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Characterization of climate uncertainties due to different land cover maps in regional
climate models is essential for adaptation strategies. The spatiotemporal heterogeneity in
surface characteristics is considered to play a key role in terrestrial surface processes.
Here, we quantified the sensitivity of model results to changes in land cover input data
(GlobCover 2009, GLC 2000, CCI, and ECOCLIMAP) in the regional climate model (RCM)
COSMO-CLM (v5.0_clm16). We investigated land cover changes due to the retrieval year,
number, fraction and spatial distribution of land cover classes by performing convection-
permitting simulations driven by ERA5 reanalysis data over Germany from 2002 to 2011.
The role of the surface parameters on the surface turbulent fluxes and temperature is
examined, which is related to the land cover classes. The bias of the annual temperature
cycle of all the simulations compared with observations is larger than the differences
between simulations. The latter is well within the uncertainty of the observations. The land
cover class fractional differences are small among the land cover maps. However, some
land cover types, such as croplands and urban areas, have greatly changed over the years.
These distribution changes can be seen in the temperature differences. Simulations based
on the CCI retrieved in 2000 and 2015 revealed no accreditable difference in the climate
variables as the land cover changes that occurred between these years are marginal, and
thus, the influence is small over Germany. Increasing the land cover types as in
ECOCLIMAP leads to higher temperature variability. The largest differences among the
simulations occur in maximum temperature and from spring to autumn, which is the main
vegetation period. The temperature differences seen among the simulations relate to
changes in the leaf area index, plant coverage, roughness length, latent and sensible heat
fluxes due to differences in land cover types. The vegetation fraction was the main
parameter affecting the seasonal evolution of the latent heat fluxes based on linear
regression analysis, followed by roughness length and leaf area index. If the same
natural vegetation (e.g. forest) or pasture grid cells changed into urban types in
another land cover map, daily maximum temperatures increased accordingly. Similarly,
differences in climate extreme indices are strongest for any land cover type change to
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urban areas. The uncertainties in regional temperature due to different land cover datasets
were overall lower than the uncertainties associated with climate projections. Although the
impact and their implications are different on different spatial and temporal scales as shown
for urban area differences in the land cover maps. For future development, more attention
should be given to land cover classification in complex areas, including more land cover
types or single vegetation species and regional representative classification sample
selection. Including more sophisticated urban and vegetation modules with
synchronized input data in RCMs would improve the underestimation of the urban and
vegetation effect on local climate.

Keywords: land cover input data, land cover change, urban area, climate uncertainty quantification, regional climate
model COSMO-CLM, climate indices, land cover classes' fraction and distribution

INTRODUCTION

Efficient emission reduction policies are needed to reduce the rate
of climate change intensification with increasing greenhouse gas
emissions. This reduction requires development of mitigation
and adaptation strategies for the sustainable use of resources,
where land-atmosphere interactions are considerably important
(Betts 2007; de Noblet-Ducoudré and Pitman, 2021). According
to the IPCC (2013), a key role is played by land transformations in
adapting and mitigating climate change for future scenarios with
the aim to stabilize temperature increases up to 1.5°C. Land use/
cover change influences the regional and local climate due to its
interaction with the atmosphere via biogeophysical and
biogeochemical processes. In recent decades, many modeling
groups have revealed the importance of the land surface in
numerical models over various temporal and spatial scales
(Sellers et al., 1996; Brovkin et al., 2004). These findings resulted
in the inclusion of land use/cover forcings in the climate projections
of the Coupled Model Intercomparison Project Phase 5 (CMIP5,
Hurtt et al., 2011). The results revealed that the land surface forcing
can be as high as the forcing due to the RCP2.6 scenario based on
global circulation models (de Noblet- Ducoudré et al., 2012). A first-
of-its-kind future land cover change study based on a single
convection-permitting regional climate model concluded that
increased cultivation of bioenergy crops by poplar trees can
reduce future local maximum temperatures by up to 2°C in mid
Europe (Tölle et al., 2014).

Land surface characteristics depending on the soil, vegetation,
urban area, and topography play an important role in influencing
climatic patterns or meteorological events. For example, synoptic
systems can be blocked by topography (Barrett et al., 2015), or
precipitation patterns can be influenced by soil
moisture—precipitation feedbacks (Hohenegger et al., 2009;
Seneviratne et al., 2010; Wei and Dirmeyer 2012). Through
their albedo and evapotranspiration capabilities and
aerodynamic roughness, vegetation and urban areas can affect
temperature variations and the boundary layer height (Tölle et al.,
2017; Tölle et al., 2018; Belušić et al., 2019; Davin et al., 2020;
Hertwig et al., 2020). Accounting for biogeochemical fluxes
between the land surface and the atmosphere is considered to
be as important as biogeophysical fluxes in representing the
biomass evolution of vegetation including carbon, water and

nutrients. Each of the land surface characteristics influences soil
moisture and the partitioning between the energy and water fluxes
of different strengths with spatiotemporal heterogeneity (McCabe
and Wolock 2013). The atmosphere responds through changes in
temperature and humidity, precipitation and cloud cover.
Circulation patterns can even be changed (Zhao et al., 2001)
depending on the magnitude of land transformation. Soil
moisture heterogeneities arise from these processes (McCabe
and Wolock 2013). Thus, to realistically simulate land use/cover
change effects on regional and local climate and draw conclusions
for management strategies, numerical models would benefit from
land surface characteristics, which are as accurate as possible and
have high spatial resolution. Furthermore, the numerical models
require a high spatial resolution in terms of their grid sizes to
simulate such feedbacks.

Convection-permitting models (Prein et al., 2015) enable
representation of the land surface below 4 km and improve
regional forcing and processes (Garnaud et al., 2015). Changes
in local conditions with the underlying surface including heat and
water storage capacities have the largest impact on temperature due
to the interplay between surface albedo and evapotranspiration
efficiencies (Tölle et al., 2014). Thus, significant changes in the
temperature response are expected locally, underpinning the
importance of the convection-permitting scale when considering
land use/cover changes.

The lower boundary of a climate model is a soil vegetation
atmosphere transfer scheme (SVAT) for exchanging heat, moisture,
andmomentumwith the atmosphere. These schemes require several
parameters that describe the land surface, including orography, land-
water masks, soil and vegetation characteristics or urbanized area
locations as input data, which are derived from remote sensing
observations or in situ measurements. Commonly used surface
parameters for vegetation parameterization are the leaf area
index and the minimal or maximal stomatal resistance, which
are important for transpiration processes through the leaves,
and the vegetation fraction, which determines the amount of
evapotranspiration from the surface. The wind, humidity and
temperature profiles between the surface and lower atmosphere are
influenced by the roughness length, which plays a role in turbulent
exchange processes with the atmosphere. The surface albedo and
emissivity determine the energy availability at the surface. The root
depth determines the water extracted from the soil layers by plants.
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Presently, several land cover maps are available for regional
climate and weather models such as the products based on
MODIS (Friedl et al., 2010), GLC 2000 (Bartholomé and
Belward 2005), GlobCover 2009 (Arino et al., 2008), and CCI
(Poulter et al., 2015; Li et al., 2018). The land cover of these
products is static in time for the regional climate simulations. The
impact of time-varying land cover data in regional climate models
is currently investigated in a joined community effort, which is
the Land Use and Climate Across Scales Flagship Pilot Study
(LUCAS FPS) supported by the World Climate Research
Program-Coordinated Regional Climate Downscaling
Experiment (WCRP-CORDEX) and was initiated by the
European branch of CORDEX (EURO-CORDEX) (Davin
et al., 2020). The land cover data have a global distribution
and are retrieved from satellite observations. They define the
boundaries between ecosystems, such as forests, wetlands, and
cultivated systems.

The GlobCover2009 land cover map was developed by the
European Space Agency (ESA) with the assistance of ENVISAT’s
Medium Resolution Imaging Spectrometer (MERIS) instrument
at 300 m resolution (Arino et al., 2008). This 2009 land cover map
is available within a year of the last satellite acquisition. The
legend of the map, including 22 different land cover classes, is
related to the UN Land Cover Classification System (LCCS, Di
Gregorio and Jansen 2000). Its predecessor GLC 2000 (Global
Land Cover map for the year 2000, Bartholomé and Belward
2005) is the result of a coordinated project by the European
Commission’s Joint Research Centre (JRC) and ESA. The data
product provides a harmonized land cover database for the year
2000 on a 1 km spatial resolution. The 22 land cover types are
based on an older (FAO 1988) LCCS with a slight different
classification than that of GlobCover 2009. Daily data are
retrieved from the VEGETATION sensor onboard SPOT 4
satellite. The ESA developed another data product, the Climate
Change Initiative with Land Cover (CCI_LC), at 300 m resolution
based on time-varying land cover data (Bontemps et al., 2012;
Poulter et al., 2015). Data are retrieved from the MERIS and
VEGETATION 1 and 2 instruments onboard ENVISAT and
SPOT 4 and 5. The dataset can be obtained with 22 or 38 standard
thematic classes or a user-defined setup with cross-walking tables.
The classification is based on UN LCCS. The land cover data are
available from 1992 to 2015. ECOCLIMAP (Masson et al., 2003;
Champeaux et al., 2005) is a global database with 243 land cover
classes at 1 km resolution based on NOAA/AVHRR satellite data
(Champeaux et al., 2000) and developed in collaboration with the
University of Maryland (Hansen et al., 2000; Loveland et al.,
2000). The procedure for Europe differs to some extent. Here, the
land cover classes are derived from the Coordination of
Information on the Environment (CORINE) land cover
database (CEC 1993; Heymann, 1993), which has a 250 m
spatial resolution and then averaged to 1 km. Data gaps in the
CORINE database are filled with Pan-European Land cover
Monitoring (PELCOM) data (Mucher et al., 2001).

