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Field observations and laboratory experiments have shown that ash sedimentation can
be significantly affected by collective settling mechanisms that promote premature ash
deposition, with important implications for dispersal and associated impacts. Among these
mechanisms, settling-driven gravitational instabilities result from the formation of a
gravitationally-unstable particle boundary layer (PBL) that grows between volcanic ash
clouds and the underlying atmosphere. The PBL destabilises once it reaches a critical
thickness characterised by a dimensionless Grashof number, triggering the formation of
rapid, downward-moving ash fingers that remain poorly characterised. We simulate this
process by coupling a Lattice Boltzmann model, which solves the Navier-Stokes equations
for the fluid phase, with a Weighted Essentially Non Oscillatory (WENO) finite difference
scheme which solves the advection-diffusion-settling equation describing particle transport.
Since the physical problem is advection dominated, the use of the WENO scheme reduces
numerical diffusivity and ensures accurate tracking of the temporal evolution of the interface
between the layers.We have validated the newmodel by showing that the simulated early-time
growth rate of the instability is in very good agreement with that predicted by linear stability
analysis, whilst the modelled late-stage behaviour also successfully reproduces quantitative
results from published laboratory experiments. The results show that the model is capable of
reproducing both the growth of the unstable PBL and the non-linear dependence of the
fingers’ vertical velocity on both the initial particle concentration and the particle diameter. Our
validatedmodel is used to expand the parameter space explored experimentally and provides
key insights into field studies. Our simulations reveal that the critical Grashof number for the
instability is about ten times larger than expected by analogy with thermal convection.
Moreover, as in the experiments, we found that instabilities do not develop above a given
particle threshold. Finally, we quantify the evolution of the mass of particles deposited at the
base of the numerical domain and demonstrate that the accumulation rate increaseswith time,
while it is expected to be constant if particles settle individually. This suggests that real-time
measurements of sedimentation rate from volcanic clouds may be able to distinguish finger
sedimentation from individual particle settling.
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INTRODUCTION

Explosive volcanic eruptions can inject large quantities of ash into
the atmosphere, generating multiple hazards at various spatial
and temporal scales (Blong, 2000; Bonadonna et al., 2021).
Subsequent volcanic ash dispersal and sedimentation can
strongly disrupt air traffic (Guffanti et al., 2008; Prata and
Rose, 2015), affect inhabited areas (Spence et al., 2005; Jenkins
et al., 2015), and impact ecosystems and public health
(Gudmundsson, 2011; Wilson et al., 2011). A good
understanding of ash dispersal is critical for effective
forecasting and management of the response to these hazards.
Modern volcanic ash transport and dispersal models have now
reached high levels of sophistication (Jones et al., 2007;
Bonadonna et al., 2012; Folch, 2012; Folch et al., 2020; Prata
et al., 2021) but do not include all of the physical processes
affecting ash transport, such as particle aggregation and settling-
driven gravitational instabilities (e.g., Durant, 2015). Various
studies have highlighted the need to take these processes into
account by revealing discrepancies between field measurements
and numerical models (Scollo et al., 2008), premature
sedimentation of fine ash leading to bimodal grainsize
distributions not only related to particle aggregation
(Bonadonna et al., 2011; Manzella et al., 2015; Watt et al.,
2015) and significant depletion of airborne fine ash close to
the source (Gouhier et al., 2019).

Alongside particle aggregation, settling-driven gravitational
instabilities contribute to the early deposition of fine ash with
similar outcomes (e.g., grainsize bimodality, premature
sedimentation of fine ash). These instabilities generate
downward-moving ash columns (fingers) which grow from the
base of the ash cloud (Figure 1) (Carazzo and Jellinek, 2012;
Manzella et al., 2015; Scollo et al., 2017). This phenomenon has
the potential to enhance the sedimentation rate of fine ash beyond
the terminal fall velocity of individual particles, reducing the
residence time of fine ash in the atmosphere. Thus, a rigorous
understanding of these processes is important in order to build a
comprehensive parametrisation that can be included in dispersal
models (Scollo et al., 2010; Bonadonna et al., 2012; Folch, 2012;
Durant, 2015).

Settling-driven gravitational instabilities should be fully
characterized as they also have the potential to impact other

ash-related processes. First, the high particle concentration and
the turbulence induced by fingers (i.e., the intrinsic turbulence
within fingers as well as the shear generated during the
downward motion) may enhance particle aggregation by
increasing the collision rate of particles (Costa et al., 2010;
Scollo et al., 2017). This process could happen regardless of
plume height and atmospheric conditions contrary to ice-
nucleation for example, which requires specific conditions
(Maters et al., 2020). Second, as settling-driven gravitational
instabilities trigger premature deposition of fine ash, this may
affect the residence time of other elements in the plume.
Indeed, fine ash is involved in some geochemical processes
such as the adsorption of volatiles (e.g., sulphur or halogens)
(Bagnato et al., 2013; Zhu et al., 2020). Considering that the
sedimentation rate of volatiles depends on the sedimentation
rate of fine ash, the possible premature deposition of volatiles
can be explained by the presence of both settling-driven
gravitational instabilities and particle aggregation. Finally,
fine ash has been shown to play an important role in the
volcanic cloud heating through radiative processes that may
affect the dynamics (Niemeier et al., 2009; Stenchikov et al.,
2021). Thus, in order to model the large-scale transport of
volcanic clouds, there is a need to estimate accurately the
amount of fine ash within the cloud, and, therefore, to
constrain all size-selective sedimentation processes such as
settling-driven gravitational instabilities.

Settling-driven gravitational instabilities occur at the
interface between an upper, buoyant particle suspension, e.g.,
a volcanic ash cloud, and a lower, denser fluid, e.g., the
underlying atmosphere (Hoyal et al., 1999; Burns and
Meiburg, 2012; Manzella et al., 2015; Davarpanah Jazi and
Wells, 2016). Whilst the initial density configuration is
stable, particle settling across the density interface creates a
narrow unstable region called the particle boundary layer (PBL)
(Carazzo and Jellinek, 2012). Once this attains a critical
thickness (Hoyal et al., 1999), a Rayleigh-Taylor-like
instability (Chandrasekhar, 1961; Sharp, 1984) can form on
the interface between the PBL and the lower layer, generating
finger-like structures which propagate downwards. A further
critical condition for instability is that the particle settling
velocity Vs must be smaller than the finger propagation
velocity Vf (Carazzo and Jellinek, 2012). Thus, the

FIGURE 1 | Gravitational instabilities observed at the base of a volcanic plume during (A) the 2011 Gamalama eruption (Indonesia) (Credit: AP) and (B) the 2010
eruption of Eyjafjallajökull (Iceland) (Manzella et al., 2015).
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occurrence of the instability enhances the sedimentation rate
(Manzella et al., 2015; Scollo et al., 2017). Alternatively, if Vs is
greater than the propagation velocity of fingers Vf, then
particles settle individually before a PBL can form and no
instability occurs.

Settling-driven gravitational instabilities have been widely
studied in laboratory experiments that simulate various natural
settings. Many experiments have considered an initial two-
layer system, where the particle suspension is initially separated
from the underlying denser layer by a removable horizontal
barrier (Hoyal et al., 1999; Harada et al., 2013; Manzella et al.,
2015; Davarpanah Jazi andWells, 2016; Scollo et al., 2017; Fries
et al., 2021) whilst other experiments have involved injection of
the suspension into a density-stratified fluid at its neutral
buoyancy level (Cardoso and Zarrebini, 2001; Carazzo and
Jellinek, 2012). Similar instabilities can also be studied by
allowing fine particles to sediment through the free surface
between water and air (Carey, 1997; Manville and Wilson,
2004). Additionally, dimensional analysis has been used to
predict that the downward propagation velocity of the
generated fingers is given by (Hoyal et al., 1999; Carazzo
and Jellinek, 2012)

Vf � ⎡⎢⎢⎣g⎛⎝ρPBL − ρf
ρf

⎞⎠⎤⎥⎥⎦2
5[πVsδ

2
PBL

4
]1

5

, (1)

where ρPBL is the PBL bulk density, ρf the underlying fluid
density, g � 9.81m.s−2 the gravitational acceleration and δPBL the
PBL thickness, which by analogy with thermal convection
(Turner, 1973) is taken to be (Hoyal et al., 1999)

δPBL � (Grc]2
g′ )1

3

, (2)

where g′ � g(ρPBL − ρf)/ρf, ] the kinematic viscosity and Grc
a critical Grashof number which estimates the ratio of the
buoyancy to viscous forces on the fluid (see Supplementary
Table S1 for all acronyms and symbols used in this paper).
The reduced gravity g′ describes the change in the
gravitational acceleration due to buoyancy forces.
Continuing the analogy with thermal convection, it has
been proposed that Grc � 103 (Hoyal et al., 1999), although
recent experimental observations suggests Grc ≈ 104 may be
more accurate (Fries et al., 2021). Therefore, for known
particle and fluid properties, it is possible to predict
whether collective settling will occur and fingers
subsequently form using the condition Vf >Vs (Hoyal et al.,
1999). According to this relation, the limit between collective
and individual settling occurs when Vf � Vs. However, the
transition is likely to be smooth, with a transitionary regime
where both fluid-like and particle-like settling occur at the
same time, as suggested by Harada et al. (2013).

