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Skillful long-lead climate forecast is of great importance in managing large water systems
and can bemade possible using teleconnections between regional climate and large-scale
circulations. Recent innovations in machine learning provide powerful tools in exploring
linear/nonlinear associations between climate variables. However, while it is hard to give
physical interpretation of the more complex models, the simple models can be vulnerable
to over-fitting, especially when dealing with the highly “non-square” climate data. Here, as a
compromise of interpretability and complexity, we proposed a regression model by
coupling pooling and a generalized regression with regularization. Performance of the
model is tested in estimating the Three-Rivers Headwater Region wet-season precipitation
using the sea surface temperatures at lead times of 0–24months. The model shows better
predictive skill for certain long lead times when compared with some commonly used
regression methods including the Ordinary Least Squares (OLS), Empirical Orthogonal
Function (EOF), and Canonical Correlation Analysis (CCA) regressions. The high skill is
found to relate to the persistent regional correlation patterns between the predictand
precipitation and predictor SSTs as also confirmed by a correlation analysis. Furthermore,
flexibility of the model is demonstrated using a multinomial regression model which shows
good skill around the long lead time of 22 months. Consistent clusters of SSTs are found to
contribute to both models. Two SST indices are defined based on the major clusters of
predictors and are found to be significantly correlated with the predictand precipitation at
corresponding lead times. In conclusion, the proposed regression model demonstrates
great flexibility and advantages in dealing with collinearity while preserving simplicity and
interpretability, and shows potential as a cheap preliminary analysis tool to guide further
study using more complex models.
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1 INTRODUCTION

Skillful long-lead (seasonal to annual) climate forecast is of great
importance in managing large water systems. Examples include
but are not limited to making water transferring plans for multi-
reservoir systems running at annual to inter-annual time scales
(Carpenter and Georgakakos, 2001; Block, 2011), informing long-
term agricultural decision making (Lemos et al., 2002; Hansen
et al., 2011), and developing early warning system for disaster
mitigation (Wilhite and Svoboda, 2000; Verdin et al., 2005).
While local climate variability always fails to persist through
such long lead times, the prediction can be made possible using
long-lead teleconnections between regional climate and large-
scale circulations. Anomalies of large-scale atmospheric
circulations can be anchored by ocean memory due to massive
heat capacity of ocean water and be released to perturb other
circulations at a much later time (Xie et al., 2009; Xie et al., 2016).
These perturbations can therefore be indicated by SST anomalies.
There are already well-established SST-based climate indices that
have seen good use in long-lead climate forecasts such as the Niño
SST indices (Rasmusson and Carpenter, 1982; Trenberth, 1997;
Trenberth and Stepaniak, 2001), the Pacific Decadal Oscillation
(PDO) (Mantua et al., 1997; Zhang et al., 1997), the Tropical
Northern Atlantic (TNA) and the Tropical Southern Atlantic
(TSA) indices (Enfield et al., 1999) etc.

Approaches commonly used in developing long-term
prediction models based on large-scale teleconnections can be
roughly categorized into two classes: 1) physically-based
simulation and 2) statistical models. While the physically-
based simulation is widely used in investigating causality
chains of climate processes, it is usually computationally
intensive and requires expertise for parameter calibration
(Menemenlis et al., 2005; Sahastrabuddhe and Ghosh, 2021).
Its statistical counterpart, in the meantime, provides an easy
access to examining statistical associations between climate
variables which could be further used to develop prediction
models. The statistical models are becoming increasingly
popular thanks to the advances of sensing technology and
internet which makes tremendously more data available at
exceptionally high temporal and spatial resolutions (Liu,
2015). Early efforts of statistical modelling are featured by
qualitative analysis comparing time series of different climate
variables (Thornthwaite, 1948; Von Storch and Zwiers, 2001).
Most early work relied on insights of the expert researchers and
were done with data of rather limited size. Recent innovations in
machine learning have developed powerful tools for examining
linear/non-linear associations between climate variables in
massive volumes in a more automated way. Just to name a
few examples here: Kernelization is used to extend study
domain from linear associations to nonlinear associations (Ali
et al., 2019; Bueso et al., 2020). Data processing tips like pooling
and convolution are used to enhance model robustness by
discarding/smoothing noises (Devineni and
Sankarasubramanian, 2010; Schepen et al., 2018). Of the many
machine learning approaches, neural network has become
extremely popular across a wide range of spatial scales (local-
global) (Goddard et al., 2001; Mekanik et al., 2013; Fan et al.,

2015; Ham et al., 2019; Reichstein et al., 2019). Ham et al. (2019)
even successfully extended lead time of skillful ENSO forecast to
one and a half years using a convolution neural network trained
on historical simulations, which beat many state-of-the-art
dynamical systems in terms of correlation skill for the Niño
3.4 Index. However, even though efforts are being made to
improve model interpretability (Gilpin et al., 2018; Carvalho
et al., 2019; Worland et al., 2019), tools for explaining the
machine learning models are still insufficient (Gilpin et al.,
2018) and to find physical interpretation of these models is
usually hard or even impossible due to high model
complexity. In this study, we looked at a generalized
regularized regression method (i.e., elastic net) coupled with
pooling as a compromise between model interpretability and
complexity, and examined its performance in predicting regional
seasonal precipitation based on large-scale SST anomalies.