The land cover classes are combined with climate maps of the
world (Kottek et al., 2006), such as the KÖPPEN-GEIGER climate
classification map to retrieve a discrimination among ecosystems
on each continent. Typical climates of Köppen climate zones are:

Af (equatorial rainforest and full humid), Am (equatorial
monsoon), Aw (equatorial savannah), BW (desert climate), BS
(steppe climate), Cs (warm temperate climate with dry summer),
Cw (warm temperate climate with dry winter), Cf (warm
temperate climate and fully humid), Ds (snow climate with
dry summer), Dw (snow climate with dry winter), Df (snow
climate and fully humid), ET (tundra climate), and EF (frost
climate). The vegetation parameters for the numerical models are
ultimately derived from these ecosystems.

Spatial inconsistencies exist among global land cover datasets
(Hua et al., 2018). This uncertainty accumulates in the whole
processing chain of remote-sensing information by obtaining,
processing, analyzing and expressing the results. Thus, the land
cover maps differ in land cover classes and their numbers, class
fraction and spatial distribution, spatial resolution, and year of
retrieval. Using one land cover map over the other in a climate or
weather model eventually leads to differences in vegetation
parameters or urban area distribution affecting the regional
and local climate. For example, Heret et al. (2006) report
changes in the latent heat flux of 90% when the LAI is
changed from 1 to 5. The importance of land cover
uncertainties on climate compared to climate projection
uncertainties is of current debate. This stresses the need to
quantify the sensitivity of models results to changes in land
cover input data.

Therefore, this study investigates the uncertainty in regional
climate modeling by analysing the impact of different land cover
maps in the official regional climate model Consortium of Small-
scale Modeling (COSMO)-CLM (CCLM, Rockel et al., 2008) on
regional and local climate. The research questions, which we
address, are:

1. What is the impact on regional and local climate due to
changes in retrieval year, number, fraction and spatial
distribution of land cover classes?

2. What is the role of the surface parameters on the surface
turbulent fluxes and temperature?

3. How do land cover class spatial distribution changes between
the surface maps effect seasonal climate extremes?

Note that the official version of CCLM treats urban surfaces as
a land cover class without anthropogenic heat flux or urban
albedo (Trusilova et al., 2016). Non-hydrostatic convection-
permitting climate simulations are performed at 3 km spatial
resolution over Germany from 2002 to 2011. Simulations are
directly downscaled (Coppola et al., 2018; Ban et al., 2021) with
ERA5 reanalysis data (Hersbach et al., 2018). If the retrieval year
varies in the same dataset, as in the CCI data, changes in land
cover class fraction and spatial distribution can be regarded as a
land cover change. However, differences in retrieval year among
the land cover maps do not necessarily reflect land cover change.
The resulting spatial discrepancies can also be due to differences
in data processing. There is an increase in quality of information
between older and new land cover products with respect to the
representation of urbanized areas (Katzfey et al., 2020). The
former land cover of the CCLM was based on GLC200. At
present, the CCLM uses the land cover map GlobCover 2009,
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which is also the dataset for operational weather forecasts with
COSMO or most recently ICON. If the CCI provides advantages
over GlobCover2009 in the CCLM needs to be determined. In
addition, an analysis is beneficial for providing suggestions for use
in land use/cover change and management studies with regional
climate models for climate adaptation strategies. This study is the
first in the literature on the long-term impact of different land
cover datasets on climate at convection-permitting scale.

The following section describes the methodology, including
the study area, a description of CCLM, simulation experiments,
datasets used and statistical methods. The results are presented in
section Results. In section Discussion and Conclusion the results
are discussed and conclusions are drawn.

METHODOLOGY

Regional Climate Model and Set-Up
The region of the simulation domain covers Germany with
adjacent areas as shown in Figure 1. The CCLM (v5.0_clm16)
used for simulations with different land cover maps is based on
the COSMO, which is a limited-area model designed for
applications at the meso-β to meso-c scales (Baldauf et al.,
2011). A one way nesting with Davies-type lateral boundary
formulation is applied at the lateral boundaries. A Rayleigh
damping layer is used at the top of the model domain. The
selection of different dynamical and physical parameterization
schemes allows for application of the model at a wide range of

spatial and temporal scales from 1 to 50 km. The model integrates
the fully compressible, non-hydrostatic thermodynamic
equations in a moist atmosphere. The equations are solved
numerically on an Arakawa-C staggered grid (Arakawa and
Lamb 1977) in rotated coordinates, with a Runge-Kutta time-
stepping scheme (Wicker and Skamarock 2002). The model uses
a vertical terrain-following height coordinate (Doms and Baldauf,
2013). A one-moment microphysics scheme, including five
categories of hydrometeors (clouds, rain, snow, ice, and
graupel), is used for the parameterization of precipitation. The
simulations use a modified Tiedtke parameterization of shallow
convection. Deep convection is resolved, enabling determination
of the resolution of convective processes. The radiative transfer
scheme is based on Ritter and Geleyn (1992), and a turbulent
kinetic energy-based surface transfer and planetary boundary
layer parameterization (Raschendorfer 2001) is applied. Here, a
stability and roughness length dependent surface flux
formulation couples the atmosphere with the underlying
surface based on drag-law formulations (Doms et al., 2013).
The surface flux of sensible heat/water vapour depend beside
the bulk-aerodynamical transfer coefficient on the gradient
between the prognostic temperature/specific humidity at the
lowest grid level above the ground and surface temperature/
ground level specific humidity.

The soil-vegetation-atmosphere transfer (SVAT) module
TERRA-ML (Schrodin and Heise 2002; Doms et al., 2013)
provides the surface temperature and specific humidity at the
ground for calculating the surface fluxes as lower boundary for
the atmospheric part of the model. The ground temperature is
calculated by the equation of heat conduction. There are 10 active
layers with a depth of 15.34 m for energy calculations. The soil
water content is predicted by the Richards equations. Eight active
layers with depth of 3.82 m are assumed for water transport
calculations. Evaporation from bare soil and transpiration by
plants adopted from Dickinson (1984) are functions of the water
content. Transpiration is additionally determined by radiation
and ambient temperature.

The land surface parameters (soil type, plant characteristics,
orography, etc.) are processed with the external parameter tool
EXTPAR (Smiatek et al., 2008) to align with the model’s spatial
resolution. The vegetation characteristics are hereby calculated
from the dominant land cover by application of look-up tables
(Doms et al., 2013). The external parameters contain orography
and coastlines based on ASTER (Advanced Space borne Thermal
Emission and Reflection Radiometer) data (NASA 2019), which is
valid for the region between 60°S and 60°N. The soil type and
depth data were adapted from the Harmonized World Soil
Database (HWSD, Fischer et al., 2008). Nine soil types are
considered and refer to the upper 30 cm of the dominant soil.
The temperature climatology of the lowest soil layer is based on
the Climate Research Unit (CRU) data at 0.5° spatial resolution
from the University of East Anglia (New et al., 1999). The aerosol
climatology comes from the National Aeronautics and Space
Administration Goddard Institute for Space Studies (NASAGISS,
Tegen et al., 1997). The surface albedo climatology is determined
from TERRA MODIS (Schaaf and Wang 2015). This albedo is
prescribed by external fields and defined in EXTPAR. Average

FIGURE 1 |Geometric height in meters of the Earth’s surface above sea
level for the simulation domain.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7222444

Tölle and Churiulin Role of Land Surface Characteristics

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


values for every month are provided. The actual surface albedo is
determined by a linear interpolation between twomonthly values,
depending on the day. The energy is then partitioned depending
on the surface/vegetation parameters influencing the surface
fluxes. The latent heat flux (LE) depends on the vegetation
cover fraction and leaf area index. The sensible heat flux (SH)
is also related to vegetation through its partition with the latent
heat flux and the aerodynamic exchange specific to the surface/
vegetation type.