For the initial two-layer configuration, Hoyal et al. (1999)
also developed a series of analytical mass-balance models
predicting the average particle concentration in the lower
layer depending on whether the upper and lower layers were
convecting or not. In the case of a quiescent upper layer and a

convective lower layer (convection initiated by finger
propagation), the evolution of the mass of particles in the
lower layer M2 depends on the balance between the mass
flux of particles arriving from the upper layer _Min and the
mass flux of particle leaving by sedimentation _Mout

dM2

dt
� _Min − _Mout , (3)

where t is time. Assuming that M2(t) � Ah2C2(t), where
C2(t) is the average particle concentration in the lower
layer, Hoyal et al. (1999) solved this equation using
_Min � AVsC1(0), _Mout � AVsC2(t) and the initial condition
C2(0) � 0. Thus

C2(t) � C1(0)[1 − e−
Vs
h2

t], (4)

where C1(0) is the initial particle concentration in the upper
layer, h2 the lower layer thickness and A the horizontal cross
section of the tank.

Further studies of settling-driven gravitational instabilities
have taken theoretical approaches, such as using linear stability
analyses to predict the growth rate and characteristic
wavelengths of the instability at very early stages (Burns and
Meiburg, 2012; Yu et al., 2013; Alsinan et al., 2017). Moreover,
various numerical models simulating settling-driven
gravitational instability have also been developed (Jacobs
et al., 2013; Burns and Meiburg, 2014; Yamamoto et al.,
2015; Chou and Shao, 2016; Keck et al., 2021). Most
numerical approaches to this problem have used continuum-
phase models, where the coupling between particles and fluid
is strong enough to describe them as a single-phase (Burns
and Meiburg, 2014; Yu et al., 2014; Chou and Shao, 2016).
This Eulerian description is valid under the assumptions of
sufficiently small particles and a large enough number of
particles such that the drag and gravitational forces are in
equilibrium. The condition on the particle size can be
quantified through the Stokes number (Burgisser et al.,
2005; Roche and Carazzo, 2019), one possible definition of
which is

St � ρpD
2
pU

18μL
, (5)

where ρp is the particle density, Dp the particle diameter, μ the
dynamic viscosity and U and L characteristic velocity and length
scales of the flow. For St< 1, the particles and fluid can be
considered coupled and, providing there are enough particles,
the continuum approach is valid.

The Eulerian description can be extended tomultiple phases in
order to simulate their interaction (e.g., gas-liquid interaction)
using adaptive mesh refinements to resolve the phase interfaces
(Jacobs et al., 2013). However, for large particle diameters and
small particle volume fractions, collective behaviour no longer
occurs and the continuum-phase method cannot be applied. In
this case, there is a need to explicitly model particle motion,
taking the drag force into consideration (Yamamoto et al., 2015;
Chou and Shao, 2016).
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This paper presents an innovative method to implement a
continuum model by coupling the Lattice Boltzmann Method
(LBM) with a low-diffusivity finite difference (FD) scheme. This
model takes advantage of the LBM capabilities to simulate
complex flows through uniform grids and thus, the ease of
coupling with finite difference methods. This hybrid model
has been validated by comparing the results with those from
linear stability analysis and laboratory experiments (Fries et al.,
2021). The validated model then allows us to gain new insights
into the fundamental processes by exploring experimentally-
inaccessible regions of the parameter space. We first describe
the general framework and governing equations that describe
settling-driven gravitational instabilities, then the configuration
of the validatory experiments to which we apply the model. Next,
we propose a numerical strategy involving a hybrid model in
order to solve the system of equations. We then go on to present
the linear stability analysis before finally describing and
discussing the results of our simulations.

MATERIALS AND METHODS

Problem Formulation
The model consists of a three-way coupling between fluid
momentum, fluid density, and particle volume fraction, based
on the assumption that the particle suspension can be represented
by a continuum concentration field. Moreover, the particle drag
force is in equilibrium with the gravitational force such that the
forcing term in the fluid momentum equation is equivalent to a
buoyant force term (Boussinesq approximation), which depends
on the particle volume fraction ∅( �x, t) (Burns and Meiburg,
2014; Yu et al., 2014; Chou and Shao, 2016). ∅( �x, t) satisfies the
advection-diffusion-settling equation

z∅
zt

+ �∇ .[∅( �uf − Vsez
→)] � Dc∇ 2∅, (6)

where �uf( �x, t) is the fluid velocity, Dc the particle diffusion
coefficient, ez

→ the vertical unit vector and �x � (x, y, z) the
position coordinate. The particle settling velocity Vs can be
fixed or allowed to be a function of other parameters. Its
formulation will be set later according to the assumptions of
the flow configuration. The fluid is considered incompressible,
meaning �∇ . �uf � 0. Thus, Eq. 6 becomes

z∅
zt

+ ( �uf − Vsez
→). �∇ ∅ −∅ �∇ .(Vsez

→) � Dc∇ 2∅. (7)

The particle settling velocity depends on the ambient fluid density
ρ, which in turn depends on any transported density-altering
properties, such as temperature or the concentration of a chemical
species, e.g., the sugar in our validatory experiments (Fries et al., 2021).
We incorporate the effect of a single density-altering property on the
fluid density through a classical advection-diffusion equation

zρ(ρ0, S)
zt

+ �uf. �∇ ρ(ρ0, S) � D∇ 2ρ(ρ0, S), (8)

where ρ0 is a reference density of the carrier fluid, S the density-
altering quantity (temperature or concentration), and D the

associated diffusion coefficient. Additionally, under the
Boussinesq approximation, we assume that the density
depends linearly on S. The fluid momentum is modelled with
the incompressible Navier-Stokes momentum equation

z �uf

zt
+ ( �uf. �∇ ) �uf � − 1

ρ0
�∇ p + ]∇ 2 �uf + �F, (9)

where p is the pressure and �F the buoyant body force term. We
complete the system of equations by taking this force term to be a
function of ∅ and ρ

�F � [(ρp − ρ0
ρ0

)∅ + ( ρ

ρ0
− 1)(1 −∅)] �g. (10)

The system of equations presented so far assumes that all
particles are of uniform size. In order to generalise to systems with
polydisperse particle size distributions, we consider N different
particle concentration fields∅i, where each one is associated with
a different size class and individually satisfies Eq. 7. Furthermore,
the body force term becomes

�F � [(ρp − ρ0
ρ0

)∅tot + ( ρ

ρ0
− 1)(1 −∅tot)] �g, (11)

where

∅tot � ∑N
i�1

∅i. (12)

Flow Configuration and Experiment
Description
Full details of the validatory laboratory experiments can be found
in Fries et al. (2021) but we summarise the essential details here.
The experiments are performed in a configuration identical to
that of Manzella et al. (2015) and Scollo et al. (2017) (Figure 2)
and consist of a water tank divided into two horizontal layers,
initially separated by a removable barrier. The upper layer is an
initially mixed particle suspension, which represents the ash
cloud, and the lower layer is a dense sugar solution, analogue
to the underlying atmosphere. The particles are spherical glass
beads with a median diameter of 41.5 ± 0.5 μm (measured using
laser diffraction with a Bettersizer S3 Plus) and a density ρp of
2519.24 ± 0.09 kg/m3 (measured using helium pycnometry
UltraPyc 1200e), and are sufficiently small to be well-coupled
with the fluid, whilst the initial particle concentration C1(0) of
the upper layer is varied from 1 to 10 g/l (see Table 1 for the
conversion to particle volume fraction ∅0). The lower layer
density is kept constant at ρf � 1008.4 kg/m3 (corresponding
to a sugar concentration of S0 � 35 g/l), always ensuring an
initially stable density configuration.

