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The shale of the Wulalike Formation developed in the northwestern Ordos Basin is
considered to be an effective marine hydrocarbon source rock. One of the key factors
for successful shale gas exploration in the Wufeng–Longmaxi Formation in the Sichuan
Basin is the high content of biogenic silica. However, few people have studied the siliceous
origin of the Wulalike shale. In this study, we used petrographic observation and element
geochemistry to analyze the origin of silica in the Wulalike shale. The results show that the
siliceous minerals are not affected by hydrothermal silica and mainly consist of biogenic
and detrital silica. A large number of siliceous organisms, such as sponge spicules,
radiolarians, and algae, are found under the microscope. It has been demonstrated that
total organic carbon has a positive correlation with biogenic silica and a negative correlation
with detrital silica, and biogenic silica is one of the effective indicators of paleoproductivity.
Therefore, the enrichment of organic matter may be related to paleoproductivity. Through
the calculation of element logging data in well A, it is found that biogenic silica is mainly
distributed in the bottom of the Wulalike Formation, and the content of biogenic silica
decreases, while the content of detrital silica increases upward of the Wulalike Formation.
Biogenic silica mainly exists in the form of microcrystalline quartz, which can form an
interconnected rigid framework to improve the hardness and brittleness of shale.
Meanwhile, biogenic microcrystalline quartz can protect organic pores from mechanical
compaction. Therefore, it may be easier to fracture the shale gas at the bottom of the
Wulalike Formation in well A.
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INTRODUCTION

The study of the origin of silica began in the 20th century. Adachi et al. (1986) proposed the
hydrothermal model of siliceous rocks near the mid-ocean ridge and believed that the siliceous rocks
came from deep-water sediments. At this time, it was emphasized that the siliceous minerals came
from terrigenous clasts and submarine hydrothermal fluids (Hein, 1987; Campbell et al., 1988).
Harrover and Norman (1982) discovered the sedimentary black chert and opals in Devonian in

Edited by:
Feng Yang,

China University of Geosciences
Wuhan, China

Reviewed by:
Ruyue Wang,

SINOPEC Petroleum Exploration and
Production Research Institute, China

Wei Dang,
Xi’an Shiyou University, China

Yang Wang,
China University of Mining and

Technology, China

*Correspondence:
Lei Chen

chenlei19880804@163.com

Specialty section:
This article was submitted to

Economic Geology,
a section of the journal

Frontiers in Earth Science

Received: 23 June 2021
Accepted: 03 August 2021

Published: 15 September 2021

Citation:
Zhang Y, Li R, Huang H, Gao T,

Chen L, Zhao B, Wu X and Khaled A
(2021) The Origin of Silica of Marine

Shale in the Upper Ordovician Wulalike
Formation, Northwestern Ordos Basin,

North China.
Front. Earth Sci. 9:729710.

doi: 10.3389/feart.2021.729710

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7297101

ORIGINAL RESEARCH
published: 15 September 2021
doi: 10.3389/feart.2021.729710

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.729710&domain=pdf&date_stamp=2021-09-15
https://www.frontiersin.org/articles/10.3389/feart.2021.729710/full
https://www.frontiersin.org/articles/10.3389/feart.2021.729710/full
https://www.frontiersin.org/articles/10.3389/feart.2021.729710/full
https://www.frontiersin.org/articles/10.3389/feart.2021.729710/full
http://creativecommons.org/licenses/by/4.0/
mailto:chenlei19880804@163.com
https://doi.org/10.3389/feart.2021.729710
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.729710


Texas, United States. Schieber et al. (2000) studied the quartz in
the late Devonian black shale in the eastern United States and
found that almost all quartz came from plankton and the same
characteristics were found in Barnett shale, Woodford shale, and
Marcellus shale. Shale gas has been explored and developed in
China for nearly 20 years. At present, three major shale gas fields
have been developed in southern China, and the marine shale gas
of Wufeng–Longmaxi Formation in the Sichuan Basin is under
the stage of commercial development and mainly comes from
adsorbed gas (Yang et al., 2017; Chen et al., 2019a; Gou and Xu,
2019; Wang et al., 2019). The current experience shows that one
of the key factors for successful shale exploration is the high
content of biogenic silica and adsorbed gas in this area (Liu et al.,
2011; Guo, 2014; Chen et al., 2019b; Dong et al., 2019; Yang et al.,
2021). At present, the research mainly focuses on the adsorption
capacity of shale reservoir (Chen et al., 2019b; Chen et al., 2020;
Huang et al., 2020a; Wang et al., 2020; Wei et al., 2021), while the
origin and mechanical properties of siliceous materials are rarely
studied.

