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The existence of supraglacial lakes influences debris-covered glaciers in two ways. The
absorption of solar radiation in the water leads to a higher ice ablation, and water draining
through the glacier to its bed leads to a higher velocity. Rising air temperatures and
changes in precipitation patterns provoke an increase in the supraglacial lakes in number
and total area. However, the seasonal evolution of supraglacial lakes and thus their
potential for influencing mass balance and ice dynamics have not yet been sufficiently
analyzed.We present a summertime series of supraglacial lake evolution on Baltoro Glacier
in the Karakoram from 2016 to 2020. The dense time series is enabled by a multi-sensor
andmulti-temporal approach based on optical (Sentinel-2 and PlanetScope) and Synthetic
Aperture Radar (SAR; Sentinel-1 and TerraSAR-X) remote sensing data. The mapping of
the seasonal lake evolution uses a semi-automatic approach, which includes a random
forest classifier applied separately to each sensor. A combination of linear regression and
the Hausdorff distance is used to harmonize between SAR- and optical-derived lake areas,
producing consistent and internally robust time series dynamics. Seasonal variations in the
lake area are linked with the Standardized Precipitation Index (SPI) and Standardized
Temperature Index (STI) based on air temperature and precipitation data derived from the
climate reanalysis dataset ERA5-Land. The largest aggregated lake area was found in
2018 with 5.783 km2, followed by 2019 with 4.703 km2, and 2020 with 4.606 km2. The
years 2016 and 2017 showed the smallest areas with 3.606 and 3.653 km2, respectively.
Our data suggest that warmer spring seasons (April–May) with higher precipitation rates
lead to increased formation of supraglacial lakes. The time series decomposition shows a
linear increase in the lake area of 11.12 ± 9.57% per year. Although the five-year
observation period is too short to derive a significant trend, the tendency for a
possible increase in the supraglacial lake area is in line with the pronounced positive
anomalies of the SPI and STI during the observation period.
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1 INTRODUCTION

Glaciers with an extensive debris cover respond in a more
complex way to changes in climate than those that are debris-
free. The glacier response depends on debris thickness and its
spatial distribution (Benn et al., 2012). A thin debris cover of only
a few centimeters leads to enhanced ablation compared to clean
ice due to increased absorption of solar radiation (Ostrem, 1959;
Nicholson and Benn, 2006). A debris cover with greater thickness
has an insulating effect on the energy transfer to the glacier ice
from atmospheric energy sources and reduces ice ablation. With
respect to mass balance calculations, various properties of debris
cover need to be considered, such as thickness, slope, aspect, and
lithology (Mihalcea et al., 2008). Mass balance models can include
such debris-dependent surface properties, but due to a lack of
empirical data, it is difficult to readily include their impact on
glacier melt rates. The ablation of debris-covered glaciers is very
heterogeneous with minimal lowering beneath thick debris near
the terminus and maximal downwasting in the upper ablation
zone near the equilibrium line where thin debris dominates (Benn
et al., 2017). Additionally, ice cliffs may contribute up to 25% to
ice ablation despite their small area share of 7–8% (Brun et al.,
2018; Buri et al., 2021) and supraglacial lakes can be heated by
incoming solar radiation and thus can be responsible for
considerable subaqueous melting. Previous studies have
indicated that lakes could be responsible for 1/8 of total ice
loss in the Langtang Valley, Nepal (Miles et al., 2018; Miles et al.,
2020).

Only a handful of studies focused on modeling the response of
debris-covered glaciers to climatic changes have included a
heterogeneous debris thickness distribution in their approach.
These studies have found that supraglacial debris delays glacier
response to warming and leads to surface lowering and ice cliff
backwasting rather than frontal recession (Rowan et al., 2015;
Thompson et al., 2016; Brun et al., 2018). Both the surface debris
flux and the relationship between debris thickness and the sub-
debris melt rate appear to positively affect the glacier length
(Anderson and Anderson, 2019), and if a uniform debris
thickness value is used rather than one that is spatially
variable, the sub-debris ablation rate can be underestimated by
11–30% (Nicholson et al., 2018). The positive interaction between
debris thickness, surface ponding, and ice ablation is therefore
complex and non-linear and influences glacier dynamics,
geometry, and surface properties (Huo et al., 2021). With an
up-glacier expansion of the debris cover, these effects will be
intensified with time (Mölg et al., 2020; Xie et al., 2020).

Supraglacial lakes mainly form on debris-covered glaciers with
a surface inclination of ≤ 2o (Reynolds, 2006) and surface
velocities of ≤10 m per year. Most of the lakes develop
towards the terminus, which is characterized by the lowest
surface velocities (Quincey et al., 2007; Sakai, 2012;
Kraaijenbrink et al., 2016; Miles K. E. et al., 2017). They form
as rain or meltwater accumulates in depressions of the debris
cover in early spring. In late summer, many of the lakes drain,
while some lakes persist. If the water is able to drain to the glacier
bed, it can support basal sliding and hence higher glacier
velocities (Sakai and Fujita, 2006; Sakai, 2012; Watson et al.,

2016; Benn et al., 2017; Miles E. S. et al., 2017; Miles et al., 2020).
Higher precipitation tends to intensify both lake filling and
drainage. Stronger spring precipitation leads to increased
filling of supraglacial lakes, while stronger winter precipitation
causes higher glacier velocities leading to crevasse development
and therefore increased pathways for the drainage of lake water
(Wendleder et al., 2018). Additionally, warmer springs lead to
greater lake drainage later in the same year as more meltwater
causes redevelopment of the subsurface drainage system (Liu
et al., 2015).

Previous multi-temporal studies mapped the supraglacial lakes
in Tian Shan and Himalaya based on optical data. Liu et al. (2015)
used an object-based image analysis (OBIA) on Landsat imagery
for the months of August and September from 1990 to 2011 to
analyze the distribution and seasonal variability of lakes in the
Khan Tengri-Tumor Mountains, Tian Shan. Watson et al. (2016)
also implemented an OBIA to examine the spatiotemporal
dynamics of 9,340 supraglacial ponds located on nine glaciers
in the Everest region of Nepal for the period 2000 to 2015. Miles
K. E. et al. (2017) combined the Normalized Difference Water
Index (NDWI) with two further band ratios to Landsat 5 and 7
imagery on the Langtang Valley, Nepal, to study lake dynamics
from 1999 to 2013. Miles et al. (2018) also applied the NDWI,
additionally using Otsu’s method to semi-automatically establish
an appropriate classification threshold, applied to a dense time
series of PlanetScope and RapidEye imagery. An optimized
NDWI was introduced by Watson et al. (2018) to account for
under- and overestimation of lake areas when using coarser-
resolution imagery, using Himalayan debris-covered glaciers with
Pleiades, Sentinel-2, and Landsat data to show a proof of concept.