Regression has been broadly used in climate research and
related fields. Typical applications include 1) change point
detection (Solow, 1987; Mudelsee, 2000), 2) developing
forecast models (Krishnamurti et al., 1999; Mekanik et al.,
2013; Kharin and Zwiers, 2002), and 3) identification of
covariates with high predictive skill (Wakabayashi and
Kawamura, 2004; Matsui and Konishi, 2011). Not only can the
regression model identify the linear relationships between the
climate variables at a given temporal basis (e.g., monthly or
annual), but it also has good interpretability for guiding
further research using more complex, nonlinear statistical
methods or physically-based modeling experiments. These two
features make regression especially popular in exploring
teleconnections between regional climate and large-scale
circulations. Hurrell (1996) used a multivariate linear
regression model to link changes in northern hemisphere
temperature to extratropical climate indices. Krishnamurti
et al. (1999) developed a superensemble method for improving
weather and climate forecast skills by using coefficients from
multiple regressions. Wakabayashi and Kawamura (2004)
extracted four major teleconnection patterns in predicting
Japan summer climate anomalies by combining the empirical
orthogonal function (EOF) and regression. Van Oldenborgh and
Burgers (2005) developed a synthetic precipitation generator with
regression models using the Niño 3.4 Index as the sole regressor
to examine decadal variation in global ENSO-precipitation
teleconnections. Yang and DelSole (2012) used the regression
coefficient maps to explore teleconnections between ENSO and
different climate fields. More recently, Zhang et al. (2020)
examined teleconnections between the Arctic sea ice decline
and major climate indices using the quantile regression
analysis. Only a few examples are listed here for context, as
our intent is to test a generalized regression model with
regularization in long-term seasonal precipitation forecast
instead of doing a thorough review applications of regression
in climate research.

However, over-fitting and over-parameterization are
important issues for most regression analysis. These issues are
particularly pertinent in climate research, since the remote
sensing data are usually highly “non-square” (i.e., the total
number of time series largely exceeds the length of the time
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series). Therefore, it is necessary to reduce the effective
dimensionality of the problems. Two commonly used
approaches have been: 1) to select only a few predominant
features/patterns (e.g., the Principal Component Analysis, PCA
(Schoof and Pryor, 2001; Wakabayashi and Kawamura, 2004; Li
et al., 2020) or the Canonical Correlation Analysis, CCA (Mo,
2003; Yang and DelSole, 2012)); 2) to use only a few well-
established climate indices (Van Oldenborgh and Burgers,
2005; Rust et al., 2015; Tan and Shao, 2017; Zhang et al.,
2020). However, both methods have intrinsic disadvantages:
Traditional dimensionality reduction methods like PCA and
CCA try to decompose the global covariance structure of the
predictors (PCA) or between the predictand and the predictors
(CCA) and can miss important regional patterns while the climate
indices are only defined by prior knowledge and thus could limit
the domainwherewe want to explore the potential teleconnections.

In the past few decades, regularization has become
increasingly popular in dealing with multicollinearity in
regression. The two regularization approaches commonly used
with regression are the L-1 norm (the least absolute shrinkage and
selection operator, LASSO (Tibshirani, 1996)) and the L-2 norm
(the ridge regression (Hoerl and Kennard, 1970)) of regression

coefficients. Other popular regularization approaches include the
Akaike’s Information Criterion (AIC) (Akaike, 1998) and the
Bayesian Information Criterion (BIC) (Schwarz, 1978). Both L-1
and L-2 norm regularizations have shown good performance in
alleviating or avoiding over-fitting in regressionmodels in climate
research (Matsui and Konishi, 2011; Soleh et al., 2015; DelSole
and Banerjee, 2017; Kim et al., 2017; Li et al., 2020). Yet, it should
be noted that the ridge regression does not directly provoke
sparsity of the regression model while the LASSO regression
tends to assign non-zero value to only one of many correlated
predictors which can make the model difficult to interpret. The
lack of interpretability of the lasso model is also pointed out in a
recent paper from Stevens et al. (2021) where a graph-guided
variation is used as an extra regularization to improve robustness
of the regression model in predicting Southwestern United States
winter precipitation. Here, we propose to use the elastic net
regularization (Zou and Hastie, 2005) which linearly combines
the LASSO and ridge regression regularizations. While the
LASSO regularization guarantees sparsity of the model, the
ridge regression regularization helps improve visualization of
the regression coefficient map and therefore, interpretability of
the model (Peng et al., 2020). On top of that, a pooling layer is