Each land cover class has corresponding surface parameters,
which are prescribed as look-up tables in the model (Doms et al.,
2013). The surface parameters for each land cover class include
vegetation cover fraction (PLCOV), leaf area index (LAI) and
rooting depth (RD). A sinusoidal fit between the maximum and
minimum LAI according to the Julian day, elevation and latitude
results in seasonality (Doms et al., 2013) with a static annual
cylce. The LAI seasonality can also be imposed by monthly values
of the normalized difference vegetation index (NDVI) derived
from the AVHRR visible and near-infrared spectral bands,
assuming a proportionality between the NDVI and LAI. The
vegetation cover fraction and roughness length (Z0) are
analytically calculated from the LAI and land cover class. The
roughness length depends on land cover and subgrid-scale
orography. Urban areas in the official version of the RCM are
treated as a land cover class with associated surface parameters.
Thus, the urban impervious surfaces are presented as natural land
surfaces with increased surface roughness (Z0 � 1.0) and reduced
vegetation cover (maximum PLCOV � 0.2). No anthropogenic
heat flux, urban canopy layer or urban surface energy balance are
included in the simulations (see Trusilova et al., 2016).

Simulation Experiments and Data Analysis
The simulations were run with 50 atmospheric layers, a model top
of 22 km, and a time step of 25 s each. The configuration was
adapted from the COSMO-DE setup of the German Weather
Service with modifications based on several sensitivity test runs.
Simulations were conducted as direct downscaling experiments at
convection-permitting scale driven by ERA5 reanalysis data
(Hersbach et al., 2018) with a horizontal resolution of

approximately 3 km over the whole of Germany. The
horizontal extent of the simulation domain is smaller by 2
grid boxes at each side than the total model domain. This
sponge zone allows to implement the boundary conditions and
to apply the domain decomposition strategy. The whole model
domain is initialized with the meteorological variables (specific
humidity, air temperature, surface pressure, wind components,
specific cloud liquid water and ice content, etc.) from the driving
data as and the lateral boundary conditions are updated for each
time step thereafter. The soil temperature and moisture profiles
are initialized at the start of the simulation for the whole
simulation domain and updated afterwards at the lateral
boundaries.

The simulations were conducted with four different land cover
maps, namely GlobCover 2009 (GC), GLC 2000 (GLC),
ECOCLIMAP (ECO), and CCI. Table 1 lists all of the
simulation experiments conducted with the land cover maps
used, the retrieval year, the land cover classes and the
reference source of the data. The CCI land cover map is
retrieved for 2000 (CCI) and 2015 (CCI 2015) to examine the
impact of land cover change over time. For 2015, two simulations
based on the CCI had different numbers of land cover classes.
One simulation contains 22 land cover classes, and the other
simulation has 38 land cover types (named CCI38 in the
following). ECO contains 243 land cover classes. This
difference allows to study the changes due different number of
land cover classes. GLC, CCI, and CCI2015 share the same land
cover types (Zhang, Tölle et al., 2021). GC shares the same
number of land cover classes, which are comparable to the
ones of GCL. Difference thus arise from land cover class
fraction and spatial distribution.

The simulation with the GC land cover map is used as the
reference simulation to which the other simulations are compared
to. GC is the current operational land cover dataset of the German
Meteorological Service. The simulation with GC is conducted
from 2000 to 2011, where the first year 2000 is discarded from the
analysis of a spin-up year. The other simulations started in 2001
with balanced soil moisture conditions. Finally, the analysis for all
simulations is over a 10-years period from 2002 to 2011. All the

TABLE 1 |Names of simulation experiments including the land cover map used and spatial resolution, the retrieval year of the land cover maps, their sources and references
with the respective numbers of land cover classes. The simulation experiment GC, which uses the land cover map GlobCover 2009, is the reference or control simulation
to which the other simulation experiments are compared.

Simulation
experiment

Land cover
map/resolution

Year Webpage Reference Land cover
classes

GC (Control) GlobCover 2009/
300 m

2009 http://due.esrin.esa.int/page_globcover.php Arino et al. (2008) 22

GLC GLC 2000/1 km 2000 https://forobs.jrc.ec.europa.eu/products/glc2000/
glc2000.php

Bartholomé and Belward, (2005) 22

CCI38 CCI/300 m 2015 http://maps.elie.ucl.ac.be/CCI/viewer/download.php Bontemps et al. (2012), Poulter et al.
(2015)

38

CCI2015 CCI/300 m 2015 http://maps.elie.ucl.ac.be/CCI/viewer/download.php “ “ 22 as of
GLC2000

CCI CCI/300 m 2000 http://maps.elie.ucl.ac.be/CCI/viewer/download.php “ “ 22 as of
GLC2000

ECO ECOCLIMAP/1 km 2000 http://www.umr-cnrm.fr/spip.php?rubrique87&lang�en Masson et al. (2003), Champeaux et al.
(2005)

243
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simulations have the same lateral boundary conditions, and the
experimental simulations started with balanced soil moisture
conditions from the reference simulation. The simulated
circulation is similar for the simulations due to the small
domain and ERA5 forcing at the boundaries. Thus, changes
can be attributed to the differences in land cover maps.

The land cover maps described in Table 1 have different land
cover legends with different land cover classes. A detailed list of
the land cover classes of the maps is provided in the
supplementary material. For example, typical classes include
evergreen needleleaf forest, evergreen broadleaf forest,
deciduous needleleaf forest, deciduous broadleaf forest, mixed
forest, woodland, grassland, closed and open shrubland,
cropland, wetlands, bare soil, urban areas, water, permanent
snow and ice. GC includes mixed versions of these classes
with different fractions. Thus a harmonization for comparison
analysis is required. For example, GC uses the UN LCCS
classification scheme with 22 classes, whereas ECO is based on
another classification system that is supported by the EU
commission and has 243 classes. To compare the differences
in fraction and spatial distribution among the land cover classes
of the maps, the land cover fractions are aggregated and
normalized to form a set of unified and generalized classes.
The six new resampled consistent land cover groups correspond to
natural vegetation, crops, pasture, bare soil, urban area, and water.
Shrubs and trees are bothmerged into natural vegetation, and pasture
includes grasses. These six land cover types are commonly used in
vegetation models, such as CARbon Assimilation In the Biosphere
(CARAIB; Warnant et al., 1994). The data and results were examined
individually prior to aggregation, which led to the harmonization
concept to summarize the results. Then, the differences in local and
regional climate due to differences in the six land cover groups
between simulations are analyzed.

To evaluate the climate impact due to the different land cover
maps, we analyze the temperature, latent and sensible heat fluxes
and vegetation parameters of the simulation experiments in a
coherent way. Cities are presented as a land cover class. As such,
urban areas are included by this examination. The analysis is
based on the anomalies of the aforementioned variables of the
simulation experiments with respect to the reference simulation
climatology. The difference corresponds to the experimental
simulation minus the control/reference simulation.
Temperature and its minimum and maximum value are
examined as it is the most affected variable due to changes in
the vegetation parameters in the model. The physical processes of
the surface energy balance affect this variable. Differences in
vegetation parameters result from discrepancies in the land cover
classes of the land cover maps. The main vegetation parameters in
the model, that influence evapotranspiration, are the LAI,
PLCOV and Z0. The LAI is one of the most important
parameters since it determines plant transpiration. The LAI is
defined as the surface area of leaves contained in a vertical column
normalized by its cross-sectional area. Another parameter in this
context is PLCOV, which is the fractional area of the grid cell
covered by plants. PLCOV estimates the fraction of
evapotranspiration by plants. Z0 determines the turbulent
exchange of water and heat between the surface and the

atmosphere. The latent heat flux depends on these parameters,
which may influence the temperature due to its magnitude of
evaporative cooling. Therefore, the whole process chain of the
differences with respect to the control simulation is examined. We
analyse the seasonal variations based on the annual cycle and
regionalism based on the parameter distribution over the
simulation domain and apply linear regression analysis. In
particular, we look at changes in surface parameters [Δ(LAI,
PLCOV, Z0)], which may results in differences in the latent heat
flux ΔLE. Changes in latent heat flux may be seen in temperature via
evaporative cooling [Δ(LAI, PLCOV, Z0) -> ΔLE -> Δ(T2M, Tmax,
Tmin)]. Changes in sensible heat flux are additionally analysed.

“Whisker” box plots of monthly climatologies are used for
land cover change signal analysis. The central mark in the box
plots indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles. Here, differences in
daily maximum temperature, daily latent and sensible heat fluxes
indices due to land cover changes are examined. The climate
indices considered cover growing season length (GSL), growing
season start (GSS), ice days (ID), tropical nights (TR), frost days
(FD), and number of summer days (SU) listed in Table 2. These
indices are important for plant growth, and thus far have not been
investigated with land cover change studies in regional climate
models at convection-permitting scale. The difference area was
calculated for grid cells where a major land cover type change
occurred between the control simulation and one of the
experimental runs. The land cover type change is dominant if
the land cover class fraction changes in a grid box more than 40%.
Considered are natural vegetation, pasture and crops changes
into urban type in a grid box, or crops and natural vegetation
changes into pasture, or pasture change into crops.