However, to better understand the seasonal evolution of
supraglacial lakes and the relationship between lake growth
and climate, a continuous time series covering a period of
several years is essential. In this study, we combine optical and
Synthetic Aperture Radar (SAR) data in order to create such a
dense temporal coverage of glacial lake evolution. As SAR signals
are able to penetrate clouds, they provide relevant information
during the rainy seasons and especially during the period of lake
onset. Previous studies have tended to use only optical data and
hence have been unable to monitor lake dynamics during the
cloudy and rainy seasons. Our multi-sensor approach combining
optical and SAR data is a novelty in this application area and
could bridge this gap.

We present a semi-automatic approach based on a random
forest classifier for the monitoring of supraglacial lake evolution.
We apply it to the Baltoro Glacier, located in Karakoram,
Pakistan, for the years 2016–2020. The approach uses a multi-
temporal andmulti-sensor summertime series comprising optical
data from Sentinel-2 with a regular acquisition of 5 days and
PlanetScope with a very high temporal resolution of 3–5 days and
SAR data from Sentinel-1 and TerraSAR-X, both with a regular
acquisition of 12 and 11 days, respectively. For the sake of
simplicity, we implemented the random forest classifier for all
four sensors but with different classification classes and training
data. Our aim was to answer the following research questions: 1)
What are the characteristic filling and the drainage periods? 2) In
what way does the lake area change over the years? 3) What does
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the spatial lake distribution look like? 4) How does the seasonal
evolution vary over the years?

2 STUDY SITE

For our study of glacial lake dynamics, we selected the Baltoro
Glacier in the eastern Karakoram. In 2012, the Karakoram region
had a glacierized area of 18,000 km2 (Collier et al., 2015; Bolch
et al., 2012), and approximately 18–22% of it was covered with
supraglacial debris (Collier et al., 2015; Scherler et al., 2011;
Hewitt, 2011). The Baltoro Glacier is situated in the northern
part of Pakistan near the border to India and China (Figure 1). In
2016 the glacier had a total length of 63 km and together with its
tributaries covered an area of approximately 524 km2 (Mayer
et al., 2006). The two major tributaries are the Godwin Austin
Glacier and the Baltoro South Glacier, which join at Concordia
(4,600 m a.s.l.) to form the main glacier. This main trunk flows in
the east-west direction and terminates at 3,410 m a.s.l. The
surface velocities derived from SAR data from 1992 to 2017
ranged from 180 to 240 m per year (summer) and 100–140 m per
year (winter) between Concordia and Urdukas and decreased to
10–40 m per year near the terminus (Wendleder et al., 2018).
Approximately 38% of the Baltoro Glacier is debris-covered,
which exceeds the average debris coverage in the Karakoram
(Scherler et al., 2011). At Concordia, the debris cover is thin
(5–15 cm), increasing in thickness at Urdukas (30–40 cm) and
reaching a maximum at the terminus of about 1 m (Mayer et al.,
2006; Quincey et al., 2009). Debris-covered glaciers are
characterized by the presence of ice sails (Mayer et al., 2006;
Evatt et al., 2017), ice cliffs, and supraglacial lakes. On the Baltoro
Glacier, ice sails are found in a region from about 6 km
downstream to 2 km upstream of Gore (Figure 1) and ice

cliffs predominate between the terminus and Gore.
Supraglacial lakes are located from the terminus up to
Concordia. The majority of those lakes are supraglacial lakes
located on the main glacier. There are also two ice-dammed lakes
located south of the main trunk, namely, Liligo and Yermanendu
Lakes.

The Karakoram climate is characterized by cold winters and
mild summers and is dominated by three different systems: 1) the
winter westerly disturbances with dominant snowfall in winter
and spring, contributing up to two-thirds of the yearly snowfall at
high altitudes (Dobreva et al., 2017), 2) the Indian summer
monsoon incursion that can lead to higher precipitation,
temperatures, and cloud coverage during summer,
contributing to snow accumulation in the higher reaches of
the glacier (Bookhagen and Burbank, 2006; Thayyen and
Gergan, 2010), and 3) the predominantly stable Tibetan
Anticyclone that, in the case of an irregular weakening,
provokes an incursion of the Indian summer monsoon with
large amounts of precipitation (Dobreva et al., 2017). The
mean annual precipitation is approximately 1,600 mm per year
at 5,300 m a.s.l. (Godwin Austen region) and at 5,500 m a.s.l.
(Baltoro South region). As the mean daytime temperature during
summer is close to the freezing point at 5,400 m a.s.l., most of the
precipitation deposits as snow above this elevation (Mayer et al.,
2006).

3 METHODOLOGY

3.1 Data
We used a multi-sensor time series with an acquisition every two
to four days based on optical data from PlanetScope and Sentinel-
2 and SAR data from Sentinel-1 and TerraSAR-X. The sensor

FIGURE 1 | Overview of Baltoro Glacier, Pakistan, with the glacier boundaries (blue) and the sectors (red) used for the supraglacial lake area analyzed in Sections
4.2 and 4.3. Important place names are indicated. The background image is a Sentinel-2 RGB (B2, B3, B4) composite acquired on July 22, 2019. The glacier boundaries
are derived from a Landsat-7 scene acquired on July 12, 2010, based on the Normalized Difference Snow index and manual editing.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7253943

Wendleder et al. Seasonal Evolution of Supraglacial Lakes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


characteristics and acquisition parameters are summarized in
Table 1 and the data availability is visualized in Figure 2. All four
sensor systems are characterized by frequent and consistent
coverage. Sentinel-2 has a repeat orbit of 5 days (Gatti and
Bertolini, 2013) and provides a continuous and stable time
series with relevant information about glacier surface cover
like debris, ice, snow, and lakes. The time series is
complemented by the high temporal sampling of PlanetScope
data. The PlanetScope satellite constellation of about 130 small
satellites called “Doves” gathers information every two to
five days during cloud-free periods (Miles K. E. et al., 2017;
PlanetScope, 2020). The SAR data of Sentinel-1 (Vincent et al.,
2019) and TerraSAR-X (Eineder and Fritz, 2009) bridge the gaps
of the optical data, which are brought about by cloud cover during
the westerly disturbances in April and the monsoon season from
the end of May until the end of July. We used data acquired
between April and September for the years 2016–2020, and the
number and timing of images differed for each season of study,
depending on data availability (Table 1).