FIGURE 1 | (A) The study region of TRHR (black box) as plotted in an elevation map based on ETOPO-5 (Center, 1988) and (B) time series of the spatially averaged
precipitation from CHIRPS (red) and CMA (blue) after standardization.
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added before developing the regression model. The pooling layer
is commonly used in machine learning for reducing spatial
dimensions (Zeiler and Fergus, 2013; Yu et al., 2014;
Kalchbrenner et al., 2014). And this extra pooling layer should
help improve robustness of the model by avoiding the realistic
problem that major “hot” regions defining large-scale circulations
are not fixed to certain spatial grids naturally.

The proposed model is tested to predict the Three-Rivers
Headwater Region (TRHR) wet-season precipitation using the

Pacific Ocean and Indian Ocean SSTs. The TRHR, located in the
eastern Tibetan Plateau (TP), is often called China’sWater Tower
as from it flow the three major rivers of China: the Yellow River,
the Yangtze River, and the Lancang (Mekong) River.
Consequently, the TRHR plays a critical role in providing
invaluable ecological goods and serviced as well as other
resources like energy and food. While great efforts have been
devoted to studying teleconnections between the broader TP
precipitation and large-scale climates (Benn and Owen, 1998;
Shaman and Tziperman, 2005; Feng and Zhou, 2012; Dong et al.,
2020), the quantitative studies focusing solely on the TRHR are
rather limited and only looks at short lead times (Zhang et al.,
2019; Zhao et al., 2019). In this study, we extend the forecast lead
time up to 24 months and the performance are compared against
some widely-used regression methods including OLSmulti-linear
regression, the EOF regression, and the CCA regression. The
precipitation is predicted in true amplitudes and binary states
(wetter or drier than normal) to demonstrate flexibility of the
model. In this study, we seek a model that is computationally
tractable for fast decision making support for stakeholders while
retaining a relatively direct physical interpretation to aid further
investigation of the underlying physical processes.

2 DATA

We base our analysis on monthly precipitation data from Jan
1981 through Dec 2019 as collected from the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS). The
original gridded precipitation data incorporates satellite data with
in-situ station data, with a resolution of 0.05° by 0.05° (Funk et al.,
2015). In this study, we spatially averaged the TRHR precipitation
over a rectangular area masking 89°E to 103°E and 31°N to 37°N as
shown in Figure 1A. The monthly climatology for the spatially
averaged precipitation is monomodal showing that over 80% of
the annual precipitation falls during the 5-month period of May-

FIGURE 2 | A schematic of the proposed the regression model coupling
max pooling and elastic net.

FIGURE 3 | Comparison of the predictive skill in the testing period from the elastic net regression models with no pooling (dark blue), maximum pooling (light blue),
median pooling (green) and minimum pooling (yellow). The p-value � 0.1 significance level is plotted in the black dashed line.
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Sept, which we define as the wet season in this study (also known
as the growing season for the TRHR (Chen et al., 2020)).

The CHIRPS precipitation is double checked against the
station-based precipitation (1988–2017) collected from the
China Meteorological Administration (CMA). 55 stations with
missing data ratio lower than 20% within the study region are
selected and the arithmetically averaged precipitation time series
is compared against that from the CHIRPS precipitation. A
systematic shift is observed around 2000 for both precipitation
though the shift is less significant for the station-based
precipitation. While difference in the shifts can be due to non-
uniform distribution of the CMA stations, we do not want to
diverge into this topic. Instead, the shift is removed by separately
standardizing the precipitation over 1981–2000 and 2001–2019.
The standardization is done by subtracting the mean and dividing
by the standard deviation. The standardized CHIRPS
precipitation shows good consistency with the station-based
precipitation as shown in Figure 1B, and correlation is 0.67
for 39 samples (p-value < 0.01). The binary TRHR precipitation is
used in the multinomial regression model and the two states are

defined as: 0 or dry for standardized precipitations smaller than 0
and 1 or wet for standardized precipitations greater than 0.