Before starting an experiment, the upper layer is manually and
carefully stirred using a brush. Then the barrier separating the two
layers is immediately removed, allowing particle settling through the
interface. A PBL subsequently forms and finger formation is
initiated. Experiments are illuminated from the side of the water
tank with a planar laser and recorded with a high-contrast camera.
We measure the vertical finger velocity by tracking the progression
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of the finger front with time. Additionally, Planar Laser Induced
Fluorescence (PLIF) (Koochesfahani, 1984; Crimaldi, 2008) and
particle imaging are used to quantify the spatial distribution of
the fluid phase density and particle concentration.

Application to Flow Configuration
We apply the general system of equations presented in Problem
Formulation section to the configuration of the validatory
experiments. The particles are spherical and sufficiently small

FIGURE 2 | Experimental setup used by (Fries et al., 2021) and the initial density profiles associated with the contributions from particles (blue dashed) and sugar
(red dotted), as well as the bulk density (black solid). The density of fresh water is given by ρ0.

TABLE 1 | List of simulations performed. All the simulations have been performed using an initial lower layer fluid density of 1008.4 kg/m3. zH, z∅ and zs are parameters used
in the linear stability analysis (LSA) in order to describe the different base states associated with the particle and sugar profiles inEqs 39, 40. The LSA has been performed
only for a constant particle size of 40 µm in order to study the effect of the particle volume fraction.

Initial particle
concentration (g/L)

Volume fraction Particle diameter
(µm)

zH =VsT (mm) zø (mm) zs (mm)

1 3.97 × 10−4 40 12.11 2.59 0.67
2 7.94 × 10−4 40 7.37 2.20 0.63

3 1.19 × 10−3 40 5.47 1.99 0.61
4 1.59 × 10−3 40 5.01 1.99 0.61

5 1.98 × 10−3 40 4.20 1.84 0.60
6 2.38 × 10−3 40 3.45 1.72 0.59
7 2.78 × 10−3 40 3.25 1.70 0.60

8 3.18 × 10−3 40 3.17 1.72 0.61
9 3.57 × 10−3 40 3.01 1.71 0.62
10 3.97 × 10−3 40 2.54 1.58 0.61

3 1.19 × 10−3 25 — — —

3 1.19 × 10−3 55 — — —

3 1.19 × 10−3 70 — — —

3 1.19 × 10−3 85 — — —

3 1.19 × 10−3 100 — — —

3 1.19 × 10−3 115 — — —

3 1.19 × 10−3 130 — — —

9 3.57 × 10−3 25 — — —

9 3.57 × 10−3 55 — — —

9 3.57 × 10−3 70 — — —

9 3.57 × 10−3 85 — — —

9 3.57 × 10−3 100 — — —

9 3.57 × 10−3 115 — — —

9 3.57 × 10−3 130 — — —

9 3.57 × 10−3 145 — — —

9 3.57 × 10−3 160 — — —
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that their terminal settling velocity in water is given by the Stokes
velocity (Stokes, 1851)

Vs �
D2

pg[ρp − ρ(S)]
18μ

, (13)

where S is the sugar concentration and ρ � ρ0(1 + αS), with α
the sugar solution expansion coefficient.

The diluted system ensures the Boussinesq assumption is valid
as the ratio Δρ/ρ0 is much less than 1 (about 6 × 10−3 for the
highest initial particle volume fraction).

We simulate the solid walls of the tank around our domain
with a no-slip boundary condition for the fluid velocity.
Neumann boundary conditions are employed for ∅ and ρ to
avoid any flux of particles or sugar across the walls. Thus we
impose

z∅
zx

� 0, (14)

and

zρ

zx
� 0, (15)

on the wall nodes. Furthermore, we define the following initial
states for ∅ and S:

∅( �x, t � 0) � { 0 , z<H0

∅0 , z>H0
, (16)

and

S( �x, t � 0) � { S0, z<H0

0 , z>H0
, (17)

where ∅0 and S0 are the initial particle volume fraction in the
upper layer and initial sugar concentration in the lower layer,
respectively, and H0 � 0.25 m the initial height of the interface
(z � 0 corresponds to the base of the tank). We also add a small
perturbation to the particle volume fraction field in order to
initiate the instability. Finally, the system is initially stationary so
�uf( �x, t � 0) � 0.

Numerical Methods
The 3D numerical model is implemented using a hybrid strategy
where a LBM solves the fluid motion and is coupled with finite
difference schemes that solve the advection-diffusion equations
for ∅ and S.

Fluid Motion
The LBM is an efficient alternative to conventional
Computational Fluid Dynamics (CFD) methods that explicitly
solve the Navier-Stokes equations at each node of a discretised
domain (He and Luo, 1997; Succi et al., 2010). It is a well-
established approach for simulating complex flows, including
multiphase fluids (Leclaire et al., 2017) and thermal and buoyancy
effects (Parmigiani et al., 2009; Noriega et al., 2013). The LBM
originates from the kinetic theory of gases and provides a
description of gas dynamics at the mesoscopic scale. This scale
exists between the microscopic, which describes molecular

dynamics, and the macroscopic, which gives a continuum
description of the system with variables such as density and
velocity. Thereby, the mesoscopic scale considers a probability
distribution function of molecules described by the Lattice
Boltzmann equation. This model reduces the process to two
main steps: streaming (i.e., displacement of populations
between consecutive calculation nodes), and collision
(i.e., interaction of populations on a node). The Bhatnagar-
Gross-Krook (BGK) model (Bhatnagar et al., 1954) provides a
simple collision process based on a fundamental property given
by kinetic theory which describes gas motion as a perturbation
around the equilibrium state. Then, the LBM-BGK model solves
the equation

fi( �x + �ciδt, t + δt) − fi( �x, t) � −δt
τ

(fi( �x, t) − feq
i ), (18)

where the particle population fi is a discrete representation of the
probability distribution function, δt is the time step, feq

i (ρ, �uf )
the equilibrium distribution function, τ the relaxation time
associated with the flow viscosity and �ci the local particle
velocity. The LBM is applied to specific types of lattices that
describe how the populations move through the calculation nodes
(Kruger et al., 2017). These types of lattice are commonly
summarized in the form DrQm where r denotes the
dimension of the system and m the number of directions in
which populations can propagate. Figure 3 shows the scheme
D3Q19 used for our 3D simulations and the associated set of local
velocities.

The macroscopic fluid state is described through the usual
macroscopic variables such as density, velocity and kinematic
viscosity. These variables are related to the moments of the
populations fi through

ρ � ∑
i

fi, (19)

and

ρ �uf � ∑
i

fi �ci, (20)

whilst the kinematic viscosity controls the relaxation to
equilibrium through the relaxation time

τ � ]
c2s
+ δt

2
. (21)

The variable cs is commonly called the speed of sound and is
equal to (1/ �

3
√ )δx/δt where δx is the spatial step. However, the

classical LBM-BGK model described above does not take into
account any forcing term. One way to include forcing is to rewrite
Eq. 18 as

fi( �x + �ciδt, t + δt) − fi( �x, t) � −1
τ

(fi( �x, t) − feq
i ) + Fiδt,

(22)

where Fi is the forcing term, which can be expressed by a power
series in the local particle velocities, and the equilibrium
distribution is now given by feq

i � feq
i (ρ, �u*f ), where

ρ �u*f � ∑ifi �ci + b �Fδt. The determination of the coefficient b, as
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well as the power series expansion of Fi are described by Guo et al.
(2002). Finally, no-slip boundary conditions in the LBM, to
simulate walls for example, can be implemented using the
classical bounce-back boundary condition (Kruger et al., 2017)
where the populations arriving on a wall node during the
streaming step are simply reflected back to their previous nodes.

