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Integration of different models may improve the performance of landslide susceptibility
assessment, but few studies have tested it. The present study aims at exploring the way to
integrating different models and comparing the results among integrated and individual
models. Our objective is to answer this question: Will the integrated model have higher
accuracy compared with individual model? The Lvliang mountains area, a landslide-prone
area in China, was taken as the study area, and ten factors were considered in the
influencing factors system. Three basic machine learning models (the back propagation
(BP), support vector machine (SVM), and random forest (RF) models) were integrated by
an objective function where the weight coefficients among different models were
computed by the gray wolf optimization (GWO) algorithm. 80 and 20% of the landslide
data were randomly selected as the training and testing samples, respectively, and
different landslide susceptibility maps were generated based on the GIS platform. The
results illustrated that the accuracy expressed by the area under the receiver operating
characteristic curve (AUC) of the BP-SVM-RF integrated model was the highest (0.7898),
which was better than that of the BP (0.6929), SVM (0.6582), RF (0.7258), BP-SVM
(0.7360), BP-RF (0.7569), and SVM-RF models (0.7298). The experimental results
authenticated the effectiveness of the BP-SVM-RF method, which can be a reliable
model for the regional landslide susceptibility assessment of the study area. Moreover,
the proposed procedure can be a good option to integrate different models to seek an
“optimal” result.
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INTRODUCTION

Landslides are one of the most dangerous mass movements in mountainous areas, resulting in substantial
loss of life and damage of property on a yearly basis (Petley, 2012; Chen et al., 2017a; Guo et al., 2018).Many
potential landslides also bring severe challenges to the riskmanagement of geological disasters (Klimešl et al.,
2017). In addition, the demand for land is increasing with the acceleration of urban construction. However,
the high risks caused by the uncertainty of landslide disaster seriously restrict land use planning in landslide-
prone areas (Fell et al., 2008). Consequently, proper strategies or measures for landslide risk mitigation are
increasingly attracting the attention of the academia, especially at this stage (Van Westen et al., 2008).
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Landslide susceptibility evaluation is considered the first step
to understand a basic concept of risk assessment and its
influences (Van Westen et al., 2003; Fell et al., 2008). Its
outputs called landslide susceptibility maps allow users to
know the areas where landslides can easily initiate and
propagate (Guzzetti et al., 1999; Guzzetti et al., 2006). Based
on the division of evaluation units and the selection of
environmental factors within study areas, selecting a suitable
model is of importance to obtain effective results (Ahmed, 2015).
According to previous literature, landslide susceptibility models
can generally be divided into four categories: heuristic models,
deterministic models, statistical statistics, and machine learning
models (Huang et al., 2017; Sezer et al., 2017; Broeckx et al., 2018;
Reichenbach et al., 2018; Medina et al., 2021). Among these
models, heuristic models can be considered as knowledge-based
models which depend much on the experts’ opinions on the
geomorphology and historical landslides; thus they are highly
subjective (CastellanosAbella and Van Westen, 2008).
Deterministic models are normally physically based, which
need accurate geotechnical parameters over large areas
(Bueechi et al., 2019). However, these parameters are usually
related with large uncertainties, and the computational time of
these models can be long (Crippa et al., 2016; Tofani et al., 2017).
Hence, statistically based models and machine learning models
are the most commonly used techniques during the past decade
(Reichenbach et al., 2018). Meanwhile, some comparative studies
have confirmed that these models normally have better
performances than other types of models when dealing with
the same study areas (Goetz et al., 2015; Aditian et al., 2018;
Huang et al., 2020).

As is known to all, in the process of regional landslide
susceptibility modelling, it is common to analyze the
relationship between the historical landslides and
environmental factors. Because landslides are inherently
complex nonlinear processes, various factors are selected by
researchers to capture more information on the development
of landslides. Compared with statistically based models, machine
learning models normally have the advantages of higher accuracy
in calculating the nonlinear relationship (Achour and
Pourghasemi, 2020). They do not require the environmental
factors to be normally distributed and are also suitable for
large areas. Accordingly, at least dozens of machine learning
models have been reported until now, such as the back
propagation (BP) network, tree-based models, multilayer
perceptron (MLP), support vector machine (SVM), extreme
learning machine (ELM), clustering, random forest (RF),
Bayesian network (BN), XGBoost models, and so on (Ermini
et al., 2005; Catani et al., 2013; Bui et al., 2016; Chen et al., 2017b;
Huang et al., 2017; Pham et al., 2017; Chen and Li, 2020; Can
et al., 2021).

Although various machine learning models are available now,
every single model has its own advantages and disadvantages.
Hence, it is still important to compare the performances among
different models for specific landslide susceptibility practices.
Moreover, the integration of models provides another option,
which may improve the model accuracy by combining the
advantages of different models. Hence, it is highly encouraged

to produce “optimal” susceptibility models by combining
multiple models (Reichenbach et al., 2018). However, it is of
difficulties to determine how to best integrate multiple forecasts
to obtain better results Rossi et al. (2010), and limited attempts
have been made on this issue, especially regarding the integration
of machine learning models (Sevgen et al., 2019; Kocaman et al.,
2020).

Hence, the present study aims at testing if the integrated
machine learning model can obtain better results than
individual models. In order to make more readers clear to the
modelling process, three models that are commonly used were
selected as the basic models, namely, the BP, SVM, and RF
models. Our objective mainly focused on the way of
integrating these models and the production of a better model.
Specifically, the purposes of this study include (a) using the
frequency ratio method to analyze the nonlinear relationship
between the landslide inventory and causal factors in a region
located at Lvliang mountains of China, (b) integrating different
machine learning models where their connecting weights to
susceptibility results were optimized by the GWO algorithm,
and (c) applying different models to generate the regional
landslide susceptibility maps and comparing their performances.