For the semi-automated classification, the data needed to be
atmospherically corrected, radiometrically calibrated, and
orthorectified. Therefore, the Sentinel-2 Multi-Spectral
Instrument (MSI) orthorectified Level-1C Top-Of-
Atmospheric products were atmospherically corrected to L2A
products using MAJA (MACCS ATCOR Joint Algorithm,

release 4.2). MAJA is a processor for cloud detection and
atmospheric correction and is specifically designed to process
optical time series (Hagolle et al., 2017). The PlanetScope
Analytic Ortho Scene Products (Level 3B) were already
downloaded as orthorectified and atmospherically corrected
Surface Reflectance (SR) data. Sentinel-1 Interferometric
Wide Swath C-band and TerraSAR-X ScanSAR X-band data
were processed to normalized radar backscatter Analysis Ready
Data (ARD) using the Multi-SAR System (Schmitt et al., 2015;
Schmitt et al., 2020). For the orthorectification, the 3-arcsecond
Copernicus-DEM (GLO-90) (Airbus, 2020) was used as it had
the best geometric correspondence to Sentinel-2 and
PlanetScope data.

The relationship between supraglacial lake evolution and
meteorological conditions was analyzed using the
corresponding monthly averaged air temperature at 2 m above
the surface and total precipitation data of the climate reanalysis
dataset ERA5-Land (Hersbach and Bell, 2020). The data are
available on a 0.1° by 0.1° grid and were downloaded from the
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) (Muñoz-Sabater, 2019).

3.2 Random Forest Classification
We used a random forest approach in classification mode
(Breiman, 2001) and applied it to Sentinel-2, PlanetScope,

TABLE 1 | Overview of the sensor characteristics and acquisition parameters. In the case of Sentinel-2, only the used spectral bands are listed. The pass directions of the
SAR sensors are abbreviated as A for ascending and D for descending. Eineder and Fritz (2009), Vincent et al. (2019), PlanetScope (2020), Gatti and Bertolini (2013).

Sentinel-2 PlanetScope Sentinel-1 TerraSAR-X

Mode Multispectral instrument (MSI) Analytic ortho scene products Interferometric wide swath (IW) ScanSAR (SC)
Spectral bands/Frequency B: 439–535 nm B: 455–515 nm C-Band (5.4 GHz) X-Band (9.65 GHz)

G: 537–582 nm G: 500–590 nm
R: 646–685 nm R: 590–670 nm
NIR: 767–908 nm NIR: 780–860 nm
SWIR: 1,539–1,681 nm —

Polarization — — VV (2016) HH
VV/VH (2017–2020) —

Ground sampling 10 m (VIS, NIR), 20 m (SWIR) 3 m 10 m 18 m

Scene extent 100 × 100 km 24.6 × 16.4 km 250 × 180 km 110 × 110 km
Orbit 5 (T43SFV) — 27/34 98/151
Pass direction D — A/D A/D
Incidence angle — — 35°/35° 35°/35°

Repeat orbit 5 days (2016–2017) 1–7 days 12 days 11 days
— 10 days (2018–2020) — — —

Observation period 2016–2020 2017–2020 2016–2020 2019–2020

Acquisitions per summer 7/11/28/28/20 30/25/30/34 13/23/24/23/26 18/24

FIGURE 2 |Data availability for the summertime series from 2016 to 2020with respect to Sentinel-2 (S2), PlanetScope (PS), Sentinel-1 (S1), and TerraSAR-X (TSX).
“A” and “D” in parentheses denote the passing direction, i.e., ascending or descending.
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Sentinel-1, and TerraSAR-X images separately in order to detect
the supraglacial lakes. Random forest is a common and robust
machine learning classification algorithm. It combines the results
of many different random decision trees taking the majority votes
for each decision tree. Due to the different spectral resolution and
the radiometric calibration of Sentinel-2 and PlanetScope, the
random forests differed in the number of classes, feature spaces,
and training data (Table 2). Training and validation datasets (80:
20 ratio) were manually created. Classification and subsequent
processing steps were implemented in the open-source software
RStudio.

3.2.1 Sentinel-2
For the Sentinel-2 data, we used the same training dataset for all
5 years. The classification results reflect the dominant glacier
surface cover types: “dry debris,” “wet debris,” “lakes,” “snow,”
and “ice.” As the cloud mask produced by the MAJA algorithm
frequently misclassified glacier ice as cloud, we created our own
cloud and shadow mask by adding the two classes “shadow” and
“clouds.” These masks were generated after the classification in
three subsequent steps: 1) since cloud rims were often wrongly
classified as water, lake pixels with a distance of 20 m to clouds
were deleted; 2) lakes that existed only three to five times in the
summertime series were removed (with the exact threshold
varying depending on the number of optical data per
summertime series); 3) scenes with a cloud coverage over the
glacier surface of more than 80% were automatically omitted. For
a better distinction of shadows and clouds from lakes, we added
the blue and shortwave infrared bands. Shadows showed high
absorption in both bands, with lower rates in the shortwave
infrared. Clouds showed a high reflection compared to the
surrounding area with highest rates in the blue band (Roth,
2019). In order to cover seasonal and annual variations of the
water turbidity, the training data were collected in spring and late
summer in 2018 and 2019. These 2 years were selected as they had
the lowest cloud cover.