Modern petrological studies show that the content of brittle
minerals represented by quartz is usually more than 45% in
shale (Loucks and Ruppel, 2007; Liu et al., 2011; Wang et al.,
2021). Quartz is an important factor that affected the
fracturing ability and induced fracture morphology of shale.
The higher the content of quartz, the better the fracturing
ability of shale. Further research shows that there is a high
positive correlation between siliceous minerals and TOC
content in the high-quality shale of the Wufeng–Longmaxi
formation, that is, the higher the content of siliceous minerals,
the higher the content of organic carbon (Yang et al., 2016;
Dong et al., 2019; Khan et al., 2019); at the same time, it is
found that the content of siliceous minerals is positively
correlated with the gas and porosity of shale (Yang et al.,
2016; Dong et al., 2019; Xu et al., 2019), suggesting that
siliceous minerals are of great significance for the
generation and exploration of shale gas in this area.
Therefore, it is very important to clarify the origin of quartz
for reservoir brittleness evaluation, gas bearing evaluation, and
development potential evaluation of shale (Dong and Harris,
2020; Qiu et al., 2020). With the vigorous development of shale
gas in the world, many scholars focus their aims on the origin
of quartz in shale (Milliken et al., 2012; Milliken et al., 2016; Li
et al., 2019; Joseph et al., 2020; Xu et al., 2021). Milliken et al.
(2016) classified quartz in Barnett shale into extrabasin clastic
quartz, intrabasin clastic quartz, and authigenic quartz. Yang
et al. (2018) divided the quartz in Longmaxi Formation
siliceous shale into clastic silica, diagenetic silica, and
biogenic silica and the quartz in argillaceous shale into
clastic silica and diagenetic silica. Qiu et al. (2020) classified
quartz into six types: detrital quartz, recrystallized
radiolarians, siliceous fossil fragments, microcrystalline
quartz, quartz secondary enlargement, and hydrothermal
quartz veins. Although the classification of quartz is
confusing and different scholars have different
understanding, the quartz is mainly divided into three types
in marine shale: 1) terrigenous detrital quartz; 2) hydrothermal
quartz, the quartz formed by hydrothermal fluids erupted from

the seabed (Adachi et al., 1986; Beauchamp and Baud, 2002; He
et al., 2016); and 3) biogenic quartz. It refers to quartz formed
by diagenesis of siliceous paleontology. The organisms
generally refer to diatoms, radiolarians, and sponge spicules
(Boggs, 2006; Day-Stirrat et al., 2010; Joseph et al., 2020; Guan
et al., 2021). At present, it is found that biogenic silica in shale
is not only related to the enrichment of organic matter (Dong
et al., 2019; Khan et al., 2019; Li et al., 2019) but also can
promote the mechanical properties and pore preservation of
shale reservoir (Yang et al., 2018; Dong et al., 2019; Dong and
Harris, 2020; Qiu et al., 2020; Xu et al., 2021), so it is very

FIGURE 1 | (A)Major tectonic plates in China. NCC: North China Craton,
SCC: South China Craton, TC: Tarim Craton, QB: Qaidam Block, and QM:
Qiangtang Massif. (B) Simplified structural map of the Ordos Basin and its
adjacent areas. Modified from Ritts et al. (2004).
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urgent to study the origin of silica for shale gas exploration and
development.

In recent years, the risk exploration of Ordovician in the
western Ordos Basin of the Changqing Oilfield has found natural
gas continuously. Nine wells (Zhong 2, E 102, Na 1, Zhong Ping 1,
Qi Tan 2, Zhong Tan 2, Liang Tan 1, Yin Tan 1, and E 99) have
seen gas anomalies obviously in the thick shale at the bottom of
the Wulalike Formation, eight wells have obtained low gas
production, and Zhong 4 well has obtained 4 × 104 m3/d
industrial gas in the Wulalike Formation, proving that
effective marine hydrocarbon source rock is developed in the
western basin. Previous studies on the Ordovician Wulalike
Formation mainly focused on sedimentary facies, reservoir,
and hydrocarbon generation potential in the western basin
(Wu et al., 2015; Wang et al., 2017; Xiao et al., 2017; Wu
et al., 2020). The Wulalike shale in well A in the northwestern
Ordos Basin contains a high content of quartz. A large number of
siliceous paleontology, such as sponge spicules and radiolarians,
are found under the microscope. Therefore, in this study, we used
petrographic observation and element geochemistry, coupled
with the logging curve to analyze the origin of silica in well A
shale in the Wulalike Formation, so as to establish the basis for
further exploration in the northwestern Ordos Basin.