Transport of Particles and Other Density-Altering
Quantities
The particles and other density-altering quantities are described
by continuum fields that follow an advection-diffusion law
coupled with the fluid motion as simulated with the LBM. The
numerical solution of the advection equation is particularly
challenging for methods which, like ours, are Eulerian
(i.e., mesh-based). Indeed, such methods exhibit numerical
diffusion which may strongly reduce model accuracy and, in
some cases, even exceed the amplitude of the actual, physical
diffusion term. The lack of physical diffusion in our problem and
the presence of sharp interfaces restrict our ability to solve the
advection equations with the LBM. In fact, the advection-
diffusion equation can be solved by the LBM with a BGK
approach in analogous fashion to the fluid motion by
modifying the equilibrium distribution and the relaxation time
to depend on the diffusion coefficient D rather than ]

τ � D

c2s
+ δt

2
. (23)

However, a stability condition for a LBM-BGK algorithm is
τ/δt> 1/2. Thus, since the problem is convection dominated, the
low diffusion coefficient (D ≪ 1) drives the model towards the
stability limit, introducing strong numerical errors near sharp
concentration gradients (Hosseini et al., 2017). For this reason,
we solve the advection term using two finite-difference schemes
which are selected depending on the required accuracy: the
classical first-order upwind finite difference and the third-
order Weighted Essentially Non Oscillatory (WENO) finite
difference scheme (Liu et al., 1994; Jiang and Shu, 1996).

Coupling the LBMwith an upwind finite difference scheme allows
us to avoid the stability problem. First-order FD schemes however, still
suffer from the problem of numerical diffusion due to the truncation
error associated with terminating the Taylor expansion after the first
spatial derivative. The induced numerical errorNE for the convective
term in the advection-diffusion equation is given by

NE ∼ u
δx

2
z2∅
zx2

, (24)

where u is the transport velocity. NE acts like an additional
diffusion term because of the presence of the second-order

FIGURE 3 | Depiction of the D3Q19 lattice. The red arrows show the different possible directions of propagation. The associated local velocities are summarised in
the velocity set �ci .
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derivative. (A quantitative estimate of the numerical diffusion for
both 1st order and WENO procedure is available in section 1.3 of
the Supplementary Figure S2). The numerical diffusion
associated with the solution of S is negligible due to the low
fluid velocity and consequently the use of the first order FD
scheme does not significantly affect the accuracy. However, in the
solution of∅, which includes an additional velocity contribution
due to the settling, the truncation error associated with the first-
order scheme becomes non-negligible. Whilst decreasing δx
would reduce numerical diffusion, we would require an
unpractically small value in order to get a sufficiently accurate
solution. Additionally, simply increasing the order of the scheme
introduces dispersion (spurious oscillations) near regions of high
gradient, according to the Godunov theorem (Godunov, 1954,
1959). Therefore, we choose here to implement the low diffusive
WENO procedure for the solution of ∅, thus achieving a stable
and high-resolution scheme without dispersion.

Further information on how we discretise the convective term
in the advection-diffusion equation using the first order upwind
and the third orderWENO finite difference schemes is detailed in
Section 1 of the Supplementary Figure S1.

Numerical Implementation
Our model is implemented using Palabos (Parallel Lattice
Boltzmann Solver), a Computational Fluid Dynamics (CFD)
solver based on the Lattice Boltzmann Method and developed
by the Scientific Parallel Computing group of the Computer
Science Department, University of Geneva (Latt et al., 2020).
Palabos is designed to perform calculations on massively parallel
computers, thus allowing very small spatial resolutions for
accurate simulation of the finger dynamics.

Linear Stability Analysis
In order to validate our model, we compare the early-time
simulated behaviour against predictions from linear stability
analysis (LSA). LSA is applied to the onset of the physical
instability at the interface between layers of different particle
concentration. It involves defining a field equation-satisfying
base state for each of the unknown fields in a problem and
then applying an infinitesimally small perturbation to each of
these fields. The equations are then expanded to linear order
in the perturbation, with higher order terms assumed to
be negligible. By assigning the perturbation to have the
form of a complex waveform, the system of equations
reduces to an eigenvalue problem, which can be solved to
determine which wavelengths will grow or decay
(Chandrasekhar, 1961). In this section, we assume that the
system is invariant under translation in the x − y plane, thus
reducing the analysis to a 2D problem. We strongly follow the
procedure described by (Burns and Meiburg, 2012) in order to
solve our problem.

Nondimensionalisation
We nondimensionalise our system of equations by defining

lc � (]2
g

)1/3

, (25)

tc � ( ]
g2

)1/3

, (26)

and

pc � ρ0(]g)2/3, (27)

where lc, tc and pc are characteristic quantities. We also define the
dimensionless parameters

Sp � αS0, (28)

∅p � ∅0, (29)

Fr � 1
tc

��
lc

g

√
, (30)

and

Sci � ]
Di

, (31)

noting that Fr is a Froude number and Sci are Schmidt numbers.
Furthermore, the stream function ψ is defined such that �uf �
(zψ/zz, −zψ/zx) and the vorticity as �ω � �∇ × �uf. Then, applying
the characteristic quantities to the vorticity formulation and Eqs
7–9, we obtain the dimensionless system (for the rest of the
analysis, all the symbols used represent dimensionless quantities):

ω � −∇2ψ. (32)

zω

zt
+ ( �uf. �∇)ω � ∇2ω + z∅

zy

∅p

Fr2
[SSp − (ρp − ρ0

ρ0
)]

−zS
zy

Sp

Fr2
(1 −∅∅p), (33)

zS

zt
+ �uf. �∇ S � 1

Scs
∇ 2S, (34)

and

z∅
zt

+ ( �uf − Vsez
→). �∇ ∅ � 1

Scc
∇ 2∅. (35)

Note that here we have neglected the term −∅ �∇ .(Vsez
→) in Eq.

7 assuming the fluid density variation across the interface is
sufficiently small that it does not affect the particle settling
velocity.

Variable Expansion and Eigenvalue Problem
We linearise the system of equations by expanding each variable
in terms of a base state and a perturbation

φ(y, z, t) � �φ(z) + φ′(y, z, t), (36)

where φ(y, z, t) � ψ, ω, ∅, S}{ , �φ(z) � �ψ, �ω, �∅ , �S}{ the
associated base state and φ′(y, z, t) � ψ′,ω′,∅′, S′}{ the
perturbation. We choose the following base states

�ψ � 0, (37)

�ω � 0, (38)

�∅ (z, t) � 1
2

(1 + erf( z

z∅(T))), (39)

and
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�S(z, t) � 1
2

(1 − erf(z − Vst

zS(T) )), (40)

where z∅(T) and zS(T) are coefficients fitted in order to have
similar base states to the profiles observed in the simulations
prior to the onset of the instability which starts growing at
the time T. We choose these base states to represent the
initial conditions of the validatory experiments; Eqs 37, 38
ensure an initially-zero velocity field whilst the error
functions in Eqs 39, 40 ensure sigmoidal distributions for
�S and �∅ .

Solutions for the perturbation are assumed to have the form of
normal modes

φ′(y, z, t) � φ̂(z)exp(iky + σt), (41)

where φ̂(z) is the perturbation amplitude, k the wavenumber
and σ the instability growth rate. The linearised system of
equations is then formulated in matrix form so that the
problem is reduced to the eigenvalue problem K �x � σW �x
where

�x � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ψ̂(z)
ω̂(z)
Ŝ(z)
∅̂(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (42)

and, in a reference frame moving downward atVs, the matricesK
and W are given by

K �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M I 0 0

0 M − VsDz −ik Sp

Fr2
(1 − �∅∅p)I ik

∅p

Fr2
[�SSp − (ρp − ρ0

ρ0
)]I

ik
d�S

dz
I 0

1
Scs

M − VsDz 0

ik
d �∅
dz

I 0 0
1
Scc

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (43)

and

W � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (44)

where Dz � z/zz, M � −k2 +D2
z and I is the identity

operator.
The eigenvalues σ determine the stability of the system:

• If all the eigenvalues have negative real parts, the system
remains stable

• If at least one eigenvalue has a positive real part, the system
is unstable.

In order to solve the eigenvalue problem, the spatial
derivatives are discretised using the linear rational collocation
method with a grid transformation allowing a fine resolution
around narrow interfacial regions (Baltensperger and Berrut,
2001; Berrut and Mittelmann, 2004).