STUDY AREA

The study area (35°43′–38°43′ N, 110°22′–112°19′ E) is located in
southwestern Shanxi Province and covers an area of
approximately 21,140 km2. It includes four counties: Shilou,
Yonghe, Ji, and Daning (Figure 1). Geomorphologically, the
area belongs to the Lvliang mountains of Central China and is
surrounded by moderately high and low mountains. Elevation
varies from 399 m to 2,034 m above sea level and increases from
west to east. Based on geological data, the area is characterized by
Cambrian to Jurassic sedimentary rocks and quaternary deposits.
Sandstone, mudstone, sandy mudstone, and quaternary loess
strata outcrop extensively (Tang et al., 2020). The area has a
warm temperate continental monsoon climate with long cold
winters and hot summers. Data from the local meteorological
station shows that the average annual temperature and
precipitation are 7°C and 514.9 mm, respectively. More than
60% of the total annual precipitation falls in summer
(June–September). There are many settlements in the territory,
so it is highly populated in some parts of the area. During the
urbanization, the original topography has been modified by
engineering activities (e.g., the construction of transportation
lines), which subsequently caused the slope deformation and
instability.

MATERIALS AND METHODS

Data Sources
The main software used in this study was ArcGIS 10.2. The first
step was the data collection, which is the basis of landslide
susceptibility analysis. The main data sources included the
following (Table 1): (1) The digital elevation model (DEM)
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with a resolution of 25 m was provided by the China Geological
Survey (Xi’an Center), which was subsequently used to generate
other influencing factors, such as slope, aspect, and so on. (2) The
geological map was used to extract information of soil and
lithology. (3) The distribution map of landslides in the region
was used to determine the landslide locations. (4) Remote sensing
images obtained from Google Earth (https://www.google.com/
earth/) were used to verify and calibrate the landslide location. (5)
Landslide field survey reports were used to update the specific
information of landslides (e.g., the date of occurrence, volume,
material composition, and thickness of weak interlayer). (6)
According to the monitoring data provided by the geological
disaster management department, the local rainfall situation for
many years was determined.

Landslide Inventory Mapping
Landslide inventory map can reveal the spatial distribution of
landslides and is a necessary means to analyze the relationship
between the landslide points and inducing factors (Tian et al.,
2019). The study area is a landslide-prone area, which suffered
many landslide hazards with various scales in history (Wang
et al., 2019; Tang et al., 2020). To obtain the updated information

of landslides in the area, several filed surveys were conducted
during 2016 and 2018. The location of each landslide expressed
by the X and Y coordinates of the central point was recorded.
Meanwhile, the landslide reports provide basic information on
each landslide, including volume, area, materials, and occurrence
time. During the next stage, these landslides were digitized into
the GIS environment, with the characteristics saved in the
attribute tables. After this, the remote sensing images from
Google Earth were used to crosscheck the location of
landslides. The method used was mainly the visual
interpretation. The landslides were confirmed if evident
deformation or scarps were observed.

Finally, there are total 466 landslides in the area revealed
by the landslide inventory map, among which 234 are loess
landslides and 232 are rockfalls (Tang et al., 2020). Given that
the mechanisms of the two types of landslides are totally
different, this study only deals with the issue associated with
loess landslides. According to the landslide classification
criteria (Cruden et al., 1996; Hungr et al., 2014), most
loess landslides in the area are large slope failures and
composite soil slide–debris flows. A small number of
landslides are earth slides.

FIGURE 1 | Landslide spatial distribution map.

TABLE 1 | Detailed data and their sources used in this study.

Data Scale/resolution Source Purpose

DEM 25 m China Geological Survey (Xi’an center) Causal factor maps
Geological map 1:100000
Environmental planning map 1:100000
Remote sensing images 15 m Landsat TM (July 20 and 30, 2018)
Rainfall Monthly data Department of Meteorology of Shanxi Province Rainfall map
Landslide reports / China Geological Survey (Xi’an Center) Landslide inventory
Landslide photos / Camera and drone
Remote sensing images 30 m Google Earth
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From the number perspective, Jixian County has the largest
number of loess landslides (72) while the number of landslides in
Yonghe County is relatively small (49). Regarding the triggering
factors of the landslides, there are twomain reasons that make the
study area prone to landslides. One is the unique structural
properties and water sensitivity of loess which distributes
extensively in the Lvliang mountains (Derbyshire, 2001).
Geohazards are easily induced under heavy rainfall due to
such properties (Wang et al., 2014; Zhuang and Peng, 2014).
The other one is human engineering activities. The slope
instability occurs when the slope angle is relatively large and
the external disturbance also exists (Chen et al., 2019). In
addition, landslides appear to have clustered in moderate
elevations. This fits with the results in some other study areas
(Catani et al., 2013; Medina et al., 2021). On one side, topography
in low elevations is generally flat. On the other side, there are very
few people and human activities in high mountains; thus
landslide is hardly to happen or be identified.