GEOLOGICAL SETTING

The Ordos Basin is an important oil and gas-bearing basin located
in the west of the North China Plate, with an area of about 25 ×
104 km2 (Lee, 1986) (Figure 1A). The basin is composed of six
secondary structural units: Yimeng Uplift, Jinxi Fold, Yishan Slope,
Tianhuan Sag, the Western Thrust Zone, and Weibei Uplift
(Figure 1B). The Ordos Basin is a multicycle superimposed
basin developed on the Archean–Paleoproterozoic metamorphic
basement. In the early Paleozoic, the basin was adjacent to the
ancient Qinling Sea in the south and the ancient Qilian Sea and the
ancient Helan Sea in the west. It is located in the northeast of the
Qinling–Qilian–Helan trigeminal rift system and belongs to the
southwest margin of the North China platform (Zeng et al., 2021;
Lin et al., 1995; Huang et al., 2020b). The western margin of the
basin is located between theOrdos platform and the ancient Qinling
Sea, with the property of passive continental margin. In the
Ordovician, it was in a relatively depressed tectonic position.
Affected by the Qinling–Qilian–Helan trigeminal rifts, the
western Ordos Basin developed a “regenerated” Helan aulacogen
with inherited activities in the early Ordovician (Wang et al., 2005).
During themiddle and late Ordovician, the basin uplifted as a whole
due to the collision between the Qilian–Qinling Paleoocean Basin
and the North China Plate. In the middle and late Ordovician,
affected by the collision between the Qilian–Qinling Paleoocean
Basin and the North China Plate, the basin uplifted as a whole, the
central and eastern basin were eroded, and the western and
southern margins subsided rapidly. A set of deep-water
sediments were developed, including siliceous shale, silicite, and
a small amount of carbonates (Fu and Zheng, 2001;Wu et al., 2015).
In the late Ordovician, influenced by the northward subduction of
the Qinqi oceanic plate, the main part of the North China platform

including theOrdos Basin and its westernHelan depression uplifted
to the surface, ending its early Paleozoic marine sedimentations (Xu
et al., 2006; Yang et al., 2011).

The Ordovician in the western margin of the basin can be
classified into the Sandaokan Formation, the Zhuozishan

FIGURE 2 | Stratigraphic column and distribution of samples of the
Wulalike Formation in the Ordos Basin.
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Formation, the Kelimoli Formation, theWulalike Formation, and
the Lashizhong Formation from the bottom to top. The
Sandaokan–Zhuozishan Formation is mainly an opened
platform facies, consisting mainly of dolomite and marlite; the
Kelimoli Formation is a platform margin slope facies, with
wormhole limestone, marl intercalated with micrite limestone,
and black shale, and is rich in biological fossils (Wu et al., 2015).
During the deposition of theWulalike Formation, the central and
eastern parts of the basin were uplifted to the surface and the
water in the west was further deepened, which were slope and
basin facies, respectively. The slope facies was dominated by
limestone (Ma et al., 2013). A layer of gray calcareous breccia
developed at the bottom of the basin, and the lithology of the
middle and upper parts was thin black shale rich in graptolite and
other biological fossils. The depositional pattern of the Wulalike
Formation was inherited in the middle Lashizhong stage. The
water depth in the western region deepened again and the basin
facies scope enlarged, while the slope facies scope narrowed. The
basin facies is dominated by carbonaceous shale intercalated with
thin sandstone, and the slope facies is dominated by micritic
limestone and argillaceous limestone (Ma et al., 2013; Hou et al.,
2021). Well A in the study is located in the slope facies. The
lithology of the Wulalike Formation is mainly shale with thickly
layered limestone (Figure 2).