The key result of the LSA is the dispersion relation between σ
and k. Figure 4 presents the growth rate as a function of the

wavenumber, for different initial particle volume fractions. The
parameters for the different base states used to produce these
curves are summarised in Table 1. We use this result in
Comparison of Model Results With Predictions From Linear
Stability Analysis Section in order to compare the predictions
of the LSA with the results of our numerical model. Additionally,
a comparison with the 2D Fourier analysis of the interface is given
in Supplementary Figures S3–S5.

RESULTS

We validate our numerical model by comparing the results with
predictions from LSA and experimental observations. The LSA
predicts the growth rates of different perturbation wavenumbers
during the very early stage of the instability, which can be
compared with the spectrum of wavenumbers present in the
particle concentration interface in the numerical model.
Additionally, the experiments of Fries et al. (2021) employ
imaging techniques to measure quantities, such as the particle
concentration field and finger velocity, at times beyond the linear
regime. Finally, our results are compared with some results of
previous analyses on settling-driven gravitational instabilities
(Hoyal et al., 1999; Carazzo and Jellinek, 2012).

Comparison of Model Results With
Predictions From Linear Stability Analysis
In order to compare our 3D simulations with the 2D linear stability
analysis, we consider just the central plane of the simulation domain,
i.e., a slice in the (y, z) plane located at x � lx/2 (lx being the tank
depth) (Figure 2). We define the front of the particle field to be the
lowest position where ∅ � ∅0/2 and also define H(y) to be the
separation between z � 0 and this front. Our study has shown that
the front position is only weakly affected when using other possible
thresholds, i.e., ∅0/10 or ∅0/5 (relative change ∼3%). Figure 5A
shows an example of a space-time diagram showing the evolution of
H(y) through time. Furthermore, by calculating the Fourier
transform ~H(k, t) of H(y) at different times, we can identify
different dominant wavenumbers and their associated amplitudes
as shown in the space diagram of the power spectral density (PSD)
ΓH(k, t) � (1/(kSLS))| ~H(k, t)|2 (Figure 5B), where kS is the
sampling wavenumber and LS the number of samples. We extract
the dominantmode and its associated growth rate from ΓH(k, t) and
compare the results with the predicted growth rates from LSA. We
apply this analysis during a period when the amplitude | ~H(k, t)| of
any givenmode does not exceed 40% of its wavelength, thus ensuring
we are still in the linear regime (Lewis, 1950).

During the linear regime, we can assume that the growth of the
spectral amplitude can be described as (Völtz et al., 2001)∣∣∣∣ ~H(k, t)∣∣∣∣ � ∣∣∣∣H̃i(k)

∣∣∣∣exp(σsim(k)t), (45)

with |H̃i(k)| the initial amplitude and σsim(k) the instability
growth rate as determined from the simulations. Thus, the PSD
can be expressed as
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ΓH(k, t) � ΓHi exp(2σsim(k)t), (46)

where ΓH i is the initial spectral density. At each time step, we
extract the PSD and the wavenumber ksim associated with the
dominant mode as shown in Figure 6. However, we observe that
the dominant mode remains at the same wavenumber during
instability growth except for three cases (∅0 � 1.59 × 10−3, 2.38 ×

10−3 and 3.97 × 10−3) where we observed that the dominant mode
changed its position in the spectral space. For these simulations
only, we have a set of several wavenumbers ksim,i, (i � 1, 2, 3)
associated with the dominant mode. With the computed PSD of
the dominant mode as a function of time ΓH(ksim, t), we apply
our exponential fitting (Eq. 46) to determine the growth rate σsim,i

(Figure 6B). For the simulations which resulted in several values

FIGURE 4 | Dispersion relation obtained from LSA for several initial particle volume fractions.

FIGURE 5 | (A) Space-time diagram of the particle front height H(y, t). (B) Evolution of the power spectral density of the particle interface over time. Initial particle
volume fraction: ∅0 � 3.97 × 10−4
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of ksim,i for the dominant mode, we measured the growth rates of
each mode σsim,i and found identical values, up to a precision of
5%. Additionally, for each simulation, we find the time T when

the instability starts growing easily identified as the time at which
the modal wavenumber becomes non-zero (e.g., in Figure 6A this
is at approximately 6 s). At this time, we extract the associated
vertical profiles of particle and sugar concentration which are
used to find the coefficients z∅(T) and zS(T) (Eqs 39, 40) and
thus determine the base states of �∅ (z, T) and �S(z, T) (Figure 7).
We then perform the LSA for each∅0, using the appropriate base
states, and obtain a dispersion relation σ � f(k). Using this
relation, we predict the different growth rates σ � σLSA,i
associated with k � ksim,i and we compare with σsim(ksim,i) as
measured in our simulations. Figure 8 shows the comparison
between σsim (black dots) and σLSA,i (red triangles), as predicted
from the LSA, for the dominant wave mode. The error bars
associated with the simulation data show the uncertainty on the
fitted results of σsim (given by the 95% confidence interval). For
the cases including a moving dominant mode, we plotted the
growth rates associated with the different measured

FIGURE 6 | (A) Example of dominant wavenumbers extracted from themaximumof the PSD. Initial particle volume fraction∅0 � 7.94 × 10−4. (B) Exponential fitting
to the temporal evolution of the PSD for the first maximum in (A), ksim,1 � 0.517 mm−1.

FIGURE 7 | Example of LSA base states extracted from the simulations
for∅0 � 3.97 × 10−4. Dots: profiles extracted from the simulations at T � 9.55s
(start of the instability growth). Dotted lines: Fit with Eqs 39, 40. i.e., base
states used for the LSA. Blue: particle volume fraction. Red: Sugar
concentration.

FIGURE 8 | Comparison of the instability growth rate measured in the
simulations (black circles) and that predicted by the linear stability analysis (red
triangles).
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wavenumbers. We see that the dependence of the largest value of
σLSA,i on the initial particle concentration is in good agreement
with the simulated growth rate.

Comparison With Experimental
Investigations
Figures 9A,B show a qualitative comparison between snapshots
taken from experiments (Fries et al., 2021) and simulations (slice
in the numerical domain). First, we note that our model is able to
qualitatively reproduce the shape and size of fingers, especially
their fronts where we observe the formation of lobes and eddies
due to the Kelvin-Helmholtz instability (Chou and Shao, 2016).
Second, we provide a quantitative validation of the non-linear
regime by comparing our model with experiments, through
measurements of the PBL thickness and the vertical finger
velocity as functions of the particle volume fraction and size.

Characterisation of the PBL and Effect of the Initial
Particle Volume Fraction on the Finger Velocity
The bulk density profile ρblk, derived from the contributions of
the particle concentration and sugar profiles, is given everywhere
by the relation

ρblk � ∅ρp + (1 −∅)ρf. (47)

Figure 10 shows the profiles of∅, ρf and ρblk in the numerical
simulations as well as in the experiments 8 s after the barrier
removal for the same initial conditions (∅0 � 3.18 × 10−3 ).
Despite some differences associated with limitations in
achieving idealised initial conditions in the experiments, as
well as the experimental data collection method, it can be seen
that, in both the model and the experiments, there is an increase
of the bulk density below the initial interface, owing to the particle
front moving downwards. This zone of excess density
corresponds to the unstable PBL from which instabilities
occur, generating fingers. To calculate the finger velocity using
the same method as in experiments, we extract slices from the 3D
numerical domain andmanually track the fronts of several fingers
(6–15 fingers) from when they become fully developed until just
before they become too diluted (the duration of this phase is
∼ 5 s). For each simulation with different volume fraction, we

then average the velocity of all tracked fingers and the uncertainty
is the standard deviation associated with each set of fingers used
for the measurements. Figure 11A shows the average finger
velocity Vf as a function of ∅0, for both experiments (Fries
et al., 2021) and simulations. Our simulation results are in good
agreement with the experimental measurements and highlight
that the increase of Vf with ∅0 is non-linear.