SST is selected as the primary predictor since it can indicate
perturbations in large-scale atmospheric circulations “anchored”
in ocean memory (Xie et al., 2009, Xie et al., 2016). Also, the SST
field is less spatially heterogeneous compared to that of other
common climate variables including geopotential height, vertical
velocity of atmosphere (OMEGA) and wind velocities (Peng et al.,
2020), which can help improve robustness of the regression
models. Monthly SST data is collected from the Hadley Centre
Sea Ice and Sea Surface Temperature (HadISST) data set with a
spatial resolution of 1° by 1° (Rayner et al., 2003) over Jan
1979–Dec 2019. Only SSTs from the Pacific Ocean and Indian
Ocean basins are used to limit our study to regional processes and
the basin range is based on the definitions from the National
Oceanic and Atmospheric Administration (NOAA) via https://
www.nodc.noaa.gov/woce/woce_v3/wocedata_1/woce-uot/
summary/bound.htm. Similar positive shifts are observed for
most parts of the Pacific Ocean and Indian Ocean as seen in
Supplementary Figure S1. To be consistent with the
standardization of precipitation, the SSTs are too standardized
separately for 1979–2000 and 2001–2019 to remove effects of the
trends. This step is to ensure that model skill as measured by the
correlation coefficient in the later sections will not be biased by
the trends. The only difference here is that standardization of the
SSTs is done locally for each grid and uses the monthly
climatology means and standard deviations to remove the
seasonal cycle.

3 METHODS

3.1 The Regularized Regression
Here, we propose a two-step generalized regression model with
regularization for dealing with collinearity when developing
linear prediction models. The model first reduces
dimensionality of the predictors using pooling which is a
commonly used method for down-sampling input

FIGURE 4 | Predictive skill for the testing set as a function of lead time
reported in the NSE scores.

FIGURE 5 | Prediction skill for the testing set of 2001–2019 asmeasured by the correlation coefficients as function of lead times for elastic net (red), OLS (blue), EOF
(green), and CCA (yellow). The p-value � 0.1 significance level is plotted in the black dashed lines.
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representations. Then a regularized regression model is fitted
using the pooled predictors to estimate real-valued or categorical
predictand. A schematic is shown in Figure 2. In the pooling step,
a new grid (in green) is defined by some characteristic values (e.g.,
maximum or median) of the four small grids. The extra step of
standardization is to remove the systematic shift in precipitation
around 2000 and to rescale precipitation and SSTs (as they have
different amplitudes). In this study, we compared model
performance using different pooling approaches
(i.e., maximum/median/minimum pooling) with a squared
window of four grids by four grids.

The regularized regression is given by Eq. 1 with regression
coefficient (β, β0) (β0 is the intercept), and it allows flexibility by
using different deviance function (Dev) for predictands of
different types. For example, the mean squared error (MSE)
function is used for estimating the real-valued predictand and
the log-likelihood function is used for categorical predictand
(Hastie et al., 2009). The deviance function is rescaled by one
over the total sample length N. The elastic net regression is
adopted here and the regularization term uses a linear
combination of the L-1 and L-2 norms of the regression
coefficients as shown in Eq. 2.

(β, β0) � min
β,β0

1
N
Dev(β, β0) + λPα(β)( ) (1)

Pα(β) � 1 − α

2

����β����22 + α
����β����1 (2)

There are two hyperparameters in the model: α and λ. α
balances the regularization between the L-1 and L-2 norms of the
regression coefficients β and is set to 0.01 for better visualization
(Peng et al., 2020). λ is usually decided using a k-fold (e.g., 5-fold)
cross validation (CV) (Tibshirani, 1996) and the λ value
associated with minimum cross-validated mean squared errors
is used (often referred to as the MinMSE λ). However, this
procedure can be computationally burdensome since we have
to repeat the CV for all lead times. Therefore, a constant λ is firstly

determined using the training set data at 0-months lead and is
used for all lead times. A preliminary study demonstrates that the
significant predictive skill spikes in the testing period are not
sensitive over a rather broad range of λs as shown in
Supplementary Figure S2. For the true-amplitude predictand,
the Pearson’s correlation coefficient (CC) and the Nash–Sutcliffe
efficiency (NSE) score are used for model performance
evaluation. For the binary predictand, an accuracy score S is
defined as given by Eq. 3 where 1 is an indicator function and ̂y
is the predicted probability of y being 1 (i.e., wet).