Selection of Evaluation Units
A key problem in the development of landslide susceptibility
mapping is how to divide “evaluation units.” Common division
methods mainly include (Ba et al., 2018) grid, natural slope,
subbasin, homogeneous conditions, and administrative division
units. Among them, grid and slope units are the most frequently
used. Current slope division methods still have some defects in
practical applications, such as low operability, being very
dependent on manual correction, etc. (Chen et al., 2019). On
the contrary, the grid unit method has the advantages of
convenient rapid subdivision, regular shape, and so on. Hence,
the grid was selected as the evaluation unit in this study.

Proposed Integrated Model
In the previous studies, individual BP, SVM, and RF models have
shown good performances in the analysis of landslide
susceptibility (Ermini et al., 2005; Catani et al., 2013; Bui
et al., 2016; Chen et al., 2017b). However, it is evident that
various machine learning models have their own advantages
and disadvantages when they are designed. Hence, we are
curious if the accuracy can be improved when different
models are integrated into one model. Hence, the BP-SVM-RF
model was proposed in this study to test this point. Considering
the individual BP, SVM, and RF models have been widely used,

we only introduced the principles on the integration of them. The
details of these three models have been described and explained in
literature (Ermini et al., 2005; Catani et al., 2013; Bui et al., 2016;
Chen et al., 2017b).

Figure 2 illustrates the framework of the integrated method.
The integrated model takes BP, SVM, and RF as benchmark
models and trains them to solve the same problem (landslide
susceptibility evaluation). Furthermore, three weighting factors
(w1, w2, and w3) are used to combine the output results of the
three models to obtain better results. Assuming that the output
results of BP, SVM, and RF are ŷBP, ŷSVM , and ŷRF , respectively,
the output of the designed integrated model is (represented by
ŷIntegrated) as follows:

ŷIntegrated � w1 · ŷBP + w2 · ŷSVM + w3 · ŷRF , (1)

wherew1, w2, andw3are real numbers between 0 and 1.
To determine these three weighting factors (w1, w2, and w3),

the following cost function (objective function) is constructed
with the root mean square error:

RMSE � 1
N

∑
N

i�1
(ŷIntegrated − yactual)

2
, (2)

where yactual is the result of susceptibility evaluation (0 or 1), and
N is the number of training samples. It should be noted that the
yactual is not a calculated value but an observed value. For a specific
cell in the training samples, this value is 1 if a landslide point is
located here. If this is a nonlandslide point, the value of yactual is 0.

To minimize the cost function, a heuristic optimization
algorithm is used to obtain the numerical solutions of w1, w2,
and w3. Among the heuristic optimization algorithms, the gray
wolf optimizer (GWO) is an algorithm with superior
performance, which can avoid the premature convergence of
the algorithm (Mirjalili et al., 2013). It has been successfully
applied in the academe practices (Mirjalili, 2015; Guo et al., 2020).
Therefore, the GWO algorithm was used in this study to obtain
the optimal solution that minimizes the cost function. Thew1,w2,
andw3calculation based on the GWO algorithm prognostics
consists of six steps:

Step 1: The GWO algorithm parameters, including gray wolf
population, maximum number of iterations, and the position
Qk � [Qα(t + 1),Qβ(t + 1),Qδ(t + 1) ]of each gray wolf are
initialized. t � 1 is set.

Step 2: Three dominant wolves in the population are identified
and named as α, β, and δin turn. These three wolves will lead the
population to encircle, hunt, and attack prey (target solution).

Step 3: The convergence factor is calculated, and the coefficient
vector is updated:

A � (2r1 − 1) · (2 − 2t/T) (3)

C � 2r2, (4)

where r1and r2are random vectors between 0 and 1.
Step 4: The locations of these three best gray wolves are

updated:

Qα(t + 1) � Qα(t) − A1|C1Qα(t) − Q(t)| (5)

FIGURE 2 | Framework of integrated model.
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Qβ(t + 1) � Qβ(t) − A2

∣∣∣∣C2Qβ(t) − Q(t)∣∣∣∣ (6)

Qδ(t + 1) � Qδ(t) − A3|C3Qδ(t) − Q(t)|. (7)

Step 5: The individual position in population is updated:

Q(t + 1) � Qα(t + 1) + Qβ(t + 1) + Qδ(t + 1)
3

. (8)

Step 6: If the iteration of the algorithm is terminated, the
optimal individual position in the population is output;
otherwise, return to Step 2.

For the integrated model, our goal was to find the best-fit
values for the three weights (w1, w2, and w3), whereas the results
of the GWO were the optimized location of three dominant
wolves (Qα, Qβ, and Qδ). Hence, the outputs obtained from the
GWO were the results of the three weights. Users only need to
input three initial values for the weights which should be between
0 and 1. Last, it should be mentioned that the present method is to
integrate different models so it is a separated process from the
landslide susceptibility map. In other words, other models can
also be integrated by using this process.

Landslide Causal Factors
In the models for landslide susceptibility zonation, the
environmental factors that affect the development of landslides
are the input parameters of the model. Therefore, selecting the
causal factors is an important step in this process. In the existing
literature on this topic, several factors have been widely accepted
(e.g., slope and lithology), while some other factors (e.g.,
curvature, soil map, and topographic wetness index (TWI))
remain controversial (Segoni et al., 2012; Arabameri et al.,
2020). However, the performance of landslide susceptibility
models is normally data-dependent, which means not only
causal factors but also other data (e.g., the data availability and
resolution) can affect the results (Catani et al., 2013). Hence, a
causal factor may have different effects on landslides in different
test occasions as the geological background of every area is unique
(Tang et al., 2020). In view of this, several controversial but
common factors in the literature were still selected in this paper.