3.2.2 PlanetScope
The radiometric quality of PlanetScope data is known to be
inconsistent between each of the “Doves” (Houborg and

McCabe, 2016; Cooley et al., 2017), which leads to different
reflectances between the sensors and prevents the use of a
single training dataset as we did for Sentinel-2. For this
reason, we chose the random forest approach with individual
training data derived from scenes with the same acquisition date.
The training data were selected from the classification results of
an index approach. Therefore, we introduced the Supraglacial
Lake Index (SGLI), a modification of the Normalized Difference
Water Index (McFeeters, 1996), specially designed for debris-
covered glaciers. The three-step approach is based on two
normalized difference indices, one calculated with green and
near-infrared and the other with near-infrared and red
(Figure 3A). Using this approach, it was possible to
discriminate between the classes “debris,” “ice,” and “lake.”
For every scene, an individual threshold for the differentiation
between the reflectance of “ice” and “lake” was automatically
calculated using the unimodal threshold determination (Rosin,
2001). The threshold was defined as the point with the maximum
distance between the histogram and line of maximum and
minimum peak (Figure 3B). In the final classification, snow
was classified as ice because of its spectral similarity, and
“shadow” and “cloud” classes were both omitted since all of
the PlanetScope imagery we selected was cloud-free. Overall, the
random forest yielded an improved classification compared to the
index approaches alone, which tend to underestimate the
lake area.

As the access to PlanetScope data is restricted to a specific
download quota per month, only cloud-free data were selected.
Therefore, it was not necessary to include the classes “shadow”
and “cloud.” Additionally, the data have no shortwave infrared
bands, which impedes cloud detection anyway.

3.2.3 Sentinel-1 and TerraSAR-X
The random classifier was executed separately on the
ascending and descending orbits of the Sentinel-1 and
TerraSAR-X datasets. Due to the similar SAR backscatter of
rough debris cover and ice, we could only define the two classes
“dry” and “wet.” The discrimination of lake and wet objects is
based on the maximal lake extent map of the corresponding
year produced by Sentinel-2 data (Miles K. E. et al., 2017). The

TABLE 2 | Overview of the used classes, features, and training data for the random forest classifier. NDI stands for normalized difference index, GLCM for gray level co-
occurrence matrix, and ROI for region of interest.

Sentinel-2 PlanetScope Sentinel-1 TerraSAR-X

Classes Lakes, dry debris, wet debris, ice,
snow, shadow, clouds

Lake, dry debris, wet debris, ice Dry, wet Dry, wet

Features B, NIR, SWIR, NDINIR−R, NDIB−R,
NDIG−NIR

B, NIR, NDINIR−R, NDIB−R,
NDIG−NIR

VV amplitude with GLCM image (2016), VV
and VH amplitude with GLCM images
(2017–2020)

HH amplitude with GLCM
image

Training
data

200 ROI for each class (50 ROI each
from spring and summer in 2018 and
2019)

50 ROI each class 200 ROI for each class from 2019 to 2020 200 ROI for each class from
2019 to 2020

Peculiarity ROIs from spring and late summer to
reflect different water turbidity

Individual training data of images
with the same acquisition date

Separation of the lake and wet glacier surface
with optical data

Separation of the lake and wet
glacier surface with optical data
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classification was performed on amplitude and texture
information. Therefore, the SAR amplitudes were filtered
using a 3 × 3 median filter. The median filter size was a
trade-off between the reduction of speckle noise and
preserving the supraglacial lake shape (Davies, 2005).
Additionally, a gray level co-occurrence matrix (GLCM)
texture derived with a 3 × 3 kernel filters in the 0°direction
was added to the feature space (Haberäcker, 1987). The use of a
single (or combination) of kernel filter(s) in the other three
directions (45°, 90°, 135°) had no influence on the classification
results.

3.3 Harmonization of SAR-Derived Lake
Area
Due to the side-looking radar and the undulating glacier
surface, the SAR signal could not map the lake area
completely. The SAR-derived lake areas were
underestimated and had to be harmonized in order to
achieve a consistent lake area time series. The correction
was calculated with a linear regression using lake areas
derived from optical and SAR data with the same
acquisition date. The SAR data were individually corrected
depending on their sensor and their pass direction. The linear
regression was calculated for each lake separately. In the case
of persistent lakes, we used measurements from their complete
lifetime rather than just a single year. Pearson’s correlation
coefficients before linear regression of all measurements for
Sentinel-1 and TerraSAR-X were between 0.89 and 0.93,
showing strong evidence of a linear relationship between
the two variables. The residual standard error of all linear
regressions was between 1,397m2 and 1923 m2 and the p-value
was between 0.029 and 0.037 (95% confidence level),
indicating a significant correlation.

3.4 Multi-Sensor Summertime Series
The classification results of all supraglacial lakes were combined
and smoothed to yield a consistent summertime series (de
Jonge and van der Loo, 2013). Detected outliers and data gaps
were filled with interpolated values. During the harmonization

of the lake area, not all SAR-derived areas were corrected due
to the absence of any significant associations between the
predictor and the outcome variables. The outliers were
characterized by their local minimum in the time series and
could be detected with the Hausdorff distance (Hausdorff,
1914). This metric is defined as the maximum distance
between the original curve and a simplified line between
preceding and subsequent measurements. We calculated two
simplified lines where the first line is defined by the two
previous measurements and the second line by the two
following measurements. According to our definition, a
negative distance indicated a local minimum. The outlier
detection was performed on each lake separately. Missing
data were linearly interpolated based on the lake area of the
previous and subsequent acquisition. Using the neighboring
water level change for interpolation was not possible because
each lake had its own characteristic pattern of water level rise
and fall, and in addition, cloud coverage often affected large
parts of the scene and thus also the neighboring lakes. Based on
the summertime series, we analyzed the number of lakes, their
total area, the date of maximum area, distribution and
duration of water coverage, and the seasonal evolution
during the 5 years.

3.5 Seasonal and Trend Components
To examine the seasonal evolution, the time series of the lake area
Yt was analyzed with the multicomponent model following
Weatherhead et al. (1998):

Yt � μ + St + 1
12

ω +Nt, (1)

where μ is the constant term, St is the seasonal component, ω
represents the linear trend per year, and Nt is the residual
variability. The seasonal component was assumed to be
stationary and was modeled as a sinusoid where eight
superimposed harmonics are fitted. The uncertainty of the
linear trend component was derived as follows:

σω � σr
n3/2

�����
1 + φ

1 − φ

√
, (2)

FIGURE 3 | (A) Decision tree of the Supraglacial Lake Index (SGLI). “T” stands for threshold derived with the unimodal threshold determination (Rosin, 2001). (B)
Method of the unimodal threshold determination (Rosin, 2001). The line between maximum and minimum peak and the maximum distance between histogram and line
are displayed in blue.
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with σr being the standard deviation of the de-trended residuals, n
the number of months, and φ the first-order autocorrelation of
the residuals.