S � 1
N

∑
N

i�1
yi · 1( ̂yi ≥ 0.5) + (1 − yi) · 1( ̂yi < 0.5)}{ (3)

3.2 Other Regression Models
Performance of the elastic net is compared against some
commonly used regression methods in the two-step scheme
including the OLS mutil-linear regression (see Hurrell (1996)
for details), the EOF regression (see Wakabayashi and Kawamura
(2004) for details), and the CCA regression (see Sun and Kim
(2016) for details). All regression methods use the same pooled
SSTs as the predictors. Though pooling can alleviate the issue of
over-fitting, dimensionality of the pooled predictors is still highly
non-square (39 years by 1,343 grids). The OLS and CCA
regression seek for a linear combination of predictors that
maximizes its correlation with the predictand and does not
regularize the model complexity. The EOF regression first
projects the original predictors onto some “dominant” basis
vectors (often referred as EOFs) by decomposing the
covariance matrix of the predictors, and then uses the EOFs as
the new predictors. It can implicitly regularize the model
complexity by using only a few EOFs explaining most variance
of the original predictors. The EOF is implemented such that the
original (pooled) SSTs are projected onto a set of orthonormal
time series which constitute the predictors. It should be noted that
it impossible to develop a prediction model this way since we are
using data from testing set to construct the basis vectors. Here, the
most dominant 50 EOFs accounting for over 88% variance of the
original SST data are used in the EOF regression model.

3.3 The Correlation Analysis
A correlation analysis is designed to measure if any correlation
patterns between the predictand precipitation and the predictor
SSTs persist through time.We propose a new correlation metric L
to quantitatively measure persistence of any correlation patterns:
for a certain lead time, we first compute lagged correlations

FIGURE 6 | Comparison between the predictive skill from the elastic net
model (bar) and Ls (blue diamond) at varying lead times. The statistical
significance levels are not shown here as we are comparing correlation
coefficients calculated using samples of different lengths (19 for the
predictive skill and 39 for the Ls).

TABLE 1 | Correlations between L and prediction skill at varying lead times for
different regression models.

Model CC

Elastic Net 0.82
OLS 0.01
EOF −0.07
CCA −0.11
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between the TRHR precipitation and SSTs at every grid for
1981–2000 and vectorize the correlation map into a column
vector denoted by M1; then this step is repeated for
2001–2019 to compute the column vector M2; at last, L is
defined by computing the correlation coefficients between the
vectorized correlation mapsM1 andM2. L is bounded by a upper
limit of 1, which represents the extreme scenario where the
correlations between the TRHR precipitation and the SSTs are
perfectly consistent before and after 2001 and therefore, a good
regression model trained on 1981–2000 should produce
significantly high predictive skill on the testing period of
2001–2019. However, L being close to zero does not
necessarily mean no predictive skill for regression models
since L measures persistence of the global correlations between
the TRHR precipitation and the SSTs while the regression model

could pick some regional clusters of SSTs that have a persistent
correlation with the predictand precipitation. Themetric L is used
here to estimate how much degradation of performance is
resulted from over-fitting by comparing against the testing
period predictive skill from the regression models.

4 RESULTS AND DISCUSSIONS

4.1 Comparison of Regression Models
Performance of the regularized regression models in predicting
the TRHR precipitation in true amplitudes is examined in this
section. The period of 1981–2000 is set as the training period
while 2001–2019 is set as the testing period to be consistent with
the standardization procedure. Prelim analysis with randomly

FIGURE 7 | Correlation maps between the TRHR precipitation and the SSTs over the training period of 1981–2000 (top) and the testing period of 2001–2019
(bottom) at the lead time of 14 months.
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split data sets demonstrated consistent model skill patterns as
shown in Supplementary Figure S3. Since both pooling and
regularization are designed for effective dimensionality reduction
and thus to avoid over-fitting, we first justify using the extra step
of pooling by comparing predictive skill of the regularized
regression models with and without pooling. The comparison
of testing period correlation coefficients are shown for regression
models without pooling and with maximum, median, and
minimum pooling in Figure 3. Two spikes are observed at
lead times of 13–14 months and 21–24 months. Significant
improvement in model skill is shown for lead times of
13–14 months when pooling is used and at the lead time of
13 months, the predictive skill drops to below p-value � 0.1
significance level using non-pooled SSTs. For lead times of
21–24 months, consistent improvement, though less
significant, is observed. The improvement could be due to the
fact that while there exist some consistent large-scale circulation
patterns, the signals may not be fixed to certain grids depending
on the spatial resolution and projection coordinate system.

Therefore, the model robustness can be improved by including
signals of the neighboring grids with pooling. However, though
not examined here, one must be careful with choosing the pooling
window size since displacement of some circulation patterns can
be important indicators of climate anomalies (McGregor et al.,
2014; Manatsa et al., 2014) and this information may not be
resolved when the pooling window is too large. It should be noted
that the λ is re-calibrated for the regression models using non-
pooled SSTs. And the statistical significance for the regularized
regression is not straightforward to calculate and thus is not
reported (Javanmard and Montanari, 2014). The maximum
pooling is used in the following analyses.

