPREM-calculated recharge over a
9 year period. At the same time, the calibration process was
chosen to be representative of long term conditions, as it is
reasonably lengthy and begins and ends with roughly the same
amount of water stored underground. In real-world modelling
practice, other estimates of steady state recharge may be
employed. These are likely to have their own biases. For
example they may lack spatial resolution, and/or the capacity
to reflect different land uses and soil types; they may fail to
account for local ponding during wet seasons wherein recharge is
concentrated in certain areas. However calculation of transient
recharge may suffer from similar problems, especially during
periods of high rainfall (and therefore high recharge) where
partitioning of water between runoff, interflow, ponding,
macropore recharge and replenishment of the soil moisture
store is notoriously difficult.

In the example discussed above, a model that undergoes
steady-state-only calibration is used to make a transient
prediction, i.e., the period of time over which stream flows are
less than their Q95 levels. Under circumstances such as these, the
parameters of the recharge model undergo very little adjustment
during the regularized inversion process through which steady
state model calibration is achieved. Their posterior uncertainties
are therefore barely reduced from their prior uncertainties. Linear
analysis demonstrates that if we can associate a range of recharge
model parameter values with a particular soil and vegetation type
(i.e., if we know the joint prior probability distribution of these
parameters), then the uncertainties of some decision-critical
model predictions may not suffer too much from this model-
deployment strategy. However predictive uncertainty analysis
becomes important under these circumstances. If a prediction
of management interest is made using only a single set of recharge
model parameter values that are central with respect to the joint
prior parameter probability distribution, nonlinearity of recharge
with respect to these parameters may engender considerable
predictive bias. Fortunately, this is exposed and

accommodated if the prediction is made using many
parameter values that collectively sample the posterior
parameter probability distribution, as is demonstrated in
this study.

CONCLUSION

Environmental governance requires that responses be made on a
regular basis to applications for increased groundwater
extraction. A key adjudication criterion is the effect of the
proposed pumping on nearby streams. Groundwater extraction
has the capacity to reduce, or even eliminate, stream flows in dry
seasons. Flow reduction can have a dramatic effect on stream
water quality. This can have profoundly negative consequences
for biota which inhabit streams.

Increased groundwater extraction can also impact existing
groundwater users. It can lower the piezometric surface below
present pump intake levels. In severe circumstances, it can make
access to groundwater difficult during prolonged dry periods
when demand for its use is greatest.

Calculations required for assessment of a licensing application
are often based on modelling. However numerical modelling of
natural systems is always compromised. Budgets are always lean;
data are always scarce. A decision for or against a particular
modelling strategy can never be conclusive. Nevertheless, model
design and deployment decisions must be made. These decisions
require metrics for success and failure. This paper presents
generally-applicable metrics that can serve as reference points
for adoption (or not) of a modelling strategy that involves steady-
state-only calibration. It also demonstrates analysis
methodologies through which adoption of this strategy can be
judged against these metrics in a particular management context.

In real-world modelling practice, construction and calibration
of a steady state model is not a particularly difficult undertaking.
Software that implements highly parameterized inversion and
data assimilation is readily available, and relatively easy to apply
to steady state model calibration. Amodeller can therefore readily
extract information from a local steady state dataset.
Management-critical predictions can then be made, and their
uncertainties analysed. For some model predictions, these
uncertainties will not be too much greater than if a more
laborious process of construction and calibration of a transient
model had been undertaken. Steady-state-only model calibration
may therefore, in many cases, mark the point of diminishing
return as far as decision-support modelling is concerned.

However, the present paper makes it clear that caution must be
exercised. While the results documented herein suggest that
transient history-matching does not reduce the uncertainties of
some management-salient predictions too much below that which
steady-state-only history-matching can achieve, these conclusions
are location-specific and prediction-specific. In more general
situations, the potential benefits of transient model calibration
can be tested using the linear methods presented in this paper. The
transientmodel that is used for this analysis need not be as complex
as that which would actually be built and deployed for decision-
support. Nor does it even need to be calibrated.
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The potential for predictive bias that is incurred by the
steady state assumption is more difficult to quantify. Strategies
that reduce this potential are necessarily location-specific and
prediction-specific. The extent to which they are a cause for
concern is determined by the uncertainty of management-
salient predictions. If these are large, the potential for error
incurred by predictive bias may be small in comparison; it can
therefore be neglected. Alternatively, if the potential for
predictive bias is significant in comparison with the
uncertainty of an important prediction, then it must be
included in uncertainty intervals that are associated with
this prediction. Rapid evaluation of the contribution of
calibration-induced predictive bias to overall posterior
predictive uncertainty in a range of modelling contexts is a
matter that awaits further research.