Prior to this analysis the simulation experiments are compared
with observations. The HYRAS high-resolution observational
dataset from the German Weather Service (Razafimaharo
et al., 2020) is used to evaluate the simulation results. These
data are gridded daily at 5-km horizontal resolution based on
station data, which are available over all of Germany for the
period of 1951–2015. The 2-m temperature, including its
minimum and maximum temperatures, are extracted from this
dataset for the analysis period of 2002–2011.

Statistical performance indices are used to estimate the added
value of the simulated temperature (T2M, Tmax and Tmin) with
different land cover maps (CCI, CCI 2015, CCI38, GLC, and
ECO) with respect to the reference map, which is GC, to the
HYRAS observations. Daily values are evaluated for the mean
bias error (difference of the model minus observations), the root-
mean-square error (RMSE), and the Pearson correlation
coefficient (ρ). The RMSE and ρ reflect the quality and spatial
consistency between the simulations and observations. We
applied additional indices, including the Kling-Gupta-
Efficiency (KGE) index (Gupta et al., 2009) and the
distribution added value (DAV) index (Soares et al., 2017).
The KGE is traditionally used as a goodness-of-fit measure for
runoff model performance. Both indices are used by Raffa et al.
(2021) to determine the benefit of higher spatial resolution
climate simulations compared with coarser spatial resolution
climate simulations with respect to observations. We adopted
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these indices for our study to estimate the benefits of the different
land cover maps. The aim of the KGE is to reveal the performance
of a model time-series (subscript EXP) with respect to the
observational time-series (subscript OBS). KGE equals one
demonstrates that there is perfect mapping between the
experiment and control data. KGE values lower than −0.41
correspond to underperformance with respect to the mean of
the control (observational) data.

KGE � 1 −

�������������������������������(ρ − 1)2 + (σEXP

σOBS
− 1)2

+ (μEXP

μOBS
− 1)2

√√
(1.1)

where ρ is the Pearson correlation coefficient, σ is the standard
deviation and μ is the mean value.

The DAV estimates the added value by comparing the
probability density function (PDF) of the simulation based on
one of the alternative land cover maps and the PDF of the
simulation based on the reference land cover map compared
with the observational PDF. Moreover, the DAV index allows us
to estimate the Perkins skill scores (S) in the experiment based on
one of the alternative land cover maps (subscript EXP) and the
control simulation based on the reference land cover map
(subscript CTR) and the observations (subscript OBS).

DAV � SEXP − SCTR
SCTR

� ∑n
1 min(ZEXP , ZOBS) − ∑n

1 min(ZCTR, ZOBS)∑n
1 min(ZCTR, ZOBS) (1.2)

where Z is the frequency of values in each bin for the experiment,
reference and observations. In the case, when the DAV equals to
zero, there is no benefit due to the alternative land cover map in
the climate variable. If the DAV is less than zero, there is a loss in
performance due to the alternative land cover map. Positive
values of the DAV index demonstrate that there is a beneficial
impact due to the alternative land cover map compared with the
reference map with respect to the observations.

RESULTS

The six dominant land cover fractions of the simulations with the
regional climate model CCLM and the fraction difference with
respect to the reference simulation based on GC are presented in

Figures 2A,B. The six major land cover types of each simulation
are very similar to each other in their fractions. Cropland and
natural vegetation were the most common land cover categories
in all the simulation experiments. Approximately 35–40% of the
grid cells are covered by crops, and ∼30% are covered by natural
vegetation. The rest represents other categories: 10–18% is
pasture, 2–8% are urban areas, below approximately 1% is
bare soil, and the rest is water. The crop area of the
simulation based on GLC is approximately 4.8% higher than
that of GC, followed by ECO with 2.5%, and is reduced by more
than 2% for the simulations based on CCI. The urban fraction of
all simulation experiments is higher than the reference
simulation, by 1% for GLC and by approximately 3% for the
simulations based on the CCI and ECO. The natural vegetation
area decreased by approximately 2% in all the experiments. Major
decreases of natural vegetation by 7% are shown for ECO. The
pasture fraction decreases for GLC (∼2.5%) and increases for the
CCI (∼1.5%) and ECO (∼1.9%) compared with GC. Fraction
differences among the simulations based on CCI are similar and
of small magnitude. Therefore, arrows showing the magnitude
difference between the CCI data are added for visibility. CCI38
has the highest urban (increase) and crop (decrease) fraction
difference. The urban and pasture areas are slightly higher for
CCI2015 than for CCI and slightly lower for natural vegetation
and crops.

The annual cycle of the 2-m, maximum and minimum
temperature bias of the simulation experiments compared with
observations are shown in Figures 3A–C. The temperature bias of
all simulations compared with observations is much higher than
the differences between the simulations. A two-sided t-test is
employed to compute whether the differences are statistically
significant and the differences are not statistically significant (at
the 95th percentile level using the t-test) between the simulations
and the observations. The performance values based on KGE and
DAV are best for the simulation based on the GC dataset,
although all simulations perform well compared to
observations (please see KGE and DAV values in the
Supplementary Table S1 in supplementary material). The
simulations are app. 0.2°C cooler than the observations
between January and April and close to the observations in
May and June. The highest differences from +0.4 to +0.6°C
occur from July to September. Major discrepancies in 2-m
temperature occur during the vegetation period (April through
September) with the simulation based on GC being closest to the

TABLE 2 | Subset of the standard ETCCI indices, their abbreviations, and their descriptions. The climate indices are calculated for each experiment described in Table 1. TX
is daily maximum temperature, TN is daily minimum temperature and TG is daily mean temperature.

SU Summer days Number of consecutive summer days periods with more than 5 days per time period where TX > 25°C
FD Frost days Number of consecutive frost days periods with more than 5 days per time period with TN < 0°C
TR Tropical Night The number of days with TN > 20°C at night
ID Ice Days The number of icy days with TX < 0°C during the day
GSL Growing Season Length The number of days between

first occurrence of at least 6 consecutive days with TG > 5°C
first occurrence of at least 6 consecutive days with TG < 5°C within the last 6 months

GSS Growing Season Starting Day The first occurrence of at least 6 consecutive days with TG > 5°C
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observations followed by GLC and then CCI, CCI2015 and
CCI38. ECO is closest to GC in the winter months and far off
during summer.

For maximum temperature, the simulations underestimate the
highest temperature during the daytime down to −1.6°C in
March. Minor discrepancies by −0.6°C occur during August
through December. CCI38 is closest to the observations during
April through July otherwise; ECO shows the least differences in
maximum temperature.

Differences from observations are highest for minimum
temperature. Here, the simulations overestimate the lowest
temperature by +1.4°C to +1.85°C during nighttime, especially
during July through October. The lowest discrepancies occur
between December and February, and GC is closest to the
observations, which is supported by the performance indices
KGE and DAV (please see Supplementary Table S1 in
supplementary material).

In summary, based on the results, strongest differences of the
simulations results due to the land cover maps compared with
observations are seen in maximum and minimum temperature
during the vegetation period. Although the differences between
model results and observations are small. It can be assumed that
they are well within the uncertainty of the observations.
Razafimaharo et al., 2020 calculated a mean temperature bias
of HYRAS of ±0.03°C for meteorological sites and of ±0.8°C for
gridded or monthly datasets.

Annual cycle differences in the 2-m, and maximum and
minimum temperatures among the simulations are examined
in Figures 4A–C. Here, the differences are calculated with respect
to the control simulation based on GC (see Table 1). The 2-m
temperature amplitude is highest for ECO/CCI38 with changes

by approximately +0.04°C to +0.06°C for CCI38 with respect to
GC in May through July and the lowest values are approximately
−0.02°C to −0.03°C between January and March. ECO deviates by
approximately +0.08°C to +0.04°C between June and August. The
strongest differences are observed in maximum temperature at
+0.1°C, which follows the pattern seen in the 2-m temperature
(Figure 4B). The minimum temperature in the simulation
experiments is higher than GC by up to +0.06°C over almost
the entire year. Except in winter months, minimum temperatures
are lower than GC by app. 0.02°C.

