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While anthropogenic climate change poses a risk to freshwater resources across the globe
through increases in evapotranspiration and temperature, it is essential to quantify the risks
at local scales in response to projected trends in both freshwater supply and demand. In
this study, we use empirical modeling to estimate the risks of municipal water shortages
across North America by assessing the effects of climate change on streamflow and urban
water demand. In addition, we aim to quantify uncertainties in both supply and demand
predictions. Using streamflow data from both the US and Canada, we first cluster 4,290
streamflow gauges based on hydrograph similarity and geographical location. We develop
a set of multiple linear regression (MLR) models, as a simplified analog to a distributed
hydrological model, with minimum input data requirements. These MLR models are
calibrated to simulate streamflow for the 1993–2012 period using the ERA5 climate
reanalysis data. The models are then used to predict streamflow for the 2080–2099 period
in response to two climate scenarios (RCP4.5 and RCP8.5) from five global climate
models. Another set of MLR models are constructed to project seasonal changes in
municipal water consumption for the clustered domains. Themodels are calibrated against
collected data on urban water use from 47 cities across the study region. For both
streamflow and water use, we quantified uncertainties in our predictions using stochastic
weather generators and Monte Carlo methods. Our study shows the strong predictive
power of the MLR models for simulating both streamflow regimes (Kling-Gupta efficiency
>0.5) and urban water use (correlation coefficient ≈0.7) in most regions. Under the RCP4.5
(RCP8.5) emissions scenario, theWest Coast, the Southwest, and the Deep South (South-
Central US and the Deep South) have the highest risk of municipal water shortages. Across
the whole domain, the risk is the highest in the summer season when demand is high. We
find that the uncertainty in projected changes to the water demand is substantially lower
than the uncertainty in the projected changes to the supply. Regions with the highest risk of
water shortages should begin to investigate mitigation and adaptation strategies.
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INTRODUCTION

Based on current climate projections, global mean temperature is
likely to increase by at least 2°C, relative to the 1850s, by the end of
the century (Forster et al., 2020). This warming will lead to
unprecedented consequences for life on this planet including
increased wildfire risk (Goss et al., 2020), decreased snowpack
(Ashfaq et al., 2013), and decreased freshwater biodiversity (Reid
et al., 2019). While every location on Earth is expected to
experience increases in near-surface air temperature, ranging
from a 1°C increase over oceans to over 5°C in higher latitude
areas, the projected changes in precipitation are less certain and
less spatially uniform (Hoegh-Guldberg et al., 2018). The
projections of hydrologic drought and floods are consequently
uncertain, while at the same time, highly costly in terms of their
impact on property damage, food shortage, loss of jobs, and loss
of lives (Howitt et al., 2015; Achakulwisut et al., 2018; Tellman
et al., 2020). More accurate predictions of these extreme events
can lead to better mitigation and adaptation procedures, such as
green infrastructure, placing restrictions on water consumption,
moving water in above-ground reservoirs to below-ground
aquifers, or investing in technologies that could improve water
use efficiency (Tanaka et al., 2006; Mei et al., 2018; Yang and Liu,
2020).

As anthropogenic climate change progresses and populations
across North America continue to grow, freshwater resources on
the continent may experience more strain. The United States (US)
and Canada use the most water per capita (>1,000 cubic meters
per person per year) compared to other G8 countries (100–900
cubic meters per person per year) (Ritchie and Roser, 2017).
Despite the use of less than 20% of their available water resources
every year, freshwater resources and potential vulnerability to
water shortages are non-uniformly distributed throughout the
continent (Rosegrant and Cai, 2002). Such shortages will act as a
vulnerability multiplier leading to socioeconomic and physical
health deterioration in groups such as migrants, poor families in
urban areas, and farmers (Sugg et al., 2020). The Canadian
Prairies are known to have been vulnerable to historical
hydrologic droughts, although few assessments of drought risk
across Canada have been made to date (MacDonald et al., 2008;
Bonsal et al., 2011). In the US, the regions most severely hit by
recent droughts include the Central US (Basara et al., 2019),
California (Howitt et al., 2015), as well as the relatively wet areas
in the US South (Chen et al., 2012). Further droughts in these
areas as well as more widespread droughts throughout North
America may come as a result of declining summer precipitation
in the latter half of the 21st century, warming Pacific and North
Atlantic Oceans, and escalating climate variability (Rosegrant and
Cai, 2002; MacDonald et al., 2008; Schwalm et al., 2012).
Droughts, however, are not the only climate pattern of
concern. Snow is crucial in the western United States for
sustaining water demand, thus decreasing snowpack as a result
of increasing temperatures threatens water sustainability, though
uncertainties remain large (Mankin et al., 2015).

Risk of freshwater shortage is measured in a variety of ways
(Rosegrant and Cai, 2002; Foti et al., 2012; Dickson and
Dzombak, 2019). For example, Foti et al. (2012) defined

shortage risk as the difference between water supply and
demand, or more specifically, as a probability for crossing the
critical threshold when water demand exceeds supply. Different
types of process-based or mechanistic models (e.g., Chien and
Knouft, 2013; Mahat et al., 2017) and statistical or purely data-
driven models (e.g., Barbarossa et al., 2017; Mendoza et al., 2017;
Brunner et al., 2020) have been used to project changes in water
supply and water demand globally and in North America.
Mechanistic models are efficient tools for prediction of water
supply and demand in regions where a wide range of data on
climatic, landscape, and socioeconomic and demographic
attributes are available. Despite great progress being made on
developing advanced mechanistic models (Chen et al., 2017), the
application of these models in ungauged watersheds, which cover
more than 90% of lands globally and across North America, is
unpractical due to poor data availability required for building
such models (Blöschl et al., 2013). Statistical models, on the other
hand, have become known as simple and fast tools for providing
general