3.6 Accuracy Assessment of Supraglacial
Lake Area
For the accuracy assessment, a reference dataset was manually
mapped based on the RGB composite and the NDWI
(McFeeters, 1996) calculated with the green and near-
infrared band of PlanetScope data. The reference datasets
varied in their spatial coverage (Table 4; Supplementary
Figure S1) but were consistently selected from 2019, as this
year had the lowest cloud coverage and the highest number of

coincident pairs between PlanetScope and Sentinel/
TerraSAR-X. In order to reflect the accuracy at different
turbidity levels and thus the seasonal accuracy, we chose
five validation dates for the optical data distributed over
the whole summer. Since SAR sensors distinguish only
between wet and dry and thus are not sensitive to seasonal
turbidity variations, we selected one validation date for each
SAR sensor and each pass direction. The PlanetScope data
used for the accuracy assessment were omitted in the
summertime series. The accuracy was assessed by the
comparison of the classified area with the reference area.
The classification error was referred to the total area and
quantified with the absolute and relative Root Squared Error
(RSE) (Liang et al., 2012):

TABLE 3 | Number of lakes, cumulative area of lakes in km2, percentage of seasonal and permanent lakes at the end of the ablation season, and date and area in km2 at
maximum lake area for each summer season from 2016 to 2020. The number and cumulative area of lakes are divided into two categories: lakes with an area smaller and
larger than 0.01 km2.

Number of lakes Percentage of seasonal Cumulative area (km2) Date of max. area

(<1 ha/ > 1 ha) and permanent lakes (<1 ha/ > 1 ha) (max. area in km2)

2016 553 (485/67) 63%/37% 3.606 (1.725/1.881) 08.06. (2.166 km2)
2017 412 (329/81) 54%/46% 3.563 (1.342/2.221) 28.07. (1.945 km2)
2018 501 (351/148) 62%/38% 5.783 (1.592/4.191) 23.07. (2.587 km2)
2019 498 (365/131) 33%/67% 4.703 (1.700/3.003) 08.07. (2.437 km2)
2020 379 (243/136) 30%/70% 4.606 (1.212/3.939) 12.07. (2.002 km2)

TABLE 4 | Accuracy assessment with absolute and relative Root Squared Error (RSE) for Sentinel-2 (S2), PlanetScope (PS), TerraSAR-X (TSX), and Sentinel-1 (S1) for the
multi-sensor time series (TS) based onmanually digitized reference dataset derived of PlanetScope data from 2019. The lake area referred to the total classified lake area
covered by the reference data set of PlanetScope. The coverage of the reference data set was given as distance along the centerline.

Date Sensor Lake area
(km2)

Coverage (km) RSEabs (km
2) RSErel (%)

July 07, 2019 S2 1.061 15.7–35.5 0.016 1.5
July 22, 2019 S2 1.286 2.4–18.0 0.025 1.9
August 01, 2019 S2 0.610 18.5–35.5 0.011 1.7
August 06, 2019 S2 1.400 2.3–23.7 0.024 1.7
August 21, 2019 S2 0.592 0–11.8 0.013 2.1

July 07, 2019 PS 0.748 15.7–35.5 0.021 2.8
July 22, 2019 PS 0.683 2.4–18.0 0.069 10.0
August 01, 2019 PS 0.417 18.5–35.5 0.020 4.7
August 06, 2019 PS 0.889 2.3–23.7 0.055 6.1
August 21, 2019 PS 0.333 0–11.8 0.048 14.1

July 08, 2019 TSX (A) 0.607 2.3–20.0 0.018 3.0
July 23, 2019 TSX (D) 0.539 14.0–35.6 0.013 2.5
July 13, 2019 S1 (A) 0.651 11.8–35.6 0.020 3.0
July 14, 2019 S1 (D) 0.736 2.3–20.0 0.015 2.1

July 07, 2019 TS 1.157 15.7–35.5 0.038 3.4
July 22, 2019 TS 1.392 2.4–18.0 0.026 2.0
August 01, 2019 TS 0.724 18.5–35.5 0.034 5.1
August 06, 2019 TS 1.558 2.3–23.7 0.029 2.0
August 21, 2019 TS 0.697 0–11.8 0.023 3.4

July 08, 2019 TS 0.943 2.3–20.0 0.028 3.0
July 23, 2019 TS 0.925 14.0–35.6 0.020 2.3
July 13, 2019 TS 0.954 11.8–35.6 0.036 3.9
July 14, 2019 TS 1.322 2.3–20.0 0.042 3.4
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RSEabs �
������������������∑ (areacla − arearef)2

√
, (3)

RSErel � RSEabs∑ areacla
. (4)

4 RESULTS

4.1 Annual Area Fluctuations
Based on the multi-temporal time series, we calculated the total
number and the cumulative area of supraglacial lakes on the main
trunk of Baltoro Glacier. We further derived the date of the
maximum lake area for each summer season from 2016 to 2020
(Table 3). The cumulative lake area denotes the maximum
norm over all lakes during the summer period, whereas the
maximum lake area includes all lake areas at a certain point in
time. The number of lakes varied from year to year without any
clear trend, with a minimum of 379 in 2020 and a maximum of
553 in 2016 (Table 3). The total lake area was lowest in 2017
(3.563 km2) and the highest values in 2018 (5.783 km2). The
number and area of lakes larger than 0.01 km2 have increased
constantly since 2016 with a distinct rise from 2018 onwards.
Thus, larger lakes comprised a larger percentage of the total
lake area through time. The date of the maximum water level
varied between mid-June in 2016 and the end of July in 2017
and 2018. The peak lake area ranged between 1.945 km2 in
2017 and 2.587 km2 in 2018. Table 3 shows the percentage of
ephemeral and permanent lakes at the end of the ablation
season. As a reference, we used the classification results from
September and October. From 2016 to 2019, the proportion of
seasonal lakes was between 54 and 64% and fell to 30 and 33%
in 2019 and 2020.