To begin with, 15 causal factors, which have been widely used,
including altitude, slope angle, aspect, plane curvature, curve
curvature, relief degree, lithology, slope structure, land use,
vegetation coverage, soil erosion intensity, TWI, distance from
river, distance from highway, and rainfall, were identified as the
initial database. Every factor was related with one aspect of
landslide occurrence, including geomorphic characteristics,
geological environment, environmental background,
hydrological factors, and triggering factors. Several other
factors are not selected due to the following reasons: Firstly,
they do not occur frequently in the study area (such as
earthquakes and freeze–thaw). Secondly, they have not been
widely used before (such as soil properties and solar
radiation). In the next stage, expert opinions on these factors
were solicited. Five factors were suggested to be removed from the
database, namely, the distance from the water system, distance
from the highway, relief degree, slope structure, and topographic
wetness index for the following reasons: 1) A certain overlap

exists between the range of topography relief degree and
curvature. 2) The TWI has a great relationship with debris
flows, but almost no debris flow is observed in the study area.
3) The direction of the stratum is the same as that of the slope in
this area, which has a negligible relationship with slope structure.
4) The distance from the water system and highways are related to
rainfall accumulation because rivers and roads normally have low
elevations. Hence, these two factors were also deleted to make the
rainfall an independent variable in the factor system.
Subsequently, the results of the correlation analysis among
each factor supported the expert’s opinion: The five removed
factors really had a correlation coefficient of more than 0.5 with a
certain one or several factors, thus indicating they were not
independent variables. Hence, it is reasonable to remove them
from the influencing factors system, which can improve the
conditional independence of the model (Pereira et al., 2012).

Finally, the evaluation factor system was established
containing 10 factors. It should be stated that all the models
used these 10 factors to generate landslide susceptibility maps.
This is mainly because the main objective of this study is to
compare the accuracy between individual and integrated model.
Hence, besides the model used, the other settings should keep
constant, specially the conditioning factors. These factors
included both discrete and continuous variables, such that the
continuous factors should be separated into several categories in a
fixed manner when using the proposed model. However, no
uniform standard exists for the number of intervals. Generally,
4–12 intervals are considered as suitable, because too many
intervals will increase the model complexity while too few
intervals cannot reflect enough information of factors (Chen
et al., 2017c; Huang et al., 2020). Finally, all continuous
factors were divided into 4–9 intervals in this study.
Frequency ratio (FR) was used to measure the landslide
density in each interval of the factor. This method can be
expressed as the ratio of the percentage of landslide contained
in each factor category to the percentage of area occupied by the
corresponding category (Aditian et al., 2018). The results of FR
analysis are showed in Table 2. The detailed preparations of each
factor and reclassification are described as follows.

Elevation (Figure 3A): Occurrence of landslides is closely
related to the elevation as the environmental conditions of
slopes, such as land coverage, climate, and human activities,
vary with the elevation (Guo et al., 2019). The DEM showed
that the altitude of the area ranged from 399 to 2,056 m asl. It was
divided into four grades with 400 m intervals. Table 1 shows that
the FR of the elevation in the range of 800–1,200 m is greater than
1, which indicates that this elevation interval has an important
effect on landslide occurrence.

Slope (Figure 3B): Slope is an important factor to mirror the
terrain, and it macroscopically reflects the fluctuation of the terrain.
The higher the slope is, the more concentrated the shear stress is, and
the more likely the landslides will occur. Moreover, the slope affects
the erosion and erosion of surface runoff, vegetation coverage, and the
supply and discharge of groundwater on the slope (Tang et al., 2020).
The slopemapwas extracted fromDEMusing theGIS tool. The slope
values in the region ranged from 0° to 60° and 10° intervals were used
to divide them into five categories. The FR in the range of 10°–20° and
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TABLE 2 | Frequency ratios of index factors.

Factor Data type Interval Grids in
domain

Grid proportion/% Landslide grid
number

FR

Slope/(°) Continuous [0, 10] 161905 16.82 40 1.0164
(10, 20] 304011 25.41 52 0.8746
(20, 30] 121792 26.48 70 1.1296
(30, 40] 6822 21.60 52 1.0288
>40 13 9.69 20 0.8819

Aspect/(°) Continuous −1 818 0.14 0 0
[0, 45) 64726 10.90 32 1.2545
[45, 90) 72126 12.12 33 1.1637
[90, 135) 66106 11.13 18 0.6910
[135, 180) 62747 10.54 25 1.0136
[180, 225) 77298 13.02 29 0.9521
[225, 270) 98194 16.50 32 0.8288
[270, 315) 84435 14.22 29 0.8715
[315, 360) 68093 11.43 36 1.3457

Plan curvature Continuous [−14.24, 4.54] 26712 10.7 12 0.4760
(−4.54, 1.30] 74915 29.8 21 0.2981
(−1.30, 1.14] 382304 15.3 147 4.0653
(1.14, 4.49] 83919 33.6 39 0.4937
(4.49, 14.19] 26691 10.7 17 0.6746

Profile curvature Continuous [-1.14, 0.32] 22922 5.1 10 0.8359
(−0.32, 0.13] 88832 13.7 30 0.9260
(0.13, 0.01] 362546 31.8 72 0.9603
(0.01, 0.15] 85608 31.7 66 0.8818
(0.15, 0.65] 34635 17.7 58 1.3869