Model skill for the testing period data as measured by the NSE
scores is reported in Figure 4. Consistent patterns are observed as
two spikes of NSE scores are found around lead times of 14 and
22 months. However, even at those two lead times, the predictive
skill is barely satisfactory. By further looking at comparison
between the observed and estimated precipitation, we figured
that the elastic net model markedly underestimated the

FIGURE 8 | Correlation maps between the TRHR precipitation and the SSTs over the training period of 1981–2000 (top) and the testing period of 2001–2019
(bottom) at the lead time of 22 months.
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predictand amplitude. However, the extent of shrinking is
consistent across the training and testing periods (as shown in
Supplementary Figure S4A) and thus, in practice, one could
‘learn’ how much the amplitude is shrunk by looking at the
training data and can then rescale testing period estimations. The
rescaled estimations show significantly improved NSE scores
(NSE � 0.36 for lead time of 14 months and 0.38 for lead
time of 22 months (as shown in Supplementary Figure S4B)).
A plausible explanation is that the elastic net regression sacrifices
accuracy in amplitude estimation for model robustness by
selecting only a few predictors and shrinking amplitudes of
regression coefficients. This effect is more significant with
highly non-square data as in our case since greater
regularization must be applied. Therefore, amplitude-based
measures such as NSE and the root mean square error
(RMSE) may not be applicable for model evaluation. The
rescaling method discussed above is not recommended since
the model is designed to be biased for more robustness, and
in following analyses, the Pearson’s correlation coefficient is used
as the primary measure of model skill.

We then justify using the regularization by comparing
predictive skill of the regression with and without
regularization. Comparison of the model skill from the elastic
net, OLS, EOF, and CCA regression models are shown in
Figure 5. Statistically significant positive predictive skill is only
observed for the elastic and CCA regressions models. The elastic
net models show two spikes of good predictive skill at lead times
of 13–14 months and 21–24 months. Statistically significant
positive skill is observed for the CCA regression models only
at the lead time of 18 months while that of the elastic net
regression almost hit the p-value � 0.1 significance level at the
lead time of 19 months. Overall, the elastic net regression shows
more potential in finding the linear associations between the
TRHR precipitation and the SSTs. While statistically significant

positive skill are only found at rather long lead times, this does not
necessarily mean that there is no connection between the TRHR
precipitation and large-scale climate fields at shorter lead times.
We are limiting our analysis to only using SSTs from the Pacific
and Indian Oceans which is only one sector of the complex large-
scale circulations including a wider range of variables like
geopotential heights, humidity, vertical velocity of atmosphere
(OMEGA) and horizontal winds etc. Furthermore, we are
limiting our analysis in the frame of linear models as we
compare different types of regression models. Instead of
developing accurate forecast models, our intent is to examine
how pooling and regularization would improve performance of
the linear models at rather low costs. The better performance of
elastic net is understandable here since it explicitly regularizes
model complexity and provokes sparsity in regression coefficients
by using the L-1 norm regularization.

4.2 Source of High Model Skill
A correlation analysis is conducted to measure at a certain lead
time, how well a linear model based on the global correlation
between the TRHR precipitation and the SSTs can perform. The
potential predictive skill is estimated by the new correlation
metric L defined earlier as L measures how the time-shifted
global correlation patterns persist from 1981 to 2000 (the
training period) to 2001–2019 (the testing period). A
comparison between L and the predictive skill of the elastic
net model at varying lead times is shown in Figure 6. Spikes
in L are observed at lead times of 7, 14, 18, and 22 months. Three
of the spikes coincide with good predictive skill from the elastic
net model (i.e., lead times of 14, 19, and 22 months) while only
one of the spike coincide with good skill from other regression
models (i.e., lead time of 18 months for the CCA regression
model). To estimate how much potential are realized for each
model, correlation coefficients between the series of L and model
skill from regression models over the lead times of 0–24 months
are computed and reported in Table 1. The only statistically
significant correlation is found for the elastic net model (0.82 for
25 samples, p-value < 0.01) while rather low correlations are
found for other regression models. The results suggest that the
OLS, EOF, and CCA regression models do not perform well even
when there exist persistent correlations between the predictand
precipitation and the SSTs.