By analogy with thermal convection, it has previously been
assumed that Grc � 103 (Hoyal et al., 1999), but this is only an
order of magnitude estimate and its application to settling-driven
gravitational instabilities remains uncertain (Fries et al., 2021).
Figure 11A shows good agreement between the simulations and
Eq. 1 for a fitted Grc of 1.2 ± 0.4 × 104 (R2 � 0.92), which is an
order of magnitude higher than the value previously assumed
(Hoyal et al., 1999; Carazzo and Jellinek, 2012). This agrees
reasonably with the experiments, where the best fit is obtained
forGrc � 1.9 ± 0.7 × 104 (R2 � 0.75), but the experimental results
show more scatter. However, neither of these fits have completely
satisfactory values of R2. We therefore further investigate the
applicability of Eq. 1 by examining the dependence of Vf on∅0,
assuming a more general power law of the form Vf ∝∅q

0.
According to Eq. 1, q � 4/15 � 0.27. However, from the
experiments, we obtain q � 0.50 ± 0.16 (with R2 � 0.95) while
for our simulations q � 0.37 ± 0.08 (with R2 � 0.98). Here Grc, q
and their associated uncertainties have been calculated
accounting for the uncertainty on Vf with the SciPy (Python-
based ecosystem) procedure scipy. optimize.curve_fit.

Effect of Particle Size on the Finger Vertical Velocity
Since gravitational instabilities cause particles to sediment faster
than their settling velocity, it is of interest to explore the transition
from collective to individual settling, since this has implications
for which grain sizes may prematurely sediment from a volcanic
cloud (Scollo et al., 2017). Figure 11B shows the effect of particle
size on the finger velocity as measured from the model, for two
different initial volume fractions, in the experiments
configuration (i.e., in the tank filled with water). We clearly
observe two regimes:

• For particle sizes less than or equal to 115 µm (for
∅0 � 1.19 × 10−3) and 145 µm (for ∅0 � 3.57 × 10−3), we

FIGURE 9 | Settling-driven gravitational instabilities observed 19.5 s after the barrier removal (A) in the laboratory (Fries et al., 2021) and (B) in numerical
simulations. Particle size: 40 µm and initial volume fraction: ∅0 � 2.78 × 10−3.
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observe fingers, with the finger velocity increasing with
particle size.

• For greater particle sizes, no fingers are observed to form.

From our simulations, we constrain the transition between the
two regimes to occur at a critical particle diameter around 115 and
145 µm respectively for ∅0 � 1.19 × 10−3 and ∅0 � 3.57 × 10−3.
We also note that this size range corresponds to the particle size at
which the Stokes velocity exceeds the predicted finger velocity. This
result agrees with the experimental observations of Scollo et al.
(2017), who observed that no fingers form for particles with
diameter larger than ∼125 µm with an initial particle volume
fraction of ∅0 � 1.19 × 10−3. We also compare the dependence
ofVf on the particle diameter with that predicted by Eq. 1 and find
a best fit for Grc � 7.6 ± 3.6 × 103 (with R2 � 0.91) and Grc �
2.7 ± 0.8 × 104 (with R2 � 0.87) respectively for the two initial
volume fractions (Figure 11B). We observe again that the values
for the fitted Grc are greater than the one proposed by Hoyal et al.
(1999) by analogy with thermal convection, whilst they also
substantially differ from one another. We therefore also fit the
results to a power law Vf ∝Dpη

finding η � 0.38 ± 0.13
(R2 � 0.94) and η � 0.42 ± 0.10 (R2 � 0.88) respectively to the
two volume fractions which is in very good agreement with the
analytical formulation (Eq. 1) that suggests η � 0.4.

Particle Mass Flux, Particle Concentration in the
Lower Layer and Accumulation Rate
Given the excellent agreement between the proposed model and
both LSA analysis and analogue experiments described above, we
take advantage of having 3D data from the numerical simulations

in order to extract other parameters which are difficult to obtain
otherwise (Fries et al., 2021). Three interesting parameters are the
particle mass flux across a plane, the particle concentration in the
lower layer and the amount of particles accumulated at the
bottom of the tank, which can be related to the accumulation
rate. The latter is especially interesting as, when the model is
applied to volcanic clouds, it could eventually be compared with
field data (Bonadonna et al., 2011).

We calculate the mass flux across a horizontal plane (actually a
thin box of thickness δx) as shown in Figure 12A with

J � Δm
AΔt, (48)

where Δm is the mass crossing the yellow plane of area A in time
Δt, and is given by the mass difference in the volume below the
plane between t and t − Δt. The mass below at each time is
calculated by summing the mass of particles in each cell i of
volume ΔV, which is individually given by mi � ΔV∅iρp.
Figure 12B shows the temporal evolution of the particle mass
flux settling through the yellow plane (located at 0.15 m below the
barrier), for several initial particle volume fractions. The vertical
black dashed line indicates the theoretical time Ti when particles
would be expected to reach the plane if they were settling
individually at their Stokes velocity. For the different
simulations, we clearly observe that the moments when the flux
starts initially increasing (i.e., the arrival of the fastest finger) are
much earlier than Ti and this shows the extent to which the
collective settling enhances the premature sedimentation. After the
initial increase, the fluxes exhibit strong oscillations around a high
plateau. These oscillations are associated with the intermittent

FIGURE 10 |Density profile after 8 s for experiments (left) (Fries et al., 2021) and simulations (right) with∅0 � 3.18 × 10−3 and a particle size of 40 µm. For clarity, the
uncertainty on the experimental fluid density are not displayed on the figure and correspond to 0.8 kg m−3.
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nature of PBL detachment and the strong convection generated by
fingers in the lower layer. Indeed, we observe that as soon as fingers
reach the bottom of the tank, convection cells appear re-entraining
some particles upward. The results show the net downward flux of
particles and when particles are entrained upward, this
consequently decreases the flux value. Interestingly, the different
peaks show that we have some oscillatory convection and not
steady convection. Finally, the particle mass flux reaches a plateau

after some time which shows the end of convection and a transition
to individual settling. Throughout, the average mass flux, as well as
the amplitude of the oscillations increases with the initial volume
fraction.

Another way to highlight the enhancement of the
sedimentation rate by collective settling is to study the spatial
distribution of particles beneath the interface. Assuming a
quiescent upper layer and a convective lower layer, akin to our

FIGURE 11 | (A) Average finger speed (Vf) as a function of the initial volume fraction (∅0) for a particle diameter of 40 μm. Red and black dotted lines show the best
fits to the experiments (Fries et al., 2021) and simulations, respectively, using Eq. 1withGrc as the fit parameter. For the simulations, we findGrc � 1.2 ± 0.4 × 104 whilst
for the experiments Grc � 1.9 ± 0.7 × 104. (B) Average finger speed (Vf) as a function of the initial particle diameter (Dp), for two different particle volume fractions. The
green line is the Stokes velocity for individual particles. The black dotted lines show the best fits to the simulations using Eq. 1 with Grc as the fit parameter. For
∅0 � 1.19 × 10−3, the best fit gives Grc � 7.6 × 103 and no fingers are observed to form for particle sizes higher than 115 µm. For ∅0 � 3.57 × 10−3, the best fit gives
Grc � 2.7 × 104 and no fingers are observed to form for particle sizes higher than 145 µm. In the two plots, the blue dashed line shows Eq. 1 using Grc � 103 from the
analogy with thermal convection (Hoyal et al., 1999).

FIGURE 12 | (A) Horizontal planar surface (yellow slice) located 0.15 m below the barrier, across which the particle mass flux is computed in the simulation domain. (B)
Temporal evolution for the particle mass flux crossing the plane. Black dashed line: theoretical time for the particles to reach the plane at their individual Stokes velocity.
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simulations, Hoyal et al. (1999) derived Eq. 4 for the evolution of
the particle concentration in the lower layer. The derivation of
this formulation assumes that _Mout ≠ 0 since t � 0 but in fact,
_Mout � 0 for t< ta where ta is the time when the first particles
reach the bottom of the tank. Also, Eq. 4 only remains valid for
t< tlim, where tlim � h1/Vs, h1 being the height of the upper layer.
After this time, there are no longer any particles remaining in the
upper layer and _Min � 0. We therefore propose an extension for
the solution of the problem (see section 2.1 in Supplementary
Material) which becomes

C2(t) � Vs

h2
C1(0)t, for t< ta, (49)

C2(t) � C1(0)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + (Vs

h2
ta − 1)e−Vs

h2
(t−ta)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, for ta ≤ t< tlim,

(50)