The temperature differences among the simulations partly
stem from changes seen in the vegetation parameters and finally
latent heat fluxes, as demonstrated in Figures 5A–C. The smallest
difference in LAI was −0.5 for CCI38 compared with GC during
the vegetation period. Similarly, plant coverage was lower over
the entire year compared with GC and further reduced down to
−4 percent during the vegetation period. This reduction results in
lower latent heat fluxes and finally higher temperatures. CCI and
CCI2015 are very similar in their temperature discrepancies to
GC following the amplitude of CCI38 but with a smaller
magnitude. Both CCI and CCI2015 are very similar in their
differences in LAI, plant coverage and latent heat fluxes (all are
lower than GC) but of lesser magnitude than CCI38, which is seen
in the smaller temperature difference. In contrast to CCI38, CCI
and CCI2015 showed fewer plant cover differences (2%) during
summer months than during winter months (3%). GLC is slightly
warmer than GC by +0.02°C over most of the year. GLC has also
the smallest LAI difference from GC. The picture is different for
plant coverage, where GLC has a higher vegetation fraction than
GC by up to +1 percent during June through August. Although
GLC has lower LAI values than GC during summer months, the

FIGURE 2 | (A) Land cover fraction in percent of water (blue), bare soil (brown), urban (red), natural vegetation (green), crops (yellow), and pasture (light green) of
each simulation experiment based on ECO, GC, GLC, CCI, CCI38 and CCI 2015. Please see Table 1 for explanations of the abbreviations. (B) Differences in land cover
fraction in percent of ECO, GLC, CCI, CCI38, and CCI2015 compared with GC. GC is the control simulation based on GlobCover 2009. Arrows indicate the magnitude
difference between the CCI data.
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plant coverage is higher, which compensates for the lower LAI in
transpiration during this period. A lower LAI together with a
higher vegetation fraction results in nonsignificant differences
from GC in the mean annual cycle of latent heat and reduced
temperature differences. The picture for ECO is very different from
the other land cover maps. The LAI of ECO deviates fromGC with
two cycles showing higher LAI values during spring and autumn,
and lower values during summer months. Similarly, the PLCOV is
higher in spring and autumn by up to 15% than GC. PLCOV is still
higher with 6% during summer months. Accord to the annual LAI
cycle, latent heat fluxes are increased in April and May and drop
during summer. The different pattern seen in ECO is the result of
the different land cover classification scheme.

To summarize, differences in the annual cycle of temperature
result from different land cover maps. The strongest changes
between simulations occur in maximum temperature. The
changes in temperature consistently relate to changes in LAI,
plant coverage and latent heat fluxes. The results revealed that the
largest differences occurred from spring to autumn, which was
the main vegetation period in Germany due to climatic
conditions. The comparison of the annual cycle over the entire
simulation domain leads to compensation errors and hides
regional differences due to spatial distribution changes in land
cover classes.

The regionalization based on the 2-m temperature distribution
of the simulation based on GC over the simulation domain is

FIGURE 3 | Annual cycle climatology (2002–2011) of the differences in
2-m temperature (A), maximum temperature (B) and minimum temperature
(C) in the simulation experiments with land cover map GC (blue), GLC (red),
CCI38 (purple), CCI 2015 (yellow), CCI (green), and ECO (brown)
compared with the gridded observations. Please see Table 1 for
abbreviations.

FIGURE 4 | Annual cycle climatology (2002–2011) of the differences in
2-m temperature (A), maximum temperature (B) and minimum temperature
(C) in the simulation experiments with land cover map GLC (red), CCI38
(purple), CCI 2015 (yellow), CCI (green), and ECO (brown) compared
with the control simulation based on GC. Please see Table 1 for
abbreviations.
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shown in Figure 6A as a climatological mean over the vegetation
period (April to September) from 2002 to 2011. The influence of
the topography is clearly visible. Temperature values range from
5°C in the south over the Alps to 21°C as discovered in the Rhine
valley in the west. Hill ranges, such as the Black and Bavarian
forests in the south, the forest of Thuringia in the east, the
Rothaar Mountains in the central part of the domain, and the
Harz in the north-east, are visible with temperatures ranging
from 13°C to 15°C.

Temperature differences in the simulation experiment
climatologies relative to GC are shown in Figures 6B–F, and
their domain averaged temperature difference relative to GC in
Figure 6G is summarized as a bar plot. ECO is the warmest
compared with GC, followed by CCI38 and by both CCI and
CCI 2015 (Figure 6G). Here, the differences in the spatial

distribution are statistically significant (above the 95th percentile
using the t-test). GLC has the smallest departure from GC, which is
non-significant in the spatial distribution difference at the 95th
percentile level using the t-test. ECO shows the highest variability in
the temperature distribution and strongest differences. Marked
warmer regions are seen in all the simulation experiments in the
northwestern coastal area, in the Ruhr region (between 7°E and 9°E
and 50°N to 53°N), compared with GC, and a colder region is
depicted along the 52 and 53°N latitude. The alpine foreland in
Southern Germany also shows warmer areas, up to +0.3°C, in the
simulations based on the CCI. CCI38 shows most of the warmer
areas. In contrast, colder regions are depicted for GLC (between −0.1
and −0.2°C) and ECO (up to 2.8°C cooler) in the alpine foreland in
Southern Germany, Vorarlberg, Swiss and Austrian Alps. In the
Swiss andAustrianAlps, valleys are generally warmer, andmountain
tops cooler in ECO, which are statistically significant (above the 95th
percentile using the t-test). Statistically significant differences, where
ECO is cooler than GC, also occur in the Black Forest in the
southeast of Germany, Liechtenstein and Vosges in the northeast
of France. The large temperature difference seen between the ECO
and the GC simulation (Figure 6D) in the northern coastal area over
water is due to deviations in the land-sea mask. There is no land use
in this region off the coast in GC. The soil type there is water and the
temperature is determined by the SST analysis. These points are
defined as land in the ECO simulation, which results in the
differences seen. Land areas usually do not evaporate as much as
open water areas at the same temperature leading to higher sensible
heat fluxes (Supplementary Figure S2 in supplementary material).

Differences seen in the temperature distribution between the
simulations stem from differences in the land cover class spatial
distribution and fraction. Associated differences in the LAI, plant
coverage, and latent heat fluxes result from these differences in
land cover class spatial distribution and fraction (Figures 7A–O
and Table 3). For example, the alpine foreland has more natural
vegetation and pasture in GLC than GC (see Supplementary
Figure S1 in supplementary material), which contributes to a
climate that is cooler by app. 0.2°C in that area due to the higher
LAI, plant cover and latent heat flux (Figure 7A,F,K). Here, the
regression coefficients from linear regression analysis are negative
between maximum temperature and natural vegetation fraction
changes between GLC and GC (see Table 3). As natural
vegetation fraction increases in GLC compared with GC,
maximum temperature decreases and vice versa. GC has more
crops in the alpine foreland with a lower LAI than natural
vegetation. The cold bias in the south of the simulation
domain of ECO results from higher LAI, plant cover and
latent heat flux in that area compared to GC (Figures 7E,J,O),
The simulations based on the CCI are generally warmer than GC
with a distinct warmer area between 7°E and 9°E and 50°N to
53°N. This region is highly populated, known as the Ruhr area,
with multiple cities and villages close to each other. The
simulations based on CCI and ECO have more grid points
with urban areas than GC in this region, contributing to the
warming there (see also Figures 2A,B). The regression analysis
(Table 4) reveals the greater the urban area fraction of the
experiments compared to the reference simulation the higher
the maximum temperature seen by the positive regression

FIGURE 5 | Annual cycle climatology (2002–2011) of the differences in
leaf area index (A), plant coverage (B) and latent heat (C) in the simulation
experiments with land cover map GLC (red), CCI38 (purple), CCI 2015
(yellow), CCI (green), and ECO (brown) compared with the control
simulation based on GC. Please see Table 1 for abbreviations.
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coefficient (positive change). The urban area fraction is increased
in GLC, but also the pasture fraction. This is the reason why this
region is not as warm as in the simulations based on the CCI. In
central Germany along the 52 and 53°N latitude, there is more
pasture than crops in all the experimental simulations, which
results in a cooling effect. Linear regression results show a
negative relationship between pasture fraction and maximum
temperature (Table 4). More pasture than in GC results in a
decrease in maximum temperature and vice versa. Another
distinct warmer area is the northwestern coastal region. Here,
the simulation experiments have less natural vegetation than in
GC in association with lower LAI and latent heat fluxes (Figures
7A–E,K–O), which contributes to the warming in that area. The
urban and crops fraction changes have the strongest impact on
temperature changes during the vegetation period followed by
pasture and then natural vegetation (see Table 4).