Possible explanations are proposed here based on algorithms
of the regression methods. For the OLS and CCA regression, the
models could be over-fitted to the noisy SST signals for high
training skill as both methods decompose the covariance between
the predictand precipitation and SSTs to seek a linear
combination that either minimizes the MSE (for OLS) or
maximizes the correlation (for CCA). Thus, the models are
less robust and can perform poorly when evaluated using the
testing period samples. As for the EOF regression, the EOF re-
constructs the predictors by projecting the global covariance of
the SSTs onto some dominant orthonormal basis vectors (EOFs).
There are two limiting factors: 1) the assumption of orthogonality
may not be appropriate as the new predictors are constructed
from the physical variable of SST; 2) any regional persistent
correlation patterns between the TRHR precipitation and the

FIGURE 9 | Accuracy of predicting the wet-dry state of TRHR
precipitation at varying lead times. The base skill (the null model of totally
random guess) is plotted in the black dashed line. The one-tailed p-value � 0.1
significance level is estimated using bootstrapping and is plotted in the
blue dashed line. Themean accuracy using a totally random guess strategy for
39 samples is collected from 10,000 repeated experiments and the 90th
quantile value is used as estimation of the p-value � 0.1 significance level.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 7245999

Peng et al. Precipitation Prediction with Regularized Regression

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


SSTs could be lost if they do not make significantly large
contribution to the global covariance. Technically, we are not
predicting the TRHR precipitation with the EOF regression
models since data of the full study period (1981–2019) is used
for constructing the new set of predictors (i.e., EOFs).

Interestingly, comparably high predictive skill are observed for
the elastic net models at lead times of 14 and 22 months while
persistence of the global correlation is much lower at the lead time
of 14 months as indicated by L. We specifically looked at the
correlation maps between the TRHR precipitation and the SSTs
before and after 2000 for the lead times of 14 and 22 months as
shown in Figures 7, 8, respectively. For the lead time of
14 months: before 2000, the correlation map features a cluster
of positive correlations [180E-210E, 45S-15S] to the east of
Australia and an extended band of positive correlations over
the mid-north Pacific Ocean [120E-210E, 15N-30N]. Scattered
and less significant positive correlations are observed over the
northern Indian Ocean and to the west of South America; After

2000, the correlation map is dominated by two major clusters of
positive correlations to the east of Australia [180E-210E, 45S-15S]
and to the west of South America [260E-280E, 60S-15S] and one
major cluster of negative correlations over the southwestern
Indian Ocean [30E-60E, 60S-30S]. Less significantly positive
correlations are observed over the north-western Pacific which
overlaps with the extended band before 2000. For the lead time of
22 months, both correlation maps before and after 2000 are
dominated by large clusters of positive correlations over the
northern Indian Ocean [60E-90E, 15S-15N] and eastern
tropical Pacific Ocean [210E-270E, 15S-0]. The major
difference is that clusters of positive correlations over the
southern-eastern Pacific and the mid-western Pacific [120E-
150E, 15N-30N] get enhanced in correlation amplitude and
extended in spatial coverage. A comparison between Figures
7, 8 suggests a higher level of persistence in the global correlation
between the predictand precipitation and the SSTs at the lead
time of 22 months, which is consistent with the higher value of L

FIGURE 10 |Maps of regression coefficients from the elastic net models using true-amplitude (top) and binary (bottom) predictand precipitation at the lead time of
14 months.
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in Figure 6. However, a lower value of L does not necessarily
mean low predictive skill potential for a linear model as some
regional persistent correlation patterns are observed (i.e., the
positive correlation cluster to the east of Australia) for the lead
time of 14months. The correlation maps are further compared
with the regression coefficientmaps in Section 4.3 as we attempt to
interpret the high model skill of the elastic net regression.

4.3 An Alternative Multinomial Regression
Model
In this section, the binary precipitation is predicted using the
multinomial regression version (i.e., the elastic net logistic
regression) of our model. While new machine learning
techniques like the classification and regression tree (CART)
can have better model skill in multi-class prediction of climate

variables (Choubin et al., 2018; Huang et al., 2021), the elastic net
logistic regression is tested to demonstrate flexibility and
consistency with altered deviance functions. The multinomial
regression may have more use in practical application since
amplitudes of the predictand tend to be underestimated
because of the regularization (Peng et al., 2020). The logistic
regression is implemented by simply replacing the MSE function
with the log-likelihood function for Dev (Hastie et al., 2009).
Though the logistic regression is a special case of the multinomial
regression, the model could be easily generalized for predictand of
more than two categories by separately fitting a regularized
Poisson regression for each category of which the coefficients
are used to estimate the coefficients of the multinomial regression
model (Baker, 1994).

To extend the sample size, the leave-one-out cross validation is
used (the testing sample size is thus increased from 19 to 39 here).