C2(t) � C1(0)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + (Vs

h2
ta − 1)e−Vs

h2
(tlim−ta)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦(1 + h1

h2
− Vs

h2
t),

for t≥ tlim,
(51)

where h2 is the thickness of the lower layer. Equation 51 assumes
that the convection stops at tlim, which suggests a quiescent
settling in the lower layer after that time with a constant flux
_Mout � AVsC2(tlim).
An interesting result coming out of the previous analytical

study is the mass of particles accumulating at the bottom of the
tank and the associated accumulation rate. We can derive an
analytical prediction for the mass of particles mb accumulated at
the bottom of the tank for the different regimes highlighted
above. Thus, by integration of the flux (see Section 2.2 in
Supplementary Material) we have

mb � 0, for t< ta, (52)

mb � m0
Vs

h1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣t + (h2
Vs

− ta)e−Vs
h2

(t−ta) − h2
Vs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, for ta ≤ t< tlim,

(53)

mb � m0
Vs

h1

⎧⎪⎪⎨⎪⎪⎩tlim − h2
Vs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + (Vs

h2
ta − 1)e−Vs

h2
(tlim−ta)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1 + h1
h2

− Vs

h2
t)⎫⎪⎪⎬⎪⎪⎭, for t≥ tlim, (54)

where m0 is the initial mass of particles injected in the upper layer.
Finally, at the time tlim + h2/Vs, all the particles have settled through
the lower layer, thus mb � m0. Figure 13A shows the simulated
particle accumulation at the bottom of the tank through time, for
different particle sizes as well as the analytical prediction (Eqs
52–54). We compare as well with the analytical formulation of
the mass which assumes that the lower is still turbulently convective

even after the time tlim (Eq. S43 in Supplementary Material, dashed
lines in Figure 13A). In order to compare between this prediction
and the model results, ta is fitted in order to have the best agreement
between the numerical data and Eqs 52–54. The results show clearly
that the quiescent model of the lower layer for t≥ tlim agrees very
well with the simulations and suggest that the entirely convective
model underestimates the accumulation rate. Additionally, the fitted
parameter ta is coherent with the time for the first fingers to reach
the bottom of the tank in the simulations. Figure 13B shows the
instantaneous accumulation rate computed from the numerical data
for several initial volume fractions, as estimated by

1
A

dmb

dt
, (55)

We observe, for each initial particle volume fraction, an initial
increase of the accumulation rate with time which reflects the
enhancement of the sedimentation process due to convection.
Interestingly, the accumulation rate then reaches a plateau at
around t � tlim, indicating that the system switches to a steady
settling regime once all particles have left the upper layer. We
compare also with the analytical relations which again have very
good agreement with our simulations.

Finally, using the determined ta, we can also calculate the
concentration C2(t), as calculated with the analytical expressions
in Eqs 49–51. Figure 14 shows a comparison with the average
C2(t) as measured in simulations for a particle size of 40 μm and
three different initial upper layer concentrations, finding very
good agreement.

DISCUSSION

Model Caveats
Our numerical model has been validated by comparing various
outputs with results from linear stability analysis, lab experiments
(Fries et al., 2021) and theoretical predictions from previous
studies (Hoyal et al., 1999; Carazzo and Jellinek, 2012). Even
though these comparisons are good (Figures 9–14), the results
provided by the model inherits the caveats of the experiments.
Indeed, the static and confined configuration, as well as the fact
that we performed the simulations in water, mean that we cannot
fully extend the results to the volcanic case yet. Thus, further
investigations are necessary to better simulate the volcanic
environment (e.g., in air, with wind, etc.). Additionally, it is
necessary to consider the limits of validity of the different
assumptions. In our study, particles are small enough that
they have no inertia and thus the fluid-particle interaction
force is governed by the buoyant force term in the fluid
momentum equation. However, as soon as the particle size
increases, we need to consider some other dynamics. Indeed, a
rigid particle moving in a fluid produces locally a disturbance flow
which generates other contributions to the fluid-particle force
terms. The assumption that particles settle at their Stokes velocity
will then no longer be valid as the created local flow affects VS

(Maxey and Riley, 1983; Cartwright et al., 2010; Patočka et al.,
2020).
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Whilst the condition on the particle coupling is given by the
Stokes number (St< 1), there is also a condition on the particle
volume fraction to take in account. Harada et al. (2013) and
Yamamoto et al. (2015) derived a dimensionless number in order
to characterise the transition between fluid-like and particle-like
settling. Although this number is only valid for narrow channel
configurations, which are considerably different from ours, it
highlights the fact that the particle size, volume fraction and

characteristic length scale of the flow are critical parameters to
define the validity of the continuum assumption. Thus, the transition
from fluid-like to particle-like behaviour is achieved by decreasing
the volume fraction and characteristic length scale and increasing the
particle size. Near this transition, the use of a single-phase model,
such as that presented here, should be treated with caution and this
reveals the need for a comparison with future models which
explicitly account for the drag contribution of individual particles.
In multiphase models this contribution has been commonly
represented through a force term involving the ratio between the
phases differential velocities and the relaxation time (drag timescale)
(Laibe and Price, 2014; Chou and Shao, 2016).

Another related caveat concerns the numerical diffusion
underlying the use of an Eulerian approach to describe the
transport of particles. Compared to classical first order finite
difference methods, the use of the third order WENO procedure
has drastically reduced the numerical diffusion. It is also possible
to further reduce the induced numerical diffusion by increasing
the order of the WENO scheme (i.e. increase also the
computational cost). However, for problems purely related to
advection, where the presence of any diffusion is critical, another
strategy, such as two-phase models (using a Lagrangian approach
where individual particles are explicitly modelled), has to be
considered.

Vertical Finger Velocity
We have compared the simulated vertical velocity of fingers with
experimental observations (Fries et al., 2021) and a theoretical
prediction (Eq. 1) from (Hoyal et al., 1999; Carazzo and Jellinek,
2012) (Figure 11). This expression depends on a critical Grashof
number, which by analogy with thermal convection (Turner,
1973) has previously been assumed to be 103 (Hoyal et al., 1999).

FIGURE 13 | (A) Temporal evolution of the mass of particles accumulating at the bottom of the tank for several particle sizes. The dashed and dotted lines represent
the extended analytical model of (Hoyal et al., 1999). Particle volume fraction ∅0 � 1.19 × 10−3. (B) Accumulation rate calculated at the bottom of the tank for several
particle volume fractions and a particle size of 40 µm. The coloured dashed lines are the rate derived from the analytical model. The black dashed line is the theoretical
time at which all particles have settled across the interface.

FIGURE 14 | Evolution of the average particle volume fraction in the
lower layer for particle of size 40 µm. Black: C0 � 2 g/L (∅0 � 7.94 × 10−4),
Red: C0 � 4 g/L (1.59 × 10−3) and Blue: C0 � 6 g/L (2.38 × 10−3). Solid lines:
numerical model. Dashed lines: modified (Hoyal et al., 1999) model (Eqs
49–51).
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This value effectively corresponds to a dimensionless critical PBL
thickness at which point the PBL can detach and form fingers.
However, both the model results and experimental observations
summarised in Figure 11 suggest that Grc > 103 for our
configuration. Furthermore, as seen in Figure 11B, the curve
for Vf using Grc � 103 (blue dotted line) crosses the Stokes
velocity curve around 95 μm for instance with an initial particle
volume fraction of∅0 � 1.19 × 10−3, suggesting this value should
be the upper particle size limit for finger formation. However, in
agreement with experiments (Scollo et al., 2017; Fries et al., 2021),
we observe a larger threshold for the finger formation to be in the
size range [115 − 125] μm, for∅0 � 1.19 × 10−3, and in the range
[145 − 160] μm for ∅0 � 3.57 × 10−3, in this particular
configuration. We also showed that Eq. 1 poorly predicts the
observed dependence of the finger velocity on the initial particle
volume fraction. Indeed, our studies suggests an alternative power
law that better describes the dependence ofVf on∅0. Equation 1
has been derived by a scaling theory that involves δPBL as
characteristic length of the problem (Hoyal et al., 1999;
Carazzo and Jellinek, 2012) and the discrepancies highlighted
in this paper (Figure 11) may suggest that δPBL actually has a
slightly different dependence on the initial particle volume
fraction. Moreover, the use of the Grashof number as an
appropriate scaling for the PBL thickness remains uncertain.
On the one hand, our results suggest that if instability does
occur once a critical Grashof number is reached, the critical value
taken from the thermal convection analogy is not valid. On the
other hand, the Grashof number may simply not be the correct
dimensionless form of the PBL thickness, and different flow
configurations will produce different critical values. The fact
that both the experiments and simulations agree very well
shows that the “true” value for Grc, if it exists, is an order of
magnitude higher than in the thermal case. However, Figure 11B
shows that we find a ratio of ∼ 3.5 between the two fitted Grc
which is interestingly close to the ratio of three between the two
associated particle volume fractions. Whilst the variability of Grc
might come from the measurement itself (fitting of the numerical
and experimental data), this behaviour is coherent considering
the definition of Grc (ratio between buoyancy and viscous forces)
and the fact that the buoyancy force is a function of the particle
volume fraction. Obviously, this is only the case so long as the
particle concentration does not affect the bulk viscosity, which is
the case in our study. Therefore, we highlight here that the order
of magnitude found for Grc is valid for the flow configuration
presented in this study and also that there is a dependence on the
initial particle volume fraction. Further analyses with different
flow configurations (i.e., different buoyancy and viscous
conditions) are required to constrain the variability of Grc and
confirm that it may not be a rigorous scaling for the PBL
thickness. A study involving settling-driven gravitational
instabilities in air and in the presence of shear is currently
performed and will certainly provide some insights on the
dependence of Grc on the flow configuration.