SAMPLES AND METHODS

The samples in this study are from the upper Ordovician
Wulalike Formation shale of well A in the northwestern
Ordos Basin (Figure 2). All the samples are analyzed by TOC

and major elements. The TOC analysis was conducted at the Key
Laboratory of Exploration Technologies for Oil and Gas
Resources, Ministry of Education, Yangtze University, China,
and a major element analysis was carried out at the Key
Laboratory of Western Mineral Resources and Geological
Engineering, Ministry of Education, Chang’an University,
China. Some paleontological fossils were selected for scanning
electron microscope (SEM) and energy dispersive spectrometer
(EDS) analysis. The experiment was carried out in the State Key
Laboratory of continental dynamics, Northwest University,
China.

For the total organic carbon (TOC) analysis, after the samples
were crushed to about 200mesh of powder, 0.1 g was weighed and
pretreated with 10% dilute hydrochloric acid to remove the
inorganic carbon in the sample and then dried at 60–80°C.
The treated samples were washed with distilled water to
remove the residual hydrochloric acid, and then the samples
were fully burned in the oxygen flow at 1,200°C so that all organic
carbon was converted into inorganic carbon dioxide. The volume
of CO2 was measured by a Leco CS-400 carbon sulfur analyzer to
estimate the TOC content, and the analysis uncertainty was less
than 0.1%.

For a major oxide analysis, after crushing and sieving each
sample to 200 mesh, the samples were dried in a 105°C oven for
2 h to make the samples fully dry firstly. 1 g dry sample was
weighed and placed in a ceramic crucible, burned in a muffle
furnace at 1,000 °C, cooled to room temperature, and then
weighed to calculate the loss on ignition (LOI). Weigh 0.5 g
dry sample, mix 5 g anhydrous lithium tetraborate (cosolvent)
and 0.3 g ammonium nitrate (oxidant) evenly, put them together
in a platinum crucible, heat them in a sample melting furnace at

FIGURE 3 | The features of the Wulalike shale. (A) The shale with graptolite fossils, 4,755.2 m. (B) Many pyrites can be seen in the shale, 4,758.4 m. (C) The
horizontal bedding in the shale core, 4,730.5 m. (D) The fractures are developed in shale, 4,735.6 m.
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1,100°C for 12 min, pour out the melt to form a flat glass sheet,
and then carry out the XRF test. In the test, the Shimadzu
sequential scanning Lab Center XRF-1800 X-ray fluorescence
spectrometer was used to monitor the test results, and the relative
error was less than 5%.

Select fresh shale samples with a flat and smooth surface,
mechanically grind the shale surface with a Leica TXP fine
grinding machine, and put the polished sheet into a Leica

RES102 ion thinning instrument for argon ion polishing, that
is, bombard the sample surface with argon ion, of which the
working voltage is 5 kV and the current is about 2.2 mA. After
polishing, the sample surface is treated with a gold plating film.
Then, the micromorphology of shales was observed by a
Quanta250 FEG field emission environmental scanning
electron microscope. The working parameters were set as
follows: voltage at 20kV, working distance at 7.525 mm, and

FIGURE 4 | The features of quartz under the microscope. (A) is a complete radiolarian, basically, 4,758.0 m, plane-polarized light. (B) The radiolarian has been
destroyed and only has its spines, 4,756.5 m, plane-polarized light. (C) The sponge has three spines, 4,755.2 m, plane-polarized light. (D) This sponge species with one
direction is themost abundant in theWulalike Formation, 4,755.0 m, plane-polarized light. (E)Many algae exist in one field of view, most of which are 200 μm in diameter,
4,748.6 m, cross-polarized light. (F) The algae are surrounded by organic matter, 4,747.5 m, plane-polarized light. (G) Fine-grained microcrystalline quartz is in
dark blue, which has an amorphous form, 4,732.0 m, cross-polarized light. (H) The detrital quartz is subangular and has poor sorting property, 4,730.5 m, plane-
polarized light.
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resolution at 12 nm. Using the Quantax 200 XFlash X-ray
spectrometer, the element composition of point scanning, line
scanning, and area scanning are analyzed, and then the mineral

composition in the samples is identified. The detector area is
150 mm2 and the resolution is 200 eV.