4.2 Percentage of Lake Area
Figure 4 shows the percentage of lake area compared to total
glacier area for each sector (Figure 1 for the definition of the
sectors). The lowest lake area was consistently detected above
4,280 m a.s.l. Lake areas were consistently lowest in 2016 and

highest in 2018 and 2019. The lowermost sector
(3,440–3,710 m a.s.l.) shows the least variation with time,
whereas the second sector (3,710–3,880 m a.s.l.) shows the
greatest variation, with a total relative area increase of 3.3%
between 2017 and 2018. The third (3,880–4,030 m a.s.l.),
fourth (4,030–4,160 m a.s.l.), and fifth (4,160–4,280 m a.s.l.)
sectors showed an increase of 1.82%, 1.56%, and 2.03%,
respectively. However, patterns across the glacier and
through time were highly non-linear.

4.3 Size and Altitude Distribution
The number of lakes with altitude (Figure 5) followed a
similar distribution to that shown by the percentage of lake
area (Figure 4). The sixth and seventh (higher-elevation) sectors
consistently had the lowest number of lakes (<50). The second,
third, and fourth sectors had the greatest number of lakes, with a
maximum number in the second sector (100–120) and a decrease
towards the fourth sector (60–90). Lake numbers in the fifth sector
varied over the observation period: the highest number was found
in 2016 (117) and the lowest number was found in 2017 (60). The
years 2018–2020 had between 70 and 90 lakes in this sector. The
distribution of the lake area is shown in Figure 5B. The lake area
ranged between 500 m2 to 440, 000 m2. The number of lakes with a
size of 1,000–2,000 m2 ranged between 15 and 57, whereas those
between 2,000 and 3,000 m2 varied from 80 to120; otherwise, as the
lake size increased, the number of lakes decreased, with the
exception of a peak in the size bin of 10,000–20,000 m2. The
overall number of lakes was less in 2016 and 2017, with maxima in
2018 and 2020 across the glacier surface. There were very few lakes
observed in the largest lake classes (20,000–30,000 m2).

The spatial distribution of lakes (Figure 6; Supplementary
Figures S2,S3) was highly variable between each of the
observation periods. Additionally, the mapping of the inundated
area gives an indication of the lake bathymetry, as shown in
Figures 6D,E for the Yermanendu Lake in 2018 and 2020.

4.4 Seasonal Evolution
The seasonal evolution of the maximum area of all supraglacial
lakes (including Yermanendu and Liligo Lakes) for each summer
season from 2016 to 2020 is displayed in Figure 7. The equivalent
disaggregated data for Yermanendu and Liligo Lakes can be found
in Supplementary Figure S4. The lake area evolution can be
divided into three distinct stages: 1) in 2016 and 2017, the total
lake area remains below 2 km2 with a maximum in early June and
end-July, respectively, followed by a consistent decrease from early
and mid-August onward, 2) 2018 and 2019 were characterized by
larger water areas of about 2.5 km2 frommid-June to mid-July and
a steeper decrease from end-July onward, and 3) in 2020, the lake
area peaks at 2.62 km2 in early June with a following decrease until
mid-August and a short increase from mid-August to mid-
September. A consistent characteristic for all 5 years is the rapid
lake expansion at the beginning of the ablation season. In 2018,
2019, and 2020, the lake onset had started in mid-April with a
continuous increase until mid-June. The years 2016 and 2017 were
characterized by a delayed lake onset, starting 1 month later in
mid-May. In 2020, the increase in lake area betweenmid-April and

FIGURE 4 | Percentage of lake area to the surface area of the main
glacier for 2016 to 2020. The glacier was divided into seven sectors from
glacier terminus to Concordia Place. Each sector is specified by its altitude
range (m a.s.l.) and mean slope (%).
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early June is similar in 2018 and 2019, but instead of a constant lake
area until mid-July, it decreased. The peak in the lake area from
early September to mid-September corresponds well with the
dynamics of Yermanendu Lake (Supplementary Figures
S4A,B). Data availability reduced the number of observations
available in 2016. Consequently, the seasonal evolution could
not be sampled with the same high temporal resolution as it
was possible for the other years (Supplementary Figure S5).

4.5 Probability Density
Figure 8 shows the distribution of lake areas through time and
depicts median, interquartile range, and probability density
values. The rise of the median lake area from 1.2 in 2016 to
1.7–1.9 in 2018–2020 is clearly visible. The interquartile ranges of
2016 and 2018 showed a larger variation of lake areas than in

2020. The probability density represents the distribution of lake
areas and differs each year. The lake area of 2016 was
symmetrically distributed, meaning a relatively high variance.
In contrast, the lake areas of 2017 and 2019 were bimodal with a
more pronounced shape in 2017. The probability density of 2019
had a negative skew indicating that most of the lake areas were
larger than the median. In 2020, most of the lake areas were
concentrated around the median value. Overall, the probability
density data reinforce the observation of there being great year-
to-year variability.

4.6 Seasonal and Trend Components
The seasonal variability in the lake area (Figure 9) largely reflects
the pattern depicted in Figure 7, with a yearly maximum being
identified in June/July. It is positively skewed, indicating a quick

FIGURE 5 | (A) Distribution of the number of lakes along the altitude divided into seven sectors. Each sector is specified by its altitude range (m a.s.l.). (B)
Distribution of the number of lakes according to their area in m2.
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FIGURE 7 | Seasonal evolution of the total supraglacial lake area in km2 from April to September for 2016 to 2020.

FIGURE 6 |Distribution of lakes and duration of water coverage for the complete glacier in 2018 (A), for the second sector (3,710–3,880 m a.s.l.) in 2018 (B) and in
2020 (C), and for the Yermanendu Lake (4,160–4,280 m a.s.l.) in 2018 (D) and in 2020 (E). The color represents the duration of water coverage in days. Pink color means
that the pixel was covered with water for 120 days, whereas blue means coverage of 40–50 days. All figures have the same legend shown in (A).
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onset of lake formation in spring and slower drainage in the lake
area towards autumn. The linear trend component was quantified
to 0.16 ± 0.14 km2 per year, which corresponds to an increase in
the supraglacial lake area of 11.12 ± 9.57% per year. Considering
the uncertainty of the linear trend component and the degrees of
freedom defined by the number of months of the times series, the
linear trend is not significant at the 95% level (p-value 0.125)
(Weatherhead et al., 1998; Santer et al., 2000).