The influence of the surface parameters are see in the
regionalization of daily maximum temperature differences over
the simulation domain for the vegetation period as presented in
Figures 8A–G. Generally, maximum temperature differences are
larger than the average temperature changes. Maximum
temperatures are increased in much of the Ruhr area and in
the northwestern coastal region in the simulation experiments
based on the CCI and ECO compared with the control
simulation. Here, the land cover classes differ from the control

simulation. The associated vegetation parameters determine the
partitioning of energy between the sensible and latent heat fluxes
in the model. Thus, the components of the daytime surface energy
balance change as a result of land cover changes. This leads to
differences in moisture availability in the grid cell. A lower LAI
with a decreased vegetation fraction due to increased urban area
fraction (see Figure 7 and linear regression analysis in Table 3
and Table 4) lead to a summer warming in the maximum
temperature in the Ruhr region as evapotranspiration is
reduced all summer (Figures 7K-O). Here, CCI38 is the
warmest based on the domain average, whereas GLC
temperature is close to that of GC. One of the reasons for the
latter is that the spatial distribution and fraction of the urban area
of GLC is close to that of GC (please see Figure 2 in this
manuscript and Supplementary Figure S1 in the
supplementary material). In contrast, the CCI data contain
more grid cells with urban land cover. More urban grid points
lead to larger sensible heat fluxes (Supplementary Figure S2 in
the supplementary material) as latent heat fluxes are close to zero,
which contributes to heating. The LAI is reduced in the
northwestern coastal region, but the vegetation fraction is
increased in some of the simulation experiments (GLC, CCI
2015, and CCI) at the same time (Figures 7A,C,D,F,H,I). Thus,
the net impact on temperature is the result of the strength of these
vegetation parameters influencing the evapotranspiration

FIGURE 6 |Distribution of daily vegetation period 2-m temperature climatology (2002–2011) for the control simulation based onGlobCover 2009 (A), the difference
between the simulation based on CCI and the control simulation (B), the difference between the simulation based on CCI2015 and the control simulation (C), the
difference between the simulation based on ECO and the control simulation (D), the difference between the simulation based on CCI38 and the control simulation (E),
and the difference between the simulation based on GLC2000 and the control simulation (F). Domain averaged differences in vegetation period 2-m temperature
for GLC, CCI, CCI 2015, CCI38, and ECO compared with the control simulation between 2002 and 2011 (G). Please see Table 1 for abbreviations. Grids with an overlaid
black circle indicate statistically significant (at the 95th percentile level using the t-test) differences.
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efficiency (Figures 7K,M,N). Note, that the daytime radiation
flux via the surface albedo is not analyzed due to the constraints in
the model (see Tölle et al., 2018 and Methodology section in this
manuscript), where the albedo is described and does not depend
on the different vegetation types or urban area.

The relationship of the vegetation parameters (plant cover, leaf
area index, roughness length) to the magnitude of latent heat flux
and finally the latent heat flux impact on maximum temperature

can be determined by linear regression analysis (Table 4). The
positive influence of plant coverage is much stronger than the
influence of the LAI based on the regression coefficients. The
coefficient values (β) represent the mean change in the response
of latent heat flux given a one unit change in one of the predictors
(plant cover, LAI, or roughness length). For example, the
coefficient for differences in the LAI is approximately +2,
meaning that the mean response value (difference in latent

FIGURE 7 | Distribution of latent heat flux (A–E), LAI (F–J), and plant cover (K–O) differences between the experimental simulation based on the GLC land cover
map (first column), the CCI38 land cover map (second column), the CCI2015 land cover map (third column), the CCI land cover map (fourth column), the ECO land cover
map (fifth column) and the control simulation based on the GC land cover map over the vegetation period (May to September) from 2002 to 2011. Please see Table 1 for
abbreviations.

TABLE 3 | Linear regression fit statistics for coefficient β and goodness-of-fit R2 values between differences (experiment—control) in urban, pasture, crops and natural
vegetation fraction as predictors and differences in maximum temperature as responses. All regression coefficients are statistically significant at p < 0.05. These statistics
are calculated for each simulation experiment. Please see Table 1 for abbreviations of simulation experiments. Analysis is over the vegetation period (April to September).

Difference
between
simulation
experiments

Predictor Δ urban fraction Δ Pasture fraction Δ Crops fraction Δ Natural vegetation
fraction

Response β R2 β R2 β R2 β R2

CCI2015−GC Δ Maximum temperature 0.097 0.02 −0.064 0.02 0.115 0.08 −0.013 0.004
CCI−GC Δ Maximum temperature 0.103 0.02 −0.063 0.02 0.114 0.08 −0.016 0.005
CCI38−GC Δ Maximum temperature 0.113 0.02 -0.035 0.004 0.1 0.06 −0.005 0.0004
GLC−GC Δ Maximum temperature 0.091 0.02 0.105 0.02 0.152 0.15 −0.017 0.001
ECO−GC Δ Maximum temperature 0.22 0.01 −0.667 0.03 −0.03 0.01 −0.183 0.01
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heat) increases by approximately 2 for every one unit change in
LAI difference (predictor). The linear regression with plant cover
differences indicated the strongest response (coefficient values
between 14 and 18), followed by Z0 with coefficient values
approximately 5 and then LAI. However, the variability
around the mean is best represented by the linear regression

based on the LAI, as shown by the goodness-of-fit parameter (R2)
followed by plant coverage and then roughness length. Finally,
the difference in latent heat fluxes results in differences in
maximum temperature (negative relationship), but to a lesser
extent than the influence of the vegetation parameters on latent
heat flux changes. Here, the coefficients are negative. Thus, any

TABLE 4 | Linear regression fit statistics for coefficient β and goodness-of-fit R2 values between differences (experiment—control) in plant cover, leaf area index, roughness
length as predictors and differences in latent heat as responses, and between differences in latent heat as predictor and differences in maximum temperature as
responses. All regression coefficients are statistically significant at p < 0.05. These statistics are calculated for each simulation experiment. Please see Table 1 for
abbreviations of simulation experiments. Analysis is over the vegetation period (April to September).

Simulation
experiment

Predictor Δ Plant cover Δ Leaf area index Δ Roughness
length

Δ Latent heat flux

Response β R2 β R2 β R2 β R2

CCI2015–GC Δ Latent heat flux 14.10 0.14 2.26 0.22 4.78 0.09 — —

Δ Maximum temperature — — — — — — −0.013 0.07
CCI–GC Δ Latent heat flux 14.18 0.14 2.24 0.21 4.63 0.09

Δ Maximum temperature — — — — — — −0.012 0.09
CCI38–GC Δ Latent heat flux 16.61 0.15 2.39 0.24 5.13 0.07 — —

Δ Maximum temperature — — — — — — -0.016 0.18
GLC–GC Δ Latent heat flux 18.13 0.21 2.51 0.27 4.69 0.12 — —

Δ Maximum temperature — — — — — — −0.004 0.01
ECO–GC Δ Latent heat flux 11.45 0.12 1.136 0.07 2.76 0.02 — —

Δ Maximum temperature — — — — — — −0.014 0.04

FIGURE 8 | Distribution of daily vegetation period maximum temperature climatology (2002–2011) for the control simulation based on GlobCover 2009 (A), the
difference between the simulation based on CCI and the control simulation (B), the difference between the simulation based on CCI2015 and the control simulation (C),
the difference between the simulation based on ECO and the control simulation (D), the difference between the simulation based onCCI38 and the control simulation (E),
and the difference between the simulation based on GLC2000 and the control simulation (F). Domain averaged differences in vegetation period maximum
temperature for GLC, CCI, CCI 2015, CCI38, and ECO compared with the control simulation between 2002 and 2011 (G). Please see Table 1 for abbreviations. Grids
with an overlaid black circle indicate statistically significant (at the 95th percentile level using the t-test) differences.
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grid cell showing a decrease in latent heat fluxes as shown in
Figures 7A–F corresponds to an increase in maximum
temperature and vice versa.

The strongest warming in the Ruhr region in the simulation
experiments compared with GC is also dominant in the daily
minimum temperature; see Figures 9A–F. All simulations show a
comparable warming relative to GC and the most varbility is seen
in ECO (Figure 9G). Minimum temperature is associated with
the nocturnal surface energy balance. Higher temperatures
during the daytime may result in enhanced storage of heat
through thermal and radiative properties and higher
roughness of cities, which leads to a warmer temperature at
night in urban areas contributing to the urban heat island effect
(Hamdi et al., 2020). Less vegetation and soil, and thus less
evapotranspiration in urban areas decreases latent heat fluxes.
This results in reduced loss of heat from the ground and impact
daily minimum temperature. The radiative exchange may play a
minor role in the nocturnal surface energy balance (Oke and
Fuggle 1972), which is not examined here. The warming in the
northwestern coastal region can be explained by changes in the
vegetation class fractions. The other simulations experiments
have less natural vegetation fractions in this area than GC. A
decrease in LAI and evapotranspiration causes the warming here.
The strongest cooling in minimum temperature in the alpine
foreland, Vorarlberg, Liechtenstein, Swiss and Austrian Alps seen

in GLC and ECO compared with GC is related to more natural
vegetation and pasture in the area, leading to increases in LAI and
vegetation fraction and thus latent heat fluxes. Here, less storage
of heat during the daytime via evaporative cooling leads to a
cooler temperature at night. Enhanced emissivity could also
explain the cooling there. Overall, the warmest nights based
on the domain average are seen in both the CCI and CCI 2015.