RESULTS

Petrographic Characteristics
The lithology of the Wulalike Formation is black medium-
thick–bearing graptolite shale. The graptolites are developed
on the shale horizon with different sizes in veinlets, short
lines, and irregular shapes. The small ones are only 20–30 μm,
and the large ones are several centimeters (Figure 3A). Pyrite can
be seen in many places on the rock horizon (Figure 3B), covering
the rock horizon with the form of stars and thin films, and the size
ranges from 2 mm to 1 cm, which indicates that the environment
was reduced during deposition. The horizontal beddings
distributed along the bedding plane are developed in the shale
(Figure 3C). The bedding is fine and dense and the layer is thin,
which indicates that the hydrodynamic condition is weak during
the sedimentation of the Wulalike Formation. The shale was
deposited in a relatively static and deeper water environment,
with fractures developed in the shale (Figure 3D). The width of
fractures ranges from 0.1 mm to several millimeters, and some
fractures are distributed along the bedding plane, while others are
at a certain angle with the bedding plane. However, it shows that
the content of brittle minerals is high in the shale.

Quartz Types
It is found that the quartz has three forms in the shale under the
microscope: biogenic quartz, microcrystalline quartz, and detrital
quartz. Biogenic quartz mainly exists in the organisms of sponge
spicules, radiolarias, and algae, and the organisms are filled with
cryptocrystalline and microcrystalline quartz. The middle coelom
of radiolaria is rounded and oval, and the lateral needling is
bifurcated. The intact ones are few, and most of them are
destroyed (Figure 4A). Some of them only have the middle
coelom, which is filled with organic matter, and some of them
only have radial needling (Figure 4B). The intact ones are
between 500 and 800 μm. Sponges are in various shapes,
including single shot, double shot, triple shot, and so on
(Figure 4C,D), with a length of 300–800 μm and a diameter
of about 30 μm. Algae are round in shape (Figure 4E), with
particle sizes ranging from 200 to 500 μm, and some of the

TABLE 1 | TOC and major oxide contents (wt%) of the shale samples.

Sample ID Depth(m) TOC SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total

W37 4,726.10 0.91 47.95 0.55 12.08 3.41 0.01 2.36 11.51 0.44 5.48 0.13 15.73 99.65
W39 4,738.65 0.70 48.75 0.52 10.48 4.75 0.02 4.38 11.08 1.97 3.40 0.10 15.00 100.45
W42 4,740.55 1.02 61.57 0.39 9.34 3.28 0.03 2.54 8.26 0.51 2.99 0.41 10.58 99.90
W50 4,746.82 1.03 56.57 0.38 8.89 4.07 0.01 1.84 10.81 1.38 3.06 0.19 12.51 99.71
W54 4,748.84 1.07 64.82 0.43 9.79 3.12 0.01 2.81 5.69 0.81 3.70 0.08 9.57 100.83
W59 4,751.73 1.07 64.43 0.26 6.24 1.91 0.01 1.30 10.67 0.69 2.72 0.10 11.47 99.80
W66 4,754.43 1.30 60.40 0.33 7.02 2.31 < 0.01 1.35 12.09 0.83 3.05 0.06 12.70 100.14
W71 4,757.34 1.16 56.29 0.20 4.86 1.70 0.01 1.75 16.07 0.70 2.29 0.06 16.20 100.13
Avg 1.03 57.60 0.38 8.59 3.07 0.01 2.29 10.77 0.92 3.34 0.14 12.97 100.08
UCC — 66.00 0.64 15.40 5.04 0.10 2.48 3.59 3.27 2.80 0.15 — —

FIGURE 5 | UCC-normalized diagram of major elements of the Wulalike
shale samples.

FIGURE 6 | Diagrams of the siliceous hydrothermal origins of the shale
samples.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7297106

Zhang et al. The Origin of Silica

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


outermost layers are surrounded by organic matter (Figure 4F).
Microcrystalline quartz has no fixed morphology and is mainly
distributed in shale pores as cement, which has a blue-green color
in cross-polarized light (Figure 4G). The content of detrital
quartz is less in the bottom of the Wulalike Formation and
distributed in the shale matrix with a floating form. The
content in the upper part of the Wulalike formation is higher.
Most of the quartz grains are subangular, with a size of about
20–100 μm (Figure 4H).

Organic Matter Abundance
TOC is the most important indicator of organic matter
abundance (Peters, 1986). The TOC content of shale in the
Wulalike Formation is generally low, ranging from 0.70 to
1.30%, with an average of 1.03% (Table 1).