Vegetation coverage/(%) Continuous [0, 18.8] 42832 7.1 21 1.3057
(18.8, 25.2] 80985 13.8 38 1.2210
(25.2, 30.7] 127766 21.4 49 1.0145
(30.7, 36.5] 128149 21.5 54 1.1154
(36.5, 43.7] 76279 12.8 42 1.4638
(43.7, 52.5] 40006 6.7 20 1.3184
(52.5, 61] 39811 6.8 1 0.0658
(61, 72] 36165 6.0 0 0
(72, 87] 22612 3.8 0 0

Lithology Discrete C3t 1038 0.1 1 2.3334
N2j 56492 9.5 20 0.8603
O 10341 1.7 1 0.2346

P2sh 13048 2.2. 1 0.1863
Q4 2509 0.4 2 1.9423

Qp1w 91681 15.5 51 1.3510
Qp2l 224470 37.9 109 1.1794
Qp3m 24255 4.1 16 1.6045
T1h 30373 5.1 7 0.5602
T1l 17431 2.9 2 0.2787
T2e 32786 5.4 17 1.2827
T2t 58673 9.9 15 0.6209
T3y 21624 3.6 2 0.2250

Others 8623 1.45 0 0
Soil erosion intensity Continuous Extremely heavy 53033 8.9 14 0.6702

Very heavy 80140 13.4 9 0.2862
Heavy 65389 10.9 16 0.6232

Moderate 87965 14.8 23 0.6645
Low 92464 15.5 48 1.3194
Slight 215545 36.3 124 1.4589

Rainfall Continuous [440, 460) 799858 8.4 66 3.3545
[460, 480) 1563186 16.4 6 0.1560
[480, 500) 3050411 32.0 80 1.0662
[500, 520) 366942 3.9 31 3.4344
[520, 540) 3732374 39.2 51 0.5555

Elevation Continuous [400, 800) 74236 12.49 19 0.6763
[800, 1200) 363777 61.186 186 1.3511
[1200, 1600) 144611 24.32 20 0.3654

>1600 11916 2.004 0 0
Land use Continuous Farmland 151049 25.612 51 0.8630

(Continued on following page)
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30°–40° were the largest, indicating that landslides mainly occur on
moderate slopes.

Aspect (Figure 3C): This factor has an impact on the
conditions on slopes, such as sunshine duration and solar

radiation intensity, which can affect vegetation development,
evaporation, weathering, and slope erosion (Youssef et al.,
2015). At the same time, pore water pressure changes with
temperature, such that slope stability and slope direction are

TABLE 2 | (Continued) Frequency ratios of index factors.

Factor Data type Interval Grids in
domain

Grid proportion/% Landslide grid
number

FR

Shrubs 35244 5.893 1 0.0730
Grassland 272697 43.905 125 1.1715
Forest 77712 13.031 9 0.2971

Young forest 30885 5.178 43 3.5723
Economic plant 25939 4.379 3 0.2947

FIGURE 3 | Causal factors used in landslide susceptibility modelling. The red dots represent landslide points in the study area: (A) elevation, (B) slope, (C) aspect,
(D) rainfall, (E) land use, (F) lithology, (G) soil erosion intensity, (H) plan curvature, (I) profile curvature, and (J) vegetation coverage.
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also correlated. The map was also generated from DEM and was
automatically recognized into nine main directions (interval 45°)
in the GIS, where −1 was flat ground. The number of landslides
and FR values in each class showed that the landslide density was
higher when slopes were facing the north (0–90°, 270–360°).

Rainfall (Figure 3D): The main reasons to consider rainfall as
a conditioning factor for landslide susceptibility in this study
include the following: (i) The rainfall distribution in the study
area has a spatial variability. (ii) This factor also has been
considered in some previous studies (Catani et al., 2013). The
influence of rainfall on slope stability is mainly manifested in
three aspects (Guo et al., 2020; Medina et al., 2021): The first is the
softening of rock and soil by rainfall infiltration, which weakens
them. The second is the hydrostatic pressure and hydrodynamic
pressure formed by rainfall infiltration, and its floating force
constitutes an unfavorable factor for slope stability. The third is

the erosion and destruction of slopes due to the erosion of runoff
caused by rainfall. In this study, the daily rainfall of multiple
rainfall monitoring stations was obtained first, which was used to
generate the whole rainfall map by applying the Kriging
interpolation tool in GIS. The map showed that the average
annual rainfall in this area was between 440 and 540 mm, and it
was divided into five categories at 20 mm intervals.

Land use (Figure 3E): Land use and its change can also trigger
landslides (Shu et al., 2019). Various vegetation’s types show the
difference in the degree of human disturbance and damage to the
rock and soil; thus the probability of landslides is also different.
Several land use types, such as forestry land, are conducive to
slope consolidation and landslide reduction. Several land uses,
such as cultivated land and residential land, can destabilize
damage slopes. In this study, the land use map was generated
from the Landsat TM image by using the object-oriented

Figure 3 | (Continued).
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segmentationmethod. This step was completed in the recognition
software, which segmented the image into different polygon
objects automatically (Chen et al., 2019). Next, the attributes
of on each land use type were captured and identified, mainly
including geometrical and spectral features. To reclassify land use
types, users need to (i) conduct field work to determine each land
use type and corresponding features in RS images; (ii) select the
training and testing samples from the segmented objects; (iii)
reclassify the whole area into various land use types according to
images features. The reclassification method used in recognition
was the nearest neighbor method, and finally six types of land use
maps were obtained: farmland, shrubs, grasslands, forests, young
forests, and economic plants. The reason for distinguishing
between forests and young forests is that forest coverage and
density may change with age, leading to different landslide
distributions. Economic plants were identified mainly because
they may represent human activities with different intensities
compared with other natural vegetation (Tang et al., 2020).