DATA AVAILABILITY STATEMENT

The original contribution presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CM undertook all numerical work. CM and JD jointly
developed ideas expressed herein, and wrote the manuscript
in partnership.

FUNDING

This work was funded, in part, through the “Smart Models for
Aquifer Management” (SAM) research program Grant
Number: C05X1508 funded by the New Zealand Ministry of
Business, Innovation and Employment, and was also
supported by GNS Science Groundwater Strategic Science
Investment Fund (SSIF).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2021.692671/
full#supplementary-material

REFERENCES

Cooley, R. L., and Christensen, S. (2006). Bias and Uncertainty in Regression-
Calibrated Models of Groundwater Flow in Heterogeneous media. Adv. Water
Resour. 29 (5), 639–656. doi:10.1016/j.advwatres.2005.07.012

Crosbie, R. S., Peeters, L. J. M., Herron, N., McVicar, T. R., and Herr, A. (2018).
Estimating Groundwater Recharge and its Associated Uncertainty: Use of
Regression Kriging and the Chloride Mass Balance Method. J. Hydrol. 561,
1063–1080. doi:10.1016/j.jhydrol.2017.08.003

Doherty, J., and Christensen, S. (2011). Use of Paired Simple and Complex Models
to Reduce Predictive Bias and Quantify Uncertainty. Water Resour. Res. 47,
W12534. doi:10.1029/2011WR010763

Doherty, J., and Moore, C. (2019). Decision Support Modeling: Data Assimilation,
Uncertainty Quantification, and Strategic Abstraction. Groundwater 58,
327–337. doi:10.1111/gwat.12969

Doherty, J., and Simmons, C. T. (2013). Groundwater Modelling in Decision
Support: Reflections on a Unified Conceptual Framework. Hydrogeol J. 21,
1531–1537. doi:10.1007/s10040-013-1027-7

Doherty, J. (2003). Ground Water Model Calibration Using Pilot Points and
Regularization. Ground Water 41 (2), 170–177. doi:10.1111/j.1745-
6584.2003.tb02580.x

Doherty, J., 2015. Calibration and Uncertainty Analysis for Complex
Environmental Models. Brisbane, Australia: Watermark Numerical
Computing. 227pp. ISBN: 978-0-9943786-0-6. Downloadable from www.
pesthomepage.org

Doherty, J. (2020). PEST: Model-independent Parameter Estimation. Brisbane,
Australia: Watermark Numerical Computing. Downloadable from www.
pesthomepage.org

Farthing, M. W., and Ogden, F. L. (2017). Numerical Solution of Richards’
Equation: A Review of Advances and Challenges. Soil Sci. Soc. Am. J. 81,
1257–1269. doi:10.2136/sssaj2017.02.0058

Freeze, R. A., Massmann, J., Smith, L., Sperling, T., and James, B. (1990).
Hydrogeological Decision Analysis: 1. A Framework. Groundwater 28 (5),
738–766. doi:10.1111/j.1745-6584.1990.tb01989.x

Gallagher, M., and Doherty, J. (2007). Predictive Error Analysis for a Water
Resource Management Model. J. Hydrol. 34 (3-4), 513–533. doi:10.1016/
j.jhydrol.2006.10.037

Healy, R. W., and Scanlon, B. R. (2010). “Physical Methods: Unsaturated Zone,” in
Estimating Groundwater Recharge (Cambridge: Cambridge University Press),
97–116. doi:10.1017/CBO9780511780745.006

Hemmings, B., Knowling, M. J., and Moore, C. R. (2020). Early Uncertainty
Quantification for an Improved Decision Support Modeling Workflow: A
Streamflow Reliability and Water Quality Example. Front. Earth Sci. 8, 502.
doi:10.3389/feart.2020.565613