The Geochemistry of Major Elements
The results of major elements are given in Table 1. SiO2 is the
most abundant major element, ranging from 47.95 to 64.82%,
with an average of 57.60%. Al2O3 is the second most abundant
major element with a range of 4.86%–12.08 wt% (averaging
8.63 wt%). The contents of other elements such as TiO2,
TFe2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5 are
relatively low. Compared with the values of the upper

continental crust (UCC) (Mclennan, 2001), most of the major
elements are depleted, such as SiO2, TiO2, Al2O3, TFe2O3, MgO,
and P2O5, with the strongly depleted major elements being MnO
and Na2O, and only CaO is strongly enriched (Table 1; Figure 5).

DISCUSSION

Origin of Silica
Geochemical Analysis of Siliceous Source
Wedepohl (1971), Adachi et al. (1986), and Yamamoto (1987)
proposed the Al–Fe–Mn triangle method to determine whether
the siliceous minerals are from hydrothermal or non-
hydrothermal areas. All samples are located in the non-
hydrothermal area (Figure 6), indicating that there is no
significant hydrothermal source in the study area.

The ratio of some elements is an effective method to determine
the origin of siliceous minerals (Murray, 1994). Generally
speaking, the Al/(Al + Fe + Mn) < 0.35, (Fe + Mn)Ti > 25
(±5), and Fe/Ti > 20 in hydrothermal deposits (Murray, 1994;
Harris et al., 2011; Qiu et al., 2020). The average values of Al/(Al +
Fe + Mn), (Fe + Mn)Ti, and Fe/Ti are 0.68, 0.56, and 9.41,
respectively, which are all far less than that of hydrothermal
deposits (Table 5) and shows that there is no obvious
hydrothermal effect in the Wulalike Formation shale.

Al and Ti are often used to represent terrigenous flux (Saito
et al., 1992; Fu et al., 2015; Zhao et al., 2021). The SiO2 of the
samples has a weak negative correlation with Al2O3 and TiO2

(Figures 7A,B), indicating that terrigenous detrital quartz is not
the main source of SiO2 and there may be other sources of SiO2.
Rowe et al. (2008) fitted the illite Si/Al line according to the
content of silicon and aluminum in the Barnett Shale. In the cross
plot of Si and Al, there is excess silicon above the illite Si/Al line
that represented the biogenic silica (Zhao et al., 2016; Dong et al.,
2019). The deeper depth of samples in the study area falls above
the Si/Al line, indicating that biogenic quartz is dominant, while
the shallower samples W37 and W39 are closed to the Si/Al line
or even located below the Si/Al line, indicating that the two
samples have a relatively higher detrital silica content (Figure 8).
According to the above element geochemical analysis, the
Wulalike Formation shale is not affected by the hydrothermal

FIGURE 7 | (A) Negative correlation between SiO2 and Al2O3 contents. (B) Negative correlation between SiO2 and TiO2 contents.

FIGURE 8 | Correlation between Al and Si contents.
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fluid. The siliceous source is biogenic silica and detrital silica in
the study area. The biogenic silica is the main source at the
bottom of the Wulalike Formation, while the content of detrital
silica increases upward to the Wulalike Formation.

Petrographic Analysis of Siliceous Source
Microscopic observation shows a large number of siliceous
organisms at the bottom of the Wulalike Formation, mainly
radiolarians, sponge spicules, and algae, which are also strong
evidence for biogenic silica. Scanning electron microscopy and
the energy dispersive spectrometer analysis of some
micropaleontology show that sponge spicules are mainly

composed of silicon and oxygen (Figure 9). This further
confirms the existence of biogenic silica in shale. Biogenic
quartz is formed by plankton deposition with siliceous crust.
At first, the silica is deposited as opal A, and then opal A
dissolves to opal CT. Finally, with the time pass, opal CT
transforms into cryptocrystalline and microcrystalline quartz
and becomes the stable quartz in diagenetic facies (Boggs, 2006;
Milliken et al., 2012; Yang et al., 2018). Through thin section
observation, the content of detrital quartz gradually increases
upward of the Wulalike Formation. In summary, petrographic
observation and geochemical methods reveal that the Wulalike
Formation shale is not affected by hydrothermal and the

FIGURE 9 | Scanning electron microscope and energy spectrum analysis of sponges.
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siliceous minerals are mainly biogenic silica and terrigenous
detrital silica.