Lithology (Figure 3F): In this study, the stratigraphic
lithological map was obtained from the regional geological
map. The outcropping strata in the study area include
Ordovician (o), Carboniferous (c), Permian (P), Triassic (T),
Neogene (N), and Quaternary (Q) units. The Triassic and
Quaternary strata cover most of the study area, such that they
can be divided into several units according to age.

Soil erosion intensity (Figure 3G): Large amounts of soil
resources have been eroded and destroyed, ravines have
intensified, soil layers have become thinner, and large areas of
land have been cut to pieces, which can easily cause geological
disasters such as landslides and soil creep (Shrestha et al., 2004;
Cuomo and Della Sala, 2015). In particular, the Loess Plateau has
been suffering from loess landslides (Zhuang et al., 2018). In this
study, the soil erosion intensity map was provided by the Shanxi
Provincial Department of Surveying and Mapping, and six
categories were classified.

Plane curvature (Figure 3H): It describes the characteristics of
the terrain in the horizontal direction, which is equal to the
change in the slope direction at a certain grid (Huang et al., 2017);
thus, it can be obtained by deriving the slope direction in GIS.

Profile curvature (Figure 3I): It describes the complexity of the
terrain, and it was also derived from the DEM, which was divided
into five classes.

Vegetation coverage (VC) (Figure 3J): Vegetation can
improve slope stability by strengthening soil and absorbing
water. According to the field investigation, the area with less
vegetation and low coverage in the Lvliang mountains has
strong weathering erosion and serious soil erosion, which
easily induce landslides. Thus, it is necessary to include the
vegetation coverage map into the analysis. Two Landsat TM
images were used to generate this map, namely, the images
from July 20, 2018 (path 126, row 34), and July 30, 2018 (path
126, row 35), respectively. The multispectrum information in
the images was used to calculate the vegetation coverage as
follows (Chang et al., 2020):

VC � P(NIR) − P(Red)
P(NIR) − P(Red), (9)

where the P(NIR) and P(Red) are the spectral reflectance
measured from the near infrared and visible red bands in the
Landsat TM data.

Data Preprocessing
Machine learningmodels require sample data to conduct the landslide
susceptibility modelling, because it is not possible to include the
dataset of the entire area into the training process. The sample data
includes the landslide samples and nonlandslide samples, where the
number of landslide points is fixed (234). A certain number of sample
data pieces of nonlandslide points need to be selected from the study
area using random sampling methods to construct a binary
classification model. Studies have shown that, in susceptibility
assessment, the nonevent (nonlandslide points) sample size can be
2–10 times greater than the events (landslide points) (King and Zeng,
2001; Nam and Wang, 2019). After six experiments (the ratios of
landslide and nonlandslide points were 1:5; 1:6; 1:7; 1:8; 1:9, and 1:10,
respectively), the final ratio of landslide to nonlandslide was
determined as 1:10; that is, 2,340 nonlandslide samples were
selected. Then, the 500m buffer areas around the landslide points,
the reservoir, the downstream Yellow River, and its tributaries were
taken as the nonlandslide areas, as these areas had very few historical
landslides. Next, the random sampling tool was used to select the real
“nonlandslide” samples as much as possible. A total of 2,340 samples
are randomly selected from nonlandslide areas in the district as
nonlandslide sample data. The X value of the sample data is an
array containing the FR values of 10 influencing factors; y is a 1D data
composed of all the samples selected, and the value is 0 or 1, where the
landslide sample is 1 and the nonlandslide sample is 0. All the values of
the 10 causal factors are normalized, in which the qualitative data are
converted into numerical values before processing, to reduce the
discreteness of data and the effect of different dimensions. The
normalization formula is as follows:

Xp � x − xmin

xmax − xmin
, (10)

where Xprepresents the normalized causal factor; xrepresents the
original data of the causal factor; xmin and xmax represent the
minimum and maximum values in x, respectively.

Model Performance Evaluation Indicator
For binary classification, the most commonly used evaluation indices
are ROC curve and AUC values (Cantarino et al., 2019; Chen et al.,
2019). The ROC curve obtains a series of different binary classification
results by setting the probability threshold and then compares it with
the actual results to calculate the true positives rate (the proportion of
the pixels whose classification results are landslides and the actual
number of landslides) and false positives rate (the ratio of the number
of nonlandslide pixels divided into landslides to the number of all
nonlandslide pixels). The curve drawn with the true positive rate on
the ordinate and the false positive rate on the abscissa is the ROC
curve. The point closest to the ROC curve in the upper left corner is
the best threshold with the least errors, and the total number of false
positives and false negatives is the least. The AUC value is the area
under the ROC curve, which is used tomeasure the accuracy ofmodel
prediction. The higher the AUC value is, the higher the model
accuracy is (Corsini and Mulas, 2017).
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RESULTS

Model Integration Results
In the experiment process, the population size andmaximumnumber
of iterations were set to 20 and 100, respectively, to ensure that the
GWO can iteratively converge. Figure 4 showed the distribution of
gray wolf populations during the optimization of the weight factors of
the GWO algorithm. It can be seen that the gray wolf population
obtained the information related to the solution during the search and
gradually gathered to the optimal solution area through encircling,
hunting, and attacking operations. Considering the initial inputs for
the three weights were the same while their outputs were evidently
different, the GWO algorithm provided useful insight into the model
optimal solution. In the experiment, the initial population of the
GWO algorithm is randomly distributed in the analytical space. With
the iteration of the population, the gray wolf gradually approaches the
optimal solution. After 90 population iterations, the optimal solution
of the model is found.