FIGURE 11 |Maps of regression coefficients from the elastic net models using true-amplitude (top) and binary (bottom) predictand precipitation at the lead time of
22 months.
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The leave-one-out CV is not used in the previous analysis for
predicting real-valued predictand since the Pearson’s correlation
coefficient is used for performance evaluation and the leave-one-
out CV could result in bias for violating continuity in data. The
accuracy as measured by the S score as a function of lead time is
shown in Figure 9. A consistent spike of high accuracy (over 70%
accuracy) is observed at around lead times of 22 months. While a
local maximum of accuracy is observed at the lead time of
14 months, it is not statistically significant. A major reason
could be that the S score is not the equivalent measure of the
correlation coefficient as we used in Figures 3, 5. A example of
high correlation but low S is when the model could well predict
the extreme events but performs poorly for the less extreme
events.

Consistency between the regression models using predictand
and deviance function of different types is further examined by
comparing the maps of the regressions coefficients for lead times
of 14 and 22 months as shown in Figures 10, 11, respectively. For
the lead time of 14 months, both models feature a major cluster of
positive coefficients to the east of Australia while more non-zero
coefficients are observed for the logistic regression model over the
southeastern Pacific Ocean and the Indian Ocean. As for the lead
time of 22 months, both maps are dominated by the large cluster
of positive coefficients over the eastern tropical Pacific Ocean.
While positive coefficients are observed over the northern Indian
Ocean for both models, the coefficients are more sparsely
distributed for the model using the true-amplitude predictand.
More non-zero coefficients are found for the logistic regression
model at both lead times, which could be due to a less optimal
regularization as we only did the cross validation on a relatively
sparse sequence of λs with a lead time of 0 months. But overall,
the major clusters of non-zero regression coefficients are
consistent across the models. And this is also confirmed by
the results that statistically significant correlations are found
between the vectorized coefficient maps of the two models.

The correlation coefficients are 0.45 for the lead time of
14 months and 0.44 for the lead time of 22 months (1,343
samples) and are 0.35 for the lead time of 14 months (327
samples) and 0.40 for the lead time of 22 months (359
samples) when only the non-zero coefficients are considered.

The comparably high predictive skill at the lead time of
14 months is easy to interpret if we compare the coefficient
maps from Figures 10, 11 to the correlation maps from
Figures 7, 8. While less persistence is observed for the global
correlation at the lead time of 14 months, the elastic net model
managed to select the regional persistent cluster of positive
correlations to the east of Australia. At last, two SST indices
are defined based on the consistent patterns from the two
regression models: the SST index 1 is defined by the mean
SST over the domain of [180°W-160°W, 42°S-18°S]; the SST
index 2 is defined by the mean SST over the domain of
[120°W-88°W, 22°S-2°N]. Lagged correlations between the
TRHR precipitation and the SST indices calculated using the
non-pooled and pooled SSTs are plotted in Figure 12. Statistically
significant positive correlations are observed at the corresponding
lead times and consistent results are shown for non-pooled and
pooled SSTs. The results suggest that the proposed framework
managed to select certain regional SSTs that are consistently
correlated with the predictand precipitation and demonstrated
good interpretability. While correlation does not necessarily
imply causation, the elastic net regression models show good
potential here in guiding further research with its highly
interpretable and flexible models.

5 CONCLUSION

In this paper, we tested a generalized regression model with
regularization coupled with pooling in predicting the TRHR wet-
season precipitation at lead times of 0–24 months using the

FIGURE 12 | Lagged correlations between the TRHR precipitation and the SST indices. The p-value � 0.01 significance level is plotted in the black dashed line.
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Pacific and Indian Ocean SSTs. The regression is first tested using
the true-amplitude predictand and is compared against some
widely-used regression models including the OLS multi-linear
regression, the EOF regression and the CCA regression.
Significantly good predictive skill are observed using the
elastic net regression models for certain long lead times
which are further examined using a correlation analysis. The
results suggest that the elastic net regression achieves good
performance in identifying and using the persistent
correlation patterns while the other three regression models
show relatively poor performance. Low model skill at shorter
lead times can be due to that only SST is used as the predictor
while teleconnection signals can propagate through other
climate fields chronologically. A multinomial elastic net
regression model is then used to demonstrate flexibility and
consistency of the proposed framework. Consistent model skill
and regression coefficient maps are observed even when
predictand and deviance functions of different types are used.
By comparing the correlation analysis and the regression
coefficient maps, we found that the elastic net model
managed to select regional persistent correlation patterns as
the contributing predictors while the other widely-used
regression models are based on the global covariance either
between the predictand and the predictors or within the
predictors (and thus are vulnerable to over-fitting). At last,
two SST indices are defined based on the major clusters of non-
zeros coefficients from the elastic net models and are found to be
significantly correlated to the TRHR precipitation at the
corresponding lead times. Overall, the proposed framework
demonstrates good interpretability in identifying covariates
with high predictive skill and the potential in guiding further
investigation using more complex, nonlinear statistical models
or physically based modeling experiments.
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