The predicted dependence of the finger velocity on the particle
diameter by Eq. 1 shows a very good agreement with our
simulated results, as confirmed by a power-law fitting between
Vf and Dp. Thus, whilst we have demonstrated the need for a

better scaling of δPBL, Eq. 1 can still provide a good estimate for
the particle size threshold to form fingers. Consequently, if the
size threshold to form fingers is given when Eq. 1 equals the
Stokes velocity (Eq. 13) we can derive a formulation for the
threshold

Dp
p � ⎡⎢⎢⎣(18μ)2∅δPBL

g(ρp − ρf)ρf
����(π
4

)√ ⎤⎥⎥⎦1
4

. (56)

The main caveats for this formulation are that it strongly
depends on having a correct scaling for δPBL and obviously this
estimation is valid under the assumption that particles settle at
their Stokes velocity, which is reasonable for our study but might
be uncertain in nature where the ambient fluid is air and for non-
spherical particles.

Particle Concentration in the Lower Layer
and Mass Accumulation Rate
We have proposed a modified analytical formulation for the
particle concentration in the lower layer C2(t) and consequently
for the mass of particles accumulated at the bottom of the tank
mb(t). Despite some numerical artefacts that can be seen on
Figure 13B where the computed accumulation rate seems to be
non-zero before ta, there is very good agreement between the
simulations and the analytical model. The artefacts themselves
are due to fluctuating numerical errors that do not affect the final
results.

The analytical predictions for C2(t) and mb(t) are step-wise
functions depending on ta, the time it takes for the first particles
to reach the bottom. For t< ta, the analytical model predicts that
C2(t) increases linearly with time since the formulation assumes
that, during this period, particles are settling individually. In fact,
our numerical results show that convective settling does occur for
t< ta but, since this time period is short, the linear law seems to be
a satisfactory approximation for the early-time average lower
layer particle concentration. However, in order to compare our
simulated results with the analytical prediction, we fitted the
parameter ta in this study. Although we are able to obtain
excellent agreement between model and theory, it would be
better to develop a fully independent formulation. To achieve
this, it is necessary to also provide an analytical estimation for ta.
One possible approach would be to assume the decomposition
ta � ta′ + ta″ where ta′ is the time during which the PBL initially
grows beneath the interface at the individual particle settling
velocity, i.e., ta′ � δPBL/Vs, and ta″ is the time between the PBL
detachment and the first arrival of particles at the base of the
domain. If, during this stage, we assume that the particles are
advected at the finger velocity then ta″ � (h2 − δPBL)/Vf). We
therefore see that ta strongly depends on δPBL, which highlights
once again the need for a correct scaling of the PBL thickness, as
discussed in the previous section.

Another interesting result concerns the accumulation rate
of particles at the base of the domain in the presence of fingers.
Figure 13B shows the accumulation rate increases with time
for ta < t< tlim, in agreement with the analytical prediction
(i.e., combination of Eqs 53, 55 which provides an exponential
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increase of mb). Conversely, if the particles had settled
individually, the accumulation rate would be temporally
constant. However, there is no denying that the effect as a
function of position is also interesting in order to characterise
especially the consequences of the oscillatory convection on
the sedimentation rate. We computed an animated map
(Supplementary Material) showing the spatial distribution
of the sedimentation rate at the tank floor through time, for an
initial particle volume fraction of 1.98 × 10−3. As expected, the
convection in the lower layer initiated by fingers generates a
spatially inhomogeneous sedimentation rate which strongly
evolves in time. Furthermore, we also observe that the
temporal evolution stops a time around the theoretical time
when we expect all particle have left the upper layer (i.e., end of
convection). Generally, all these aspects show that temporally
resolved measurements of the accumulation rate of particles
from volcanic clouds may record temporal signatures of
sedimentation via settling-driven gravitational instabilities.
Whilst there is already a spatial deposit signature of
settling-driven gravitational instabilities (i.e. bimodal
grainsize distribution) (Bonadonna et al., 2011; Manzella
et al., 2015), this is not unique and can be generated by
other mechanisms such as particle aggregation (Brown
et al., 2012). Accumulation rate data from the field may
therefore provide a powerful tool for distinguishing the
efficiency of convective sedimentation beneath volcanic
clouds.

CONCLUSION

We have presented an innovative hybrid Lattice Boltzmann-
Finite Difference 3D model in order to simulate settling-
driven gravitational instabilities at the base of volcanic ash
clouds. Such instabilities occur when particles settle through a
density interface at the base of a suspension, leading to the
formation of an unstable particle boundary layer (Hoyal et al.,
1999; Carazzo and Jellinek, 2012; Manzella et al., 2015), and also
occur in other natural settings, such as river plumes (Davarpanah
Jazi and Wells, 2016). Our numerical model makes use of a low-
diffusive WENO procedure to solve the advection-diffusion-
settling equation for the particle volume fraction. The use of
such a routine allows us to minimise errors associated with
numerical diffusion and has the advantage of being applied to
simple uniform meshes, which makes the coupling with the LBM
easier. This innovative use of the WENO scheme, therefore,
represents an effective tool for the solving of advection-
dominated problems. Our implementation of the third order
WENO finite difference scheme will be integrated in a future
release of the open-source Palabos code. Our model has been
successfully validated by comparing the results with 1)
predictions from linear stability analysis where we show that
the model is able to simulate settling-driven gravitational
instabilities from the initial disturbance through the linearly-
unstable regime, 2) analogue experiments (Fries et al., 2021) and
3) theoretical models (Hoyal et al., 1999; Carazzo and Jellinek,
2012) in order to reproduce the non-linear regime which

describes the downward propagation of fingers. We also
confirmed the premature sedimentation process through
collective settling compared to individual settling.

Our model provides new insights into:

• The value of the critical Grashof number. From
measurements of the vertical finger speed, we have found
Grc ∼ 104 in our configuration. This value differs from the
one suggested by analogy with thermal convection
(Grc ∼ 103) (Hoyal et al., 1999). Our results suggest that
either the critical Grashof number for settling-driven
gravitational instabilities is greater than in the thermal
convection case or that the Grashof number may not be
the correct dimensionless form of the PBL thickness. In any
case, this highlights the need for further investigation of the
scaling of the PBL thickness δPBL.

• The presence of a particle size threshold for the finger
formation. Using our results, we have proposed an
analytical formulation for this threshold depending on
the density of particles, the viscosity of the medium and
also the bulk density difference between the two fluid layers.

• The signature of settling-driven gravitational instabilities
(i.e., accumulation rate). We show that the accumulation
rate of particles at the tank base initially increases with time
before reaching a plateau. This contrasts with the constant
accumulation rate associated with individual particle
settling. This suggests that accumulation rate data could
be used during tephra fallout to distinguish between
sedimentation through settling-driven gravitational
instabilities and individual-particle sedimentation.

We have also demonstrated how our numerical model can be
used to expand the initial conditions and configuration settings
that can be explored through experimental investigations. The
results presented so far in an aqueous media permitted model
validation but have also opened fundamental questions that will
be addressed in future works involving configurations more
similar to the natural system. Indeed, thanks to the strengths
of the LBM, the model can easily be applied to more complex
systems and provides a robust tool for the transition from the
laboratory studies to volcanic systems, as well as other
environmental flows.
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