Subsequently, the ROC curve of the BP-SVM-RF model was
generated. The ROC curves of every single model (BP, SVM, and

RF) and integratedmodel of twomodels (BP-SVM,BP-RF, and SVM-
RF) were also obtained for a comparison purpose (Figure 5). The
AUC values were 0.7898 (BP-SVM-RF), 0.6929 (BP), 0.6582 (SVM),
0.7258 (RF), 0.7360 (BP-SVM), 0.7569 (BP-RF), and 0.7298 (SVM-
RF), respectively. It can be seen that all the integrated models (BP-
SVM-RF, BP-SVM, BP-RF, and SVM-RF) had a higher accuracy than
that of individual model, and the BP-SVM-RF model was the best
model. Hence, the integration of different machine learning models
really improved the model performance.

Landslide Susceptibility Mapping
The largest index value of landslide susceptibility in every grid was
taken as the final index value of this grid, so as to achieve the
prediction of regional landslide susceptibility index. The susceptibility
index maps calculated by the seven models were imported into the
ArcGIS, and the susceptibility index was divided into five levels (very
low, low,medium, high, and very high) by using the geometric interval
method to generate the final susceptibility map of the study area
(Figure 6). It can be seen that the created landslide susceptibilitymaps
by using different models had similar spatial pattern. The areas with
very low and low susceptibility levels were distributed in flakes as a
whole, while the areas with very high and high susceptibility were
mainly distributed in linear clusters, which was consistent with the
characteristics of historical landslide distribution. Most high
susceptibility areas were distributed in the places with moderate
slopes, low vegetation coverage, and low elevations. Moreover,
more than 60% landslides were located in the range of plane
curvature −1.3 to 1.14, and lithological units with loose
geotechnical structure can also promote slope instability (Table 1).
In high susceptibility areas, several residential areas, garden plots, and
road network dense areas were mostly distributed here; thus human
activities were more frequent. Hence, the combined effect of natural
conditions and human activities posted higher landslide risks in the
study area.

The evaluation results of the model fitting ability and
generalization ability indicated that the BP-SVM-RF integrated
model had a good prediction accuracy, but this performance
measurement cannot reflect the spatial distribution pattern of the
susceptibility index. To make the statistical analysis on the landslide
distribution, the number of landslides, landslide percentages, grid
numbers, and grid percentages of each susceptibility level were
counted and landslide density was determined (Table 3). The

FIGURE 4 | Distribution of gray wolf population in the GWO optimization process. (A) Initial population. (B) The sixtieth generation population. (C) The ninetieth
generation population.

FIGURE 5 | ROC curves of various models’ prediction results.
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FIGURE 6 | Landslide susceptibility maps respectively produced by different models: (A) BP, (B) SVM, (C) RF, (D) BP-SVM, (E) BP-RF, (F) SVM-RF, and (G)
integrated BP-SVM-RF.
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results showed that most of the study area (65.85%) had low or very
low susceptibility levels. 64.53% of landslides occurred in very high
and high susceptibility areas, which could be considered to meet the
requirements of spatial distribution verification accuracy. In addition,
the landslide density, defined as the ratio of landslide percentage to
susceptibility grade percentage, reflected the distribution information
of historical landslides per unit area.With the increase of susceptibility
level, landslide density increased correspondingly, which indicated
that the evaluation result of the BP-SVM-RF integrated model was
reasonable.

At last, all the sample data used in the modelling were
reclassified into a binary of yes or no, and the results were
shown as a confusion matrix (Table 4). All the models used
0.5 as the threshold of landslide susceptibility index. It can be
seen that the performance of the BP-SVM-RF model was still
the best. It has the highest TP and TN values, which indicated
that the model accurately identified the most number of real
landslide and nonlandslide points. In addition, the values of
FP and FN of the BP-SVM-RF model were the lowest, thus
showing its mis-reclassification was the lowest. Such analysis
would be helpful for the decision making driven by
management and allows the model to be compared to
others that do a similar listing of results.

Based on the results of the landslide susceptibility assessment,
some suggestions can be provided to reduce and mitigate
landslide risks in the study area:

1) The landslide susceptibility maps showed that the areas with low
vegetation coverage were more susceptible to landslides. Hence,
extensive afforestation should be encouraged, which can effectively
improve the slope stability due to the root cohesion.

2) In low elevation areas, the human activities are more
common, and slope stability can be more affected. Both Fr
analysis and landslide susceptibility map showed that low-
moderate elevations and moderate slope angles had more

historical landslides. Hence, sufficient attention should be
paid to these areas.

3) Most landslides in the area are composed of loess, which
normally has weak geotechnical properties (e.g., sensitivity to
water, and collapsibility). Hence, both engineering and
agricultural activities should treat these properties
cautiously when dealing with loess.