Quantitative Calculation of Different Origin Silica
Holdaway and Clayton (1982) proposed that excess silica is,
except normal terrigenous, detrital from siliceous minerals and
is calculated applying the following formula: (Sixs � Sitotal-
[Alsample×(Si/Al)PAAS]), where Sitotal and Alsample are the total
contents of Si and Al in the sample, respectively. (Si/Al)PAAS is Si/
Al in PAAS, which is 3.11 (Wedepohl, 1971). The biogenic silica
and detrital silica of the Wulalike Formation are calculated in
Table 2, in which the detrital silica is equal to the total silica
minus the biogenic silica. According to the calculation (Table 2),
the content of biogenic silica is higher than that of detrital silica in
the shale at the bottom of the Wulalike Formation, and the
content of detrital silica is higher than that of biogenic silica,
which gradually changes to upward of the Wulalike Formation.

In this study, all the samples are from the bottom of the
Wulalike Formation. The vertical variation of different genetic
silica contents of the Wulalike Formation is comprehensively
studied from the elements logging data (Si and Al) of well A
provided by the Changqing Oilfield Company. The above
formula was used to calculate the different genetic silica
contents in well A. In the bottom of the Wulalike Formation,
the biogenic silica content is higher than that of the detrital silica
(Figure 10). Upward, the detrital silica gradually increases and
the biogenic silica decreases (Figure 10).

Relationship Between Biogenic Silica and
Organic Matter
Paleoproductivity refers to the total amount of organic matter
fixed per unit area per unit time (Algeo et al., 2011; Pan et al.,
2020). Generally speaking, high organic productivity is one of
the key factors for the formation of hydrocarbon source rocks
(Talbot, 1988; Nelson et al., 1995; Mansour et al., 2020a;
Mansour et al., 2020b; Yang et al., 2016; Zhao et al., 2021),
and a large number of studies have shown that siliceous
plankton in marine source rocks is the main provider of
marine primary productivity (De Wever and Baudin, 1996;
Chou et al., 2012; Xiang et al., 2013; Shaldybin et al., 2017;
Jiang et al., 2019; Zhang et al., 2019), whose content is closely

related to the biological reproduction in surface water, and its
temporal and spatial distribution can be used to reflect the
changing process of paleoproductivity. In recent years, many
studies have shown that radiolarians enriched in marine
hydrocarbon source rocks can gather together and absorb a
lot of symbiotic algae in their bodies by using a large number of
pseudopodia, forming a good symbiotic relationship with
them (Lyle et al., 1988; Erbacher and Thurow, 1997; Xiang
et al., 2013; Khan et al., 2019). Globally, most siliceous
formations are radiolarites, which are excellent hydrocarbon
source rocks. For example, the Devonian Domanik layer in
Russia is composed of radiolarian-rich siliceous mudstone
(Ormistron, 1993; Afanasieva, 2000), and in Northwest
China, large numbers of giant oil fields located in the Tarim
Basin are composed of organic-rich sedimentary strata of
siliceous rocks containing radiolarians (Sun et al., 2003).
Additionally, the lower Cambrian Niutitang Formation
(Zhang et al., 2007) and the upper Permian Dalong
Formation are marine source rocks rich in radiolarian
fossils (Xia et al., 2010).

Therefore, the enrichment of radiolarians can directly
represent the marine primary productivity. Radiolarians are
marine floating unicellular animals with delicate siliceous
skeletons, and the lipid contents can reach as high as 47%
(Anderson, 1983; De Wever et al., 2001; Du et al., 2012). In
silicified zooplankton and phytoplankton, there is a large
amount of organic matter in the skeletons, which can
promote the increase of organic matter in sedimentary
rocks (Lampitt et al., 2009; Dennett et al., 2002; Zhao
et al., 2016). Therefore, the high content of biogenic silica
in shale represents that the marine paleoproductivity was high
during deposition, and the corresponding hydrocarbon
generating organisms were flourishing, which was more
favorable for the enrichment of organic matter. TOC is
positively correlated with the SiO2 of well A in the study
area (Figure 11A). A further study shows that TOC is
positively correlated with biogenic silica and negatively
correlated with detrital silica (Figures 11B,C), showing
that biogenic silica plays a positive role in the enrichment
of organic matter and the enrichment of organic matter may
be related to paleoproductivity. Previous research works
(Yang et al., 2016; Dong et al., 2019; Khan et al., 2019; Xu

TABLE 2 | The derived and geochemical parameters of the shale samples.