4.7 Precipitation and Temperature
Figure 10 represents the precipitation and temperature in the
Standardized Precipitation Index (SPI) and the Standardized

Temperature Index (STI) for the period from 2016 to 2020
(McKee et al., 1993). The advantage of using indices (rather
than raw data) is the better representation of anomalies. We
aggregated both variables over a period of 3 months, as this
reflects seasonal-scale deficit and surpluses (Winkler et al.,
2017; Wendleder et al., 2018). A significant increase for both
indices above 1.0 is observed from 2016 to 2018 and in summer
2019, which represents moderate surpluses. A direct connection
between supraglacial lake evolution and climate could not be
identified, even though the climate data show a tendency to
greater precipitation and higher temperatures in terms of
amplitude and time.

FIGURE 9 |Monthly means of the total lake area (data), model fit, seasonal components, linear trend, and residuals for 2016 to 2020. The seasonal component and
the residuals are plotted in relative units.

FIGURE 8 | Median, interquartile ranges, and probability density of the lake areas of the summertime series for the 5 years presented in a violin plot.
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5 ACCURACY OF SUPRAGLACIAL LAKE
AREAS

Table 4 lists the RSE for all sensors and the multi-temporal time
series. Variability in image coverage impeded a direct comparison of
the classification accuracy from optical imagery of different dates. It is
notable that the reference datasets of July 7, August 6, and August 21
(all 2019) had a higher RSE. These scenes covered the Liligo Lake
(7 km)with an area of 0.06 km2 (July 22, 2019). Frommid-July, Liligo
Lake was fed by the meltwater of the Liligo Glacier and hence, the
turbidity increased. As turbid water and ice had similar spectral
reflectance, the Liligo Lake was consistently misclassified as ice. In the
case of the SAR sensors, the classifications derived from descending
passes, i.e., glacier velocity parallel to the SAR line of sight, provided
better results. However, the mean relative RSE of the multi-temporal
time series was at 1.0% (total area of 9.151 km2 with an absolute RSE
of 0.0945 km2) and showed better accuracy than the mean relative
RSE of Sentinel-2, PlanetScope, TerraSAR-X, and Sentinel-1 with
7.1% (total area of 7.483 km2with an absolute RSE of 0.054 km2). Our
classification errors are comparable with the error of 2.7% in Liang
et al. (2012), 4.5% in Sundal et al. (2009), and 4.0% in Selmes et al.
(2011).

6 DISCUSSION

6.1 Comparison With Existing Methods for
Supraglacial Lake Classifications
Two previous studies have classified the supraglacial lakes on the
Baltoro Glacier, but only for one to three scenes per year.
Wendleder et al. (2018) calculated the NDWI based on the
green and the near-infrared band for the Landsat-8 Operational
Land Imager (OLI) Level-2 data. The threshold for the water
detection was empirically determined to be 0.1.
Misclassifications like ice-covered surfaces of the tributaries
Yermanendu and Biarchedi Glacier and ice sails were manually
removed. They detected a total lake area of 2.28 km2 on June 04,
2016, 1.83 km2 on June 20, 2016, 1.45 km2 on September 08, 2016,
and 2.09 km2 on June 23, 2017. The results of this study differ by
−0.28 km2, +0.16 km2, −0.52 km2, and −0.37 km2, respectively. The
acquisition dates of the time series do not correspond to the
Landsat-8 dates; hence, we linearly interpolated to the lake area
for better comparison. Since the lake dynamics are highly variable,
the linear interpolation could produce differences. Furthermore,
the coarser spatial resolution of Landsat-8 of 30 m could lead to a
higher lake area (Watson et al., 2018). The greatest discrepancy of
+0.52 km2 is due to there being only two Sentinel-2 scenes between
July and September 2016, neither of which are completely cloud-
free, and there being no image pairs of Sentinel-1 and 2 acquired on
the same date, which is needed for the calculation of the linear
regression. Consequently, the SAR area harmonization employed
in the current study could not be applied for all lakes, only for
persistent lakes, and the missing lake areas could not be
interpolated based on Sentinel-2. Hence, the classification
results on September 08, 2016, derived from Sentinel-1 are
lower. On the other hand, the lake dynamics shown in 2016 in
the previous study, with a high lake area in early June followed by a
decrease in lake area, corresponds with our current observation.

The second study mapping supraglacial lakes on Baltoro
Glacier used a U-Net model with EfficientNet backbone based
on PlanetScope data (Qayyum et al., 2020). Qayyum et al. (2020)
classified lake areas of 2.25 km2 on July 14, 2017, 1.96 km2 on July
27, 2017, 1.83 km2 on August 7, 2017, 2.22 km2 on July 14 and 15,
2018, and 2.61 km2 on July 12–16, 2019. For complete coverage of
the glacier surface in 2018 and 2019, they used PlanetScope data
acquired within a period of 2 or 4 days. Since the total lake area
was constant at both times, the classification results do not
contain any seasonal variations. Our results differ by −0.51,
−0.02, −0.18, +0.3, and –0.3 km2. The differences in the
classification results can most likely be accounted for by the
different ground samplings. In particular, the data of the multi-
sensor time series in our study were sampled to 10 m, whereas the
study of Qayyum et al. (2020) was based on the ground sampling
of 3 m.