DISCUSSION

Model Integration
Studies on generating regional landslide susceptibility maps based on
the GIS platform are numerous and many of them have proposed
suitable models for susceptibility assessment. A recent review stated
that there were approximately 500 published papers which have used
70 models in the period of 2005–2016 (Pourghasemi et al., 2018).
However, it should be noted that most studies were based on existing
methods and tried to find better model by accuracy comparisons.
Additionally, some studies so-called “integrated model” were not
“real” integration of models. For example, Merghadi et al. (2020)
used the convolutional neural network to extract features from
landslide raw data and machine learning models were used to
compute landslide susceptibility. Similar models and application
procedures actually only used one model to achieve modelling.
Hence, it is still highly encouraged to combine the outputs from
different models to obtain “optimal” susceptibility maps for risk
management and final decision making (Reichenbach et al., 2018).
In fact, most available integrated models until now are related with
different types of models, such as machine learning and statistical
models. This is mainly because statistical techniques are normally
required during the susceptibility modelling process, especially when
analyzing the relationship between historical landslides and
influencing factors (Fang et al., 2020). For instance, Guo et al.
(2019) used weight of evidence method to analyze the effects of

TABLE 3 | Frequency ratios of five susceptibility classes assessed with the BP-SVM-RF model.

Class Total grid
number

Proportion (%) Landslide grid
number

Proportion (%) Landslide density

Very high 38707 6.52 80 34.19 3.542
High 75424 12.72 71 30.34 1.385
Moderate 88385 14.91 47 20.09 0.542
Low 148462 25.04 27 11.54 0.463
Very low 241952 40.81 9 3.84 0.264

TABLE 4 | Confusion matrix for classification results of different models.

Model TP FP FN TN Sensitivity (%) Specificity (%) Accuracy (%)

BP 121 884 113 1456 51.7 62.2 60.9
SVM 126 913 108 1427 53.8 61.0 61.3
RF 168 942 66 1398 71.8 59.7 70.3
BP-SVM 155 851 79 1489 66.2 63.6 69.4
BP-RF 189 836 45 1504 80.8 64.3 77.5
SVM-RF 186 819 48 1521 79.5 65.0 77.2
BP-SVM-RF 191 729 43 1611 81.6 68.8 80.4

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 72249112

Xing et al. Integrated Model for Landslide Susceptibility

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


different factors on landslide occurrence and used the BP model to
perform model training and prediction. Althuwaynee et al. (2016)
applied the analytic hierarchy process to pairwise compare the
CHAID terminal nodes to generate new landslide susceptibility
maps. It can be seen that every single model was used to finish
one specific task, which was not combined with other models.

In this study, all the three models were used to compute the
landslide susceptibility index, and the final susceptibility for every cell
contained three aspects. Hence, every singlemodel directly affected the
results, not only one specific step. The absolute value of the accuracy of
the integrated model expressed by the ROC curve was not perfect, but
it did improve the results compared with individual models. Such
results supported the opinion that it is possible to combine different
forecasts in an optimal predictionwhenmultiple forecasts are available
(Kocaman et al., 2020). This is mainly because the couplingmodel can
combine the advantages of different models: The advantage of SVM is
that high accuracy can be obtained on small sample training sets (Bui
et al., 2016). The RF model can randomly select certain features as
candidate features, and then the optimal features are selected. In this
way, diversity of decision trees can be increased to improve the
classification performance (Catani et al., 2013). The advantages of
BP are the strong self-adaptive ability and good generalization (Guo
et al., 2020). Last but not least, the three models were integrated by
constructing an objective function in the present test. This can be also
used for other machine learningmodels; thus the proposed procedure
can be easily replicated into other case studies.

Selection of Causal Factors
As stated by VanWesten et al. (2006), one of the biggest difficulties in
landslide susceptibility assessment is to find the best combination of
environmental factors. In this study, we deleted five factors from the
initial factor system based on expert’s opinion. This is a qualitative
method which is subjective, but the subsequent test on the factor
correlation showed that the correlations of the five factors with other
factors were relatively high. Hence, the elimination of these factors
made sense. However, the test on the model containing these factors
would be still helpful, which was not available in the current analysis.
Hence, it is recommended to use quantitative method to analyze the
factor correlation and their contributions to the final results, such as
forward (Pham et al., 2019) and backward elimination (Pham et al.,
2016) methods and multicollinearity analysis (Lee et al., 2018).

Moreover, our objectives in the follow-up work also include
the following:

i) More environmental factors should be considered into the
analysis and more important factors should be selected for
generating landslide susceptibility maps by calculating their
importance quantitatively.

ii) The model application into other areas would be interesting.
We will employ more machine learning models to verify the
universality of the current procedure.

CONCLUSION

Various machine learning models are available for regional
landslide susceptibility assessments, but few attempts have

been made to integrate different models for better
performances. In this study, three commonly used machine
learning models (BP, SVM, and RF) were integrated into a
model by constructing an objective function. The function
computed the root mean square error between predicted and
observed results, and the GWO algorithm was used to calculate
the connecting weights among the three models. The test results
in the Lvliang mountains of China showed that the integrated BP-
SVM-RF model had a better accuracy with the AUC of 0.79,
compared with every single model (AUC � 0.69 for BP, AUC �
0.67 for SVM, AUC � 0.73 for RF) and integrated model using
two models (AUC � 0.74 for BP-SVM, AUC � 0.76 for BP-RF,
AUC � 0.73 for SVM-RF). Hence, the proposed BP-SVM-RF
model is an effective integrated model and suitable for landslide
susceptibility assessment of the study area. Moreover, the GWO
algorithm can be an option to integrate different models to seek
“optimal” results.

Overall, the proposed procedure can be replicated into other
landslide-prone areas, and different models can be selected as basic
elements for the integrated model. Hence, the current results can
guide the landslide risk mitigation of the study area, and they can also
provide references for other case studies. The future work is to include
more landslide-related influencing factors into the assessment and
quantitatively express the importance of each factor.
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