Sample ID Depth(m) Biogenic SiO2(%) Detrital SiO2(%) Al/(Al + Fe + Mn) (Fe + Mn)Ti Fe/Ti

W37 4,726.10 5.33 42.62 0.73 0.79 7.23
W39 4,738.65 11.77 36.98 0.62 1.04 10.66
W42 4,740.55 28.62 32.95 0.68 0.54 9.81
W50 4,746.82 25.20 31.37 0.62 0.65 12.50
W54 4,748.84 30.28 34.54 0.70 0.57 8.47
W59 4,751.73 42.41 22.02 0.71 0.21 8.57
W66 4,754.43 35.63 24.77 — — 8.17
W71 4,757.34 39.14 17.15 0.68 0.14 9.92
Avg 27.30 30.30 0.68 0.56 9.41
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et al., 2019) show that the biogenic silica in shale is mainly
developed in the lower Wufeng–Longmaxi Formation in the
Sichuan Basin, and the content of total organic carbon in the
lower part is significantly higher than that in the upper. The
main gas producing reservoir of shale is located in the lower

Wufeng–Longmaxi Formation. According to the results of
siliceous content of different genesis in the whole well A,
biogenic silica is mainly distributed at the bottom of the
Wulalike Formation. In addition, biogenic silica is
positively correlated with TOC, so the TOC content at the

FIGURE 10 | Siliceous mineral origin from the well A in the Wulalike formation (location given in Figure 1B).
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bottom of the Wulalike Formation may be significantly higher
than that at the upper part.

Effect of Quartz on Shale Reservoir Quality
Brittle minerals such as quartz, feldspar, and calcite in the shale
reservoir are the main factors controlling the development of
shale fractures. For the shale in commercial development
conditions, the content of brittle minerals such as quartz is
generally higher than 40%, and the content of clay minerals is
less than 30% (Bowker, 2007; Ross and Bustin, 2009). Quartz is
the main brittle mineral in shale, and its content often determines
the brittleness and fracturing of shale gas reservoirs. The higher
the quartz content, the greater the brittleness and the better the
fracturing. It is found that different types of quartz have different
mechanical properties, and it is almost impossible to produce
brittle behavior for the detrital quartz dispersed in a shale matrix
(Milliken and Olson, 2017; Huang et al., 2020a; Liu et al., 2020),
while biogenic microcrystalline quartz can form an
interconnected rigid framework, which can improve the
hardness and brittleness of shale (Dong et al., 2017; Milliken
and Olson, 2017; Liu et al., 2020). Meanwhile, biogenic
microcrystalline quartz can protect organic matter pores from
mechanical compaction (Schieber, 2011; Fishman et al., 2012;
Gao et al., 2020; Yang et al., 2020). Therefore, it is of great
significance to pay attention to the high content of biogenic silica
in shale for shale gas exploitation. The content of biogenic silica is
high at the bottom of well A (Figure 10), so the shale gas may be
easier to fracture at the bottom of the Wulalike Formation in
well A.

CONCLUSION

1) Geochemical indexes and petrographic observation of well A
in the Ordos Basin show that the source of silica in the
Wulalike shale is mainly biogenic silica and detrital silica,
without being affected by hydrothermal silica. Biogenic silica
is the dissolution and recrystallization of siliceous plankton
during burial and the formation of stable cryptocrystalline or
microcrystalline aggregates after diagenesis. The detrital
quartz is mainly transported to the basin by fluvial processes.

2) TOC in shale is positively correlated with biogenic silica and
negatively correlated with detrital silica. Biogenic silica is an
important indicator of paleoproductivity, indicating that
paleoproductivity is one of the main factors controlling the
organic matter enrichment of the Wulalike Formation shale.

3) Different genetic quartz has different mechanical properties.
Biogenic microcrystalline quartz can form an interconnected
rigid framework to improve the hardness and brittleness of
shale. At the same time, biogenic microcrystalline quartz can
protect organic pores from mechanical compaction. Through
the quantitative calculation of different genetic silica in the
whole well A, it is found that biogenic silica mainly exists in
the bottom of the Wulalike Formation and the detrital silica
content increases gradually upward. The TOC content may be
higher than in the upper part, and the bottom of the Wulalike
shale and is more conducive to fracturing for shale gas
exploration. The next exploration target in the northwest
margin of the Ordos Basin should be concentrated at the
bottom of the Wulalike Formation.

FIGURE 11 | Correlation diagrams of SiO2 and TOC contents. (A) The positive correlation between SiO2 and TOC. (B) The positive correlation between biogenic
SiO2 and TOC. (C) The negative correlation between detrital SiO2 and TOC.
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