6.2 Relationship Between Supraglacial Lake
Evolution and Climate
According to SPI and STI, the years 2016–2017 were
influenced by stronger precipitation and higher air

FIGURE 10 | SPI (A) and STI (B) from 2016 to 2020 for the monthly
precipitation and temperature, color-coded for the seasonal distribution:
January, February, and March (JFM) in dark blue, April and May (AM) in light
blue, June to September (JJAS) in orange, and October to December
(OND) in red. The index values range from −2 to +2, whereas −0.99 to +0.99
indicate near normal, +1.0 to +1.4 moderate surpluses, +1.5 to +1.99 very
high surpluses, −1.0 and −1.49 moderate deficits, and −1.5 to −1.99 and
<−2.0 severe deficits.
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temperatures in April and May compared to 2018, 2019, and
2020. As the seasonal lake evolution shows a larger area for
2018, 2019, and 2020, a connection between lake evolution and
climate cannot be identified, even though the climate data
show a tendency to larger precipitation and higher
temperatures in terms of amplitude and time. Satellite
images and classification results revealed that newly created
supraglacial lakes were mostly fed by precipitation, either
directly by rain or delayed via snowmelt in the depressions.
The ice-dammed lakes were additionally filled by snowmelt of
the adjacent slopes and glacier meltwater. The greater the
contribution of glacier meltwater, the more turbid the lake,
as is the case at Liligo Lake around the middle or end of July. It
appears then that the stronger and earlier precipitation in
2018–2020 caused an increase in the lake area. In 2018, the
glacier downstream of Gore and the north exposed slopes near
Liligo Lake and Urdukas were unusually snow-free by mid-
April. This was 2–4 weeks in advance of other years. Hence,
2018 was affected by higher temperatures leading to an
intensified contribution of snow and glacier meltwater at an
altitude of about 4,400 m a.s.l. The period July until September
2020 was cloudier than usual, which could indicate a stronger
Indian summer monsoon. Therefore, the undulating patterns
in Figure 7 can be explained by higher precipitation resulting
in short-term lake fluctuations. This observation is supported
by several other studies that monitored an intensification of
the westerlies, hence leading to an increase of precipitation for
the Karakoram (Cannon et al., 2015; Mölg et al., 2017; de Kok
et al., 2020). On the other hand, the frequency and duration of
heatwaves in Pakistan also increased, mostly affecting the
central and southeast regions and less the Himalayan and
the Karakoram (Khan et al., 2019). However, for March and
April, 2018, high temperatures were recorded as well for
Skardu (World Meteorological Organization, 2021). It seems
that the heat waves affected the Karakoram, which would be
consistent with our observation of an early snowmelt in
spring 2018.

7 OPPORTUNITIES AND LIMITATIONS

7.1 Multi-Temporal and Multi-Sensor Time
Series
The advantage of the presented approach is the usage of a dense
multi-temporal andmulti-sensor summertime series. Each sensor
has advantages and disadvantages, which can be compensated by
integrating them into a combined approach. Sentinel-2 provides a
continuous, radiometrically stable time series but without daily or
sub-daily imaging capability; this can be filled by the high
temporal sampling of PlanetScope data. During periods of
cloud cover, SAR data provide important information and in
view of the amplification of the winter westerlies and the Indian
summer monsoon, its usage will likely become essential. In
contrast, the disadvantages of the SAR data, i.e., lake area
underestimates and missing data from side-looking radar
geometry and undulating glacier surface topographies, can be
compensated using optical data acquired on the same day. Due to

the east-west orientation of the Baltoro Glacier and the broad
glacier valley with a width of 3.5 km, the main glacier was not
influenced by layover or radar shadow effects in the SAR images.
As both ascending and descending acquisitions were acquired
with the same incidence angle of 35°, we cannot determine which
incidence angle would be more suitable. The images acquired in
the descending orbit, i.e., with the SAR line of sight parallel to the
glacier flow, mapped the lake shapes better, which confirms the
accuracy improvement by 1% (Table 3).

7.2 Semi-Automatic Approach for
Supraglacial Lake Detection
Our study shows that optical and SAR data can be used
synergistically to monitor the seasonal evolution of
supraglacial lakes on debris-covered glaciers. The approach
works semi-automatically without the need for manual cloud
removal. Manual interaction is only needed to select the
Sentinel-1 and 2 and TerraSAR-X training data for the
random forest classifier and the adaption of the threshold
for the detection of pixel clusters that were misclassified as
water. As the threshold was mostly adjusted for the
summertime series in 2016 and 2017 with less imagery, this
step will become unnecessary with increased data availability.
The classification of the PlanetScope data was completely
automatic as the selection of the training data was based on
the SGLI results. For the Sentinel-2 data, the MAJA
atmospheric correction was used. The main feature of
MAJA is the use of multi-temporal information contained
in the time series to better estimate aerosol optical thickness
and correct atmospheric effects (Hagolle et al., 2017). This
enables the comparability within the data and potentially
supports the use of our training data for supraglacial lake
detection on other debris-covered glaciers. However, for a
simple supraglacial lake classification based on the classes
“debris,” “ice,” and “lake,” the SGLI, presented for the first
time in this study, could be applied on cloud-free Sentinel-2
and PlanetScope data without any previous knowledge.

8 CONCLUSION

To study the variability of supraglacial lakes on the Baltoro
Glacier, we developed a semi-automatic approach based on
multi-sensor and multi-temporal summertime series from
2016 to 2020 acquired by the optical sensors Sentinel-2 and
PlanetScope and the SAR sensors Sentinel-1 and TerraSAR-X.
Our study showed that the supraglacial lakes filled between
mid-April to mid-June and drained between mid-June to mid-
September. In all cases, lake areas expanded faster than they
contracted. The five-year study period showed that the total
lake area varied from year to year, with the largest total lake
area in 2018 (5.783 km2) and the smallest lake area in 2017
(3.563 km2). Variations in the total number of lakes were not
recognizable, though there was a tendency towards creating
larger lakes (>0.04 km2) over time. The local distribution of the
lakes densified, especially in the glacier section between
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3,710 m and 3,880 m a.s.l. The percentage of lake area (as a
component of overall glacier area) rose by 3.3% between 2017
and 2018. The supraglacial lakes were mostly fed by
precipitation either directly with rainfall or time delayed via
snowmelt in the hummocks. The ice-marginal lakes
(Yermanendu and Liligo) were additionally filled by
snowmelt derived from adjacent slopes and glacier
meltwater. A linear trend of 11.12 ± 9.57% per year was
derived that indicates a possible increase in the lake area.
This is supported by pronounced positive anomalies of the SPI
and STI during the observation period. However, we conclude
that the time series need to be extended in order to identify
significant signals. In addition, the connection to climate
parameters and oscillations demands further process-based
analysis. We anticipate that the rising trend of the supraglacial
lake area will continue due to climate change and the
accompanying rise in air temperature and intensification of
precipitation, which underlines the importance of evaluating
continuous time series and thus the use of semi-automated
processors.
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