To summarize, the fraction and spatial distribution changes in
land cover classes over the domain are relevant in determining
the regional and local water fluxes and temperature climate in a
region. The land cover classes in the northwest coastal and Ruhr
regions, along the 52 and 53° N latitude and in the alpine foreland
differ considerable between the land cover maps. GC has more
natural vegetation in the northwest coastal region than the other
land cover maps. The region between Germany and Switzerland,
and between Germany and Austria have more pasture in the CCI
data than in GC. GLC and ECO have more forest and pasture. In
contrast, GC shows more crops in these areas. All of the land
cover maps have increased urban fraction especially in the Ruhr
region than GC. More pasture is depicted along the 52 and 53° N
latitude in all of the land cover maps than in GC. These
differences are seen in the climate variables, although of small
magnitude. The associated changes in LAI and plant coverage
explain a major part of the surface latent heat and temperature
differences. The differences in the LAI, plant coverage and

FIGURE 9 | Distribution of daily vegetation period minimum temperature climatology (2002–2011) for the control simulation based on GlobCover 2009 (A), the
difference between the simulation based on CCI and the control simulation (B), the difference between the simulation based on CCI2015 and the control simulation (C),
the difference between the simulation based on ECO and the control simulation (D), the difference between the simulation based onCCI38 and the control simulation (E),
and the difference between the simulation based on GLC2000 and the control simulation (F). Domain averaged differences in vegetation period minimum
temperature for GLC, CCI, CCI 2015, CCI38, and ECO compared with the control simulation between 2002 and 2011 (G). Please see Table 1 for abbreviations. Grids
with an overlaid black circle indicate statistically significant (at the 95th percentile level using the t-test) differences.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 72224414

Tölle and Churiulin Role of Land Surface Characteristics

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


roughness length ultimately change the amount of latent heat flux
to the atmosphere. Maximum andminimum temperatures enable
a direct evaluation of the physical processes of the surface energy
balance. Maximum temperature is most affected by the
differences in land cover classes, whose changes are of the
highest magnitude. Therefore, further analysis is based on
maximum temperature. Higher latent heat fluxes result in
evaporative cooling and lower latent heat fluxes have reduced
cooling efficiency, which is seen in the temperature changes.

The daily maximum temperature difference climatology for grid
cells, where a dominant (more than 40%) land cover type change
occurs, is presented in Figures 10A–E and summarized as boxplots
for each month of the year from 2002 to 2011. Differences in land
cover types are calculated between CCI 2015, CCI, CCI38, ECO and
GLC (experiments) and GC (control). In May and June, the highest
increase in maximum temperature (∼0.2°C in the median) is due to
the land cover change results for the grid cells, where natural
vegetation is converted to urban areas. This means that grid cells,
which were dominated by natural vegetation or pasture in the GC
simulation, were urban areas in the experimental simulations.
Accordingly, the maximum temperature is lower over those grid
cells in GC than in the experiments over urban areas resulting in a
positive change. The lower evapotranspiration in urban areas by
8–12W/m2 in the median (see Figures 11A–E) causes larger

sensible heat fluxes by 4–8W/m2 in the median (see
Supplementary Figure S3 in supplementary material), which
lead to an increased temperature. The most pronounced changes
were observed for ECO and CCI38, followed by CCI 2015, CCI and
GLC. Changes from natural vegetation to cropland or pasture also
show a considerable positive maximum temperature change. Here,
the evapotranspiration is lower for croplands and pasture than for
natural vegetation in the model (Figures 11A–E), which results in
warmer temperatures. Based on the t-value computed using the two-
sided t-test, the warming signal is statistically significant at the 95th
percentile level (i.e., t-value of more than 2) in June for grid cells
converted from natural vegetation to urban areas, from natural
vegetation to pasture or from natural vegetation to crops. The
cropland change into pasture type causes slightly higher
temperatures during the summer months, but with high variability.
In this case, the decreased soil moisture (not shown) is an additional
reason for the increased temperature, apart from evapotranspiration
changes, as a result of the higher evapotranspiration. FromOctober to
March, negligible changes (mostly negative with a small magnitude)
occur. Changes from cropland to urban areas have aminor impact on
maximum temperature, which is a positive change.

The climatology of differences in climate indices due to land
cover change is shown in Figures 12A–E summarized as a
boxplot for each climate index from 2002 to 2011. The

FIGURE 10 |Monthly differences in daily maximum temperature due to dominant land cover changes (more than 40%) between CCI2015 and GC (A), CCI and GC
(B), ECO and GC (C), CCI38 and GC (D), and GLC and GC (E) for the time period from 2002 to 2011. Cropland grid cells change into pasture type (purple), pasture grid
cells change into crops (dark blue), crop grid cells change into urban type (blue), natural vegetation grid cells change into crop type (dark green), natural vegetation grid
cells change into pasture type (green), pasture grid cells change into urban type (light green), and natural vegetation grid cells change into urban type (yellow).
Differences are calculated for grid cells, where the listed land cover type change occurs. Please see Table 1 for abbreviations of simulation experiments.
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greatest differences are seen for any land cover type change to
urban areas. For example, tropical nights are less in the GC
simulation over natural vegetation or pasture compared with that
over urban areas resulting in a positive change. Accordingly,
summer days are increased in urban areas. Ice days (IDs) are
increased by up to 10 days due to changes from natural vegetation
to pasture. However, frost and ice days are either decreased or
increased depending on the land cover map. One explanation
could be that IDs are increased in urban areas, as concrete can
hold heat less than wooded areas. The temperature is influenced
by the thermal properties, which specifies the behavior in storing
and releasing heat. The heat capacity of wood (1.76 J/g°C) is
approximately double that of concrete or brick (0.88 J/g°C).
Similarly, this effect also results in increased FDs due to land
cover change to the urban type. The growing season length (GSL)
is shortened by 0.6 days at the median for any change to urban
areas. The growing season start (GSS) can be delayed by up to
1.6 days due to a change in urban areas, as in the case of CCI 2015.
Both indices show high variability. Overall, the greatest
differences are shown for ECO and CCI 2015, followed by
CCI and CCI38. The least changes are found for GLC.

In summary, daily maximum temperature difference was
calculated for grid cells where a land cover type change
occurred. The results revealed higher daily maximum
temperatures in May and June if natural vegetation or pasture
grid cells changed to urban types followed by natural vegetation
changes to pasture or crops. CCI data showed the strongest impact.

Greatest differences in climate extremes were seen for any land
cover types that changed to urban areas, resulting inmore ID or FD
days in urban areas due to the differences in thermal and radiative
properties and thus heat capacity. SU and TR days increased with a
land cover change from natural vegetation to urban.

DISCUSSION AND CONCLUSIONS

Many modelling studies have revealed the importance of land
cover changes to climate in different regions worldwide, mostly
based on idealized land cover change studies and coarse horizontal
resolution (e.g., Tölle et al., 2017; Cherubini et al., 2018; Davin et al.,
2020). Only a few studies have examined the effects of more
realistic anthropogenic land cover changes on climate (Heck
et al., 2001; Huang et al., 2020), and on convection-permitting
scales (Tölle et al., 2014; Prein et al., 2015). Convection-permitting
scales (<4 km) allow the analysis of local scale impacts. The land
covermap is an input to the land surfacemodel, which provides the
lower boundary conditions (e.g., in terms of fluxes) to the
atmospheric model. However, the impact of the various land
cover map products on regional and local climate has thus far
been less investigated. Only a few studies have investigated specific
land cover databases (Masson et al., 2003; Bontemps et al., 2012).
There is the need to update this information based on the newly
available products, such as CCI data. All the land cover maps have
different land cover classes and amounts and differ in terms of

FIGURE 11 | Monthly differences in daily latent heat flux due to dominant land cover changes (more than 40%) between CCI2015 and GC (A), CCI and GC (B),
ECO and GC (C), CCI38 and GC (D), and GLC and GC (E) for the time period from 2002 to 2011. Cropland grid cells change into pasture type (purple), pasture grid cells
change into crops (dark blue), crop grid cells change into urban type (blue), natural vegetation grid cells change into crop type (dark green), natural vegetation grid cells
change into pasture type (green), pasture grid cells change into urban type (light green), and natural vegetation grid cells change into urban type (yellow). Differences
are calculated for grid cells, where the listed land cover type change occurs. Please see Table 1 for abbreviations of simulation experiments.
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horizontal resolution and retrieval year. These discrepancies
eventually lead to differences in land cover class spatial
distribution and fraction over the study region.

Here we quantified the climate uncertainty due to different
land cover maps in the regional climate model CCLM (Rockel
et al., 2008). We performed convection-permitting simulations
(Ban et al., 2021) at 3 km spatial resolution driven by ERA5
reanalysis data over Germany and adjacent areas. By analyzing
the simulations from 2002 to 2011 we investigated in land cover
changes due to the retrieval year of the land cover maps, number,
fraction and spatial distribution of land cover classes. The
comparison results to observations revealed a 2-m temperature
bias between −0.2 (Feb) and +0.6°C (Sep) in the annual cycle. The
maximum temperature is generally colder than the observations,
ranging from −1.6°C (Feb-Mar) to −0.3°C (Sep–Nov). Schulz et al.
(2020) have shown that the total latent heat flux is overestimated
in the current model version leading to the systematic
underestimation of maximum temperature. The authors found that
the bias can be reduced by implementing a new scheme for bare soil
evaporation based on a resistance formulation. The minimum
temperature is generally warmer throughout the year, ranging
from +0.7°C (Feb) to +1.9°C (Sep). The nocturnal warm bias can
be systematically reduced by accounting for skin temperature as

demonstrated by Schulz et al. (2020). However, the small
differences between model results and observations are well within
the uncertainty of the observations (see Razafimaharo et al., 2020).