Hocking, M., and Kelly, B. F. J. (2016). Groundwater Recharge and Time Lag
Measurement through Vertosols Using Impulse Response Functions. J. Hydrol.
535, 22–35. doi:10.1016/j.jhydrol.2016.01.042

Kennedy, M. C., and O’Hagan, A. (2001). Bayesian Calibration of Computer
Models. J. R. Stat. Soc. Ser. B (Stat Methodol). 63 (3), 425–464. doi:10.1111/
1467-9868.00294

Knowling, M. J., White, J. T., McDonald, G. W., Kim, J.-H., Moore, C. R., and
Hemmings, B. (2020a). Disentangling Environmental and Economic
Contributions to Hydro-Economic Model Output Uncertainty: An Example
in the Context of Land-Use Change Impact Assessment. Environ. Model. Softw.
127, 104653, 2020a . Available at: https://www.sciencedirect.com/science/
article/pii/S1364815219305031?via%3Dihub. doi:10.1016/
j.envsoft.2020.104653

Knowling, M. J., White, J. T., Moore, C. R., Rakowski, P., and Hayley, K. (2020b).
On the Assimilation of Environmental Tracer Observations for Model-Based
Decision Support. Hydrol. Earth Syst. Sci. 24, 1677–1689. doi:10.5194/hess-24-
1677-2020

Moeck, C., Brunner, P., and Hunkeler, D. (2016). The Influence of Model Structure
on Groundwater Recharge Rates in Climate-Change Impact Studies. Hydrogeol
J. 24 (5), 1171–1184. doi:10.1007/s10040-016-1367-1

Nicol, C., and Doherty, J. (2021). Exploring Model Defects Using Linear
Analysis: A GMDSI Worked Example Report. South Australia: National
Centre for Groundwater Research and Training, Flinders University. ISBN:
978-1-925562-52-1. DOI as a weblink. doi:10.25957/ew1j-9g7510.25957/
ew1j-9g75

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 69267116

Moore and Doherty Adequacy of Steady State Calibration

https://www.frontiersin.org/articles/10.3389/feart.2021.692671/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2021.692671/full#supplementary-material
https://doi.org/10.1016/j.advwatres.2005.07.012
https://doi.org/10.1016/j.jhydrol.2017.08.003
https://doi.org/10.1029/2011WR010763
https://doi.org/10.1111/gwat.12969
https://doi.org/10.1007/s10040-013-1027-7
https://doi.org/10.1111/j.1745-6584.2003.tb02580.x
https://doi.org/10.1111/j.1745-6584.2003.tb02580.x
http://www.pesthomepage.org
http://www.pesthomepage.org
http://www.pesthomepage.org
http://www.pesthomepage.org
https://doi.org/10.2136/sssaj2017.02.0058
https://doi.org/10.1111/j.1745-6584.1990.tb01989.x
https://doi.org/10.1016/j.jhydrol.2006.10.037
https://doi.org/10.1016/j.jhydrol.2006.10.037
https://doi.org/10.1017/CBO9780511780745.006
https://doi.org/10.3389/feart.2020.565613
https://doi.org/10.1016/j.jhydrol.2016.01.042
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1111/1467-9868.00294
https://www.sciencedirect.com/science/article/pii/S1364815219305031?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1364815219305031?via%3Dihub
https://doi.org/10.1016/j.envsoft.2020.104653
https://doi.org/10.1016/j.envsoft.2020.104653
https://doi.org/10.5194/hess-24-1677-2020
https://doi.org/10.5194/hess-24-1677-2020
https://doi.org/10.1007/s10040-016-1367-1
https://doi.org/10.25957/ew1j-9g7510.25957/ew1j-9g75
https://doi.org/10.25957/ew1j-9g7510.25957/ew1j-9g75
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Niswonger, R. G., Panday, S., and Ibaraki, M. (2011). MODFLOW-NWT,ANewton
Formulation for MODFLOW-2005: U.S. Geol. Surv. Tech. Methods 6-A37, 44.

Oliver, D. S., and Alfonzo, M. (2018). Calibration of Imperfect Models to Biased
Observations. Comput. Geosci. 22, 145–161. doi:10.1007/s10596-017-9678-4

Schilling, O. S., Doherty, J., Kinzelbach, W., Wang, H., Yang, P. N., and Brunner,
P. (2014). Using Tree Ring Data as a Proxy for Transpiration to Reduce
Predictive Uncertainty of a Model Simulating Groundwater-Surface Water-
Vegetation Interactions. J. Hydrol. 519, 2258–2271. doi:10.1016/
j.jhydrol.2014.08.063

Shaw, R. J., and Thorburn, P. J. (1985). Prediction of Leaching Fraction from Soil
Properties, Irrigation Water and Rainfall. Irrig Sci. 6, 73–83. doi:10.1007/
bf00251556

Soltanian, M. R., and Ritzi, R. W. (2014). A New Method for Analysis of Variance
of the Hydraulic and Reactive Attributes of Aquifers as Linked to Hierarchical
and Multiscaled Sedimentary Architecture. Water Resour. Res. 50, 9766–9776.
doi:10.1002/2014WR015468

Watson, T. A., Doherty, J. E., and Christensen, S. (2013). Parameter and Predictive
Outcomes of Model Simplification. Water Resour. Res. 49 (7), 3952–3977.
doi:10.1002/wrcr.20145

White, J. T., Doherty, J. E., and Hughes, J. D. (2014). Quantifying the Predictive
Consequences of Model Error with Linear Subspace Analysis. Water Resour.
Res. 50 (2), 1152–1173. doi:10.1002/2013WR014767

White, J. T., Fienen, M. N., and Doherty, J. E. (2016). A python Framework for
Environmental Model Uncertainty Analysis. Environ. Model. Softw. 85,
217–228. doi:10.1016/j.envsoft.2016.08.017

White, J. T., Knowling, M. J., and Moore, C. R. (2019). Consequences of
Groundwater-Model Vertical Discretization in Risk-Based Decision-
Making. Groundwater 58, 695–709. doi:10.1111/gwat.12957

White, J. T., Knowling, M. J., Fienen, M. N., Feinstein, D. T., McDonald, G. W., and
Moore, C. R. (2020). A Non-intrusive Approach for Efficient Stochastic
Emulation and Optimization of Model-Based Nitrate-Loading Management
Decision Support. Environ. Model. Softw. 126, 104657, 2020 . Available at:
https://www.sciencedirect.com/science/article/pii/S1364815219309934?via%
3Dihub. doi:10.1016/j.envsoft.2020.104657

Wood, W. W. (1999). Use and Misuse of the Chloride-Mass Balance Method in
Estimating Ground Water Recharge. Ground Water 37, 2–3. doi:10.1111/
j.1745-6584.1999.tb00949.x

Conflict of Interest: JD was employed by Watermark Numerical Computing.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Moore and Doherty. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 69267117

Moore and Doherty Adequacy of Steady State Calibration

https://doi.org/10.1007/s10596-017-9678-4
https://doi.org/10.1016/j.jhydrol.2014.08.063
https://doi.org/10.1016/j.jhydrol.2014.08.063
https://doi.org/10.1007/bf00251556
https://doi.org/10.1007/bf00251556
https://doi.org/10.1002/2014WR015468
https://doi.org/10.1002/wrcr.20145
https://doi.org/10.1002/2013WR014767
https://doi.org/10.1016/j.envsoft.2016.08.017
https://doi.org/10.1111/gwat.12957
https://www.sciencedirect.com/science/article/pii/S1364815219309934?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1364815219309934?via%3Dihub
https://doi.org/10.1016/j.envsoft.2020.104657
https://doi.org/10.1111/j.1745-6584.1999.tb00949.x
https://doi.org/10.1111/j.1745-6584.1999.tb00949.x
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Exploring the Adequacy of Steady-State-Only Calibration
	Introduction
	Decision Support Metrics
	Application to Steady State Modelling
	Type 1 Shortcomings
	Type 2 Shortcomings
	Type 3 Shortcomings


	Methodology
	Analysis of Type 2 Shortcomings
	Analysis of Type 3 Shortcomings

	A Synthetic Case Study
	General
	Model Parameters
	Model Timing
	Steady State Model Calibration
	Predictions

	Results
	Model Predictions
	Linear Analysis
	Parameter Estimability
	Analysis of Type 2 Shortcomings

	Nonlinear Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