Furthermore, differences in the annual cycle of temperature
result from different land cover maps and mostly appear during
the vegetation period (April to September), but the impact is less
strong than the bias to the observations. The parameterization
schemes in the model determine the bias to the observations
during nighttime rather than the differences in land surface
parameters and need improvements (Prein et al., 2015).

The small impact due to different land cover maps depends on
the study region. Masson et al. (2003), using the climate model
ARPEGE based on the new ECOLCIMAP and old surface
parameters, showed that the impact over central Europe is
low, but could reach values up to +5°C in other regions of the
world (e.g., Greenland, western US, southern edge of South
America, and the Himalayas). Their study showed that the
spatial consistency of global datasets is characterized by spatial
heterogeneity that is, there is no consistency of different regions.
It would be interesting to repeat this study over hotspot areas of
climate change (e.g., the Mediterranean or Arctic region). For
example, a misrepresentation of the vegetation cover over Iberia
can reach a temperature bias of up to 10°C (Nogueira et al., 2020).

FIGURE 12 | Differences of climate indices in days due to land cover change between CCI2015 and GC (A), CCI and GC (B), ECO and GC (C), CCI38 and GC (D),
and GLC and GC (E) for the time period from 2002 to 2011. Cropland grid cells change into pasture type (purple), pasture grid cells change into cropland (dark blue),
cropland grid cells change into urban type (blue), natural vegetation grid cells change into crop type (dark green), natural vegetation grid cells change into pasture type
(green), pasture grid cells change into urban type (light green), and natural vegetation grid cells change into urban type (yellow). Differences are calculated for grid
cells, where the listed land cover type change occurs. The climate indices are Summer Days (SU), Frost Days (FD), Tropical Nights (TR), Ice Days (ID), Growing Season
Length (GSL), and Growing Season Start (GSS). Please see Table 1 for abbreviations of simulation experiments.
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According to the comparison and analyses in this study, the
spatial consistency was high among the simulations with different
land cover maps compared to observations. This finding is not
surprising as the land cover class fractional differences were small
among the land cover maps. However, some land cover types, such
as croplands and urban areas, have greatly changed over the years.
The land cover based on GLC is the oldest among the land cover
datasets. Here, the crop area was still higher than that in GC. This
difference is also seen in the temperature differences, although they
are of small magnitude. The land cover classes in the northwestern
coastal and Ruhr regions, along the 52 and 53°N latitude and in the
alpine foreland, Vorarlberg, Liechtenstein, Swiss and Austrian Alps
differed considerable between the land covermaps. These differences
were seen in the climate variables. The same land cover map
products based on the CCI of different years (2000 and 2015)
revealed no accreditable difference in the climate variables. The
land cover changes that occurred between these years are marginal
and thus, the influence is small over Germany. However,
maintaining temporal consistency would be useful for areas with
major land cover changes. This consistency can still be critical for
smaller regions, where urban areas increase, or for hotspots of land
cover changes (e.g. deforestation). Increasing the land cover types, as
in CCI38 or ECO, leads to higher temperature variability. Thus,
using more land cover classes may show heterogeneities among
regions, as land cover changes in local areas could be dramatic. If the
land cover maps based on ECOCLIMAP is favorable due to more
land cover classes in the alpine foreland, Vorarlberg, Liechtenstein,
Swiss and Austrian Alps needs to be determined.

Even though the spatial discrepancies in temperature among
the simulations due to the different land cover maps were small in
magnitude, they were consistent and could be explained by the
processes and differences in the surface characteristics. The small
differences seen in our simulations relate to changes in the surface
parameters due to differences in land cover types. The
components of the surface energy balance change as a result
of the different surface parameters. This effect leads to different
moisture availabilities in grid cells. The results revealed that the
largest differences occurred from spring to autumn, which was
the main vegetation period in Germany due to climatic
conditions. The strongest changes between the simulations
occur in maximum temperature. The changes in temperature
are related to changes in the LAI, plant coverage, roughness
length and latent heat fluxes. The vegetation fraction was the
main parameter affecting the seasonal evolution of the latent heat
fluxes based on linear regression analysis, followed by the
roughness length and the LAI. Other studies outline the
stronger importance of the LAI (Tölle et al., 2014; Forero
Urrego et al., 2021) or roughness length (Breil et al., 2021) on
the latent heat fluxes or temperature. Our results clearly indicate
the plant coverage is the most important factor for
evapotranspiration. This result can be confirmed by
evapotranspiration calculations in the regional climate model
(Doms et al., 2013). The evaporation terms of the interception
reservoir, bare soil, and transpiration all depend on plant
coverage. However, there is a reciprocal dependency of these
terms on roughness length, and the transpiration calculation is
the only one that depends on the LAI. However, these model

equations need to be revisited and updated. Accounting for
specific plant species and land surface covers would be beneficial.

Distinct spatial distribution differences among the simulations
with the different land cover maps leading to local and regional
temperature changes could be determined from our analysis. The
analysis based on the CCI and ECO data revealed the strongest
warming impact. The CCI data have a higher urban fraction than
GLC or GC. The presentation of the urban and built-up areas is also
higher and more detailed in the ECO data, including impervious
surfaces, such as streets. Therefore, the fraction of urban area is
increased in both of these databases, leading to a stronger warming.
The dailymaximum temperature difference between the simulations
was calculated for grid cells where a land cover type change occurred.
The strongest effect was seen if natural vegetation or pasture grid
cells changed to urban types followed by natural vegetation changes
to pasture or crops, which resulted in higher daily maximum
temperatures in May and June. The variability seen with these
differences could partly stem from inconsistencies between the
land cover and albedo input data. Both are prescribed by external
fields in the model and might not perfectly match with each other.
This is an important issue regarding local scale impact analysis.
These results strengthen the need for the correct mapping of land
cover classes, which is needed for impact studies and forecasts.
Several recent studies among other regions in the world called for the
same conclusion (see for example Cao et al., 2015; Bhati andMohan,
2018; Li et al., 2020; López-Espinoza et al., 2020; Glotfelty et al., 2021;
Golzio et al., 2021).

Dominant land cover changes between the land cover datasets
result in differences in climate extremes. The greatest differences
were seen for any land cover types that changed to urban areas,
resulting in more ID or FD days in urban areas due to the
differences in thermal and radiative properties and thus heat
capacity. SU and TR days increased with a land cover change
from natural vegetation to urban. The climate model version in
this study represents urban areas as natural land surfaces only.
Thus, the impact of cities might be underestimated as Katzfey
et al., (2020) and Daniel et al. (2018) have shown for a global and
regional study respectively. Including more sophisticated urban
schemes in convection-permitting climate model simulations, as
demonstrated by Raffa et al. (2021), de Wit et al. (2020) and
Hertwig et al. (2020), should be the way forward.

This study showed that there are spatial inconsistencies in land
cover datasets leading to differences in local and regional climate.
The spatiotemporal heterogeneity in surface parameters in
weather and climate models is considered to be a key
component of the partitioning of the water and energy fluxes
influencing regional and local climate. This factor has a
significant impact on multiple research fields including
regional climate change studies, hydrological forecasting for
watersheds, meteorological forecasts, and drought monitoring
and forecasting for agriculture and forestry industries. The spatial
resolution will increase in the future. Thus, other land cover
datasets with higher spatial resolution, such as GlobeLand30,
which has a resolution of 30 m, would be beneficial to use in
climate and land management studies by including more land
cover classes. Additional land cover classes increase the variability
in the climate as revealed from our analysis. This factor would
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also enable a more realistic representation of the climates between
transition zones (e.g., city and countryside or transition zone
between urban and rural areas). There are hotspots of land cover
change driven by agricultural expansion or population growth,
whichmight require additional land cover types and information for
their changes. Although the development of land cover datasets
greatly promotes scientific research, satisfying the needs of high-
precision land-surface-process simulations remains difficult. More
attention should be given to land cover classification in complex
areas and regional representative classification sample selection for
future development of land cover datasets. Accounting for single
vegetation species might also be relevant for management purposes.

The observed uncertainties in regional temperature due to
different land cover datasets were overall lower than the
uncertainties associated with climate projections based on
anthropogenic emissions of greenhouse gases represented by
the Radiative Concentration Pathways (RCPs, Meinshausen
et al., 2011). Although local effects on climate due to changes
to urban areas could be stronger or comparable to the RCPs. As
the study has shown, the impacts and their implications are
different on different spatial and temporal scales.

Thus, representation of urban areas, including single plant
species especially for agricultural areas and synchronized input
data will improve climate simulations at local scales. Accounting
for sophisticated urban and vegetation parameterization schemes
would be beneficial in land cover change andmanagement studies
with convection-permitting regional climate models for climate
adaptation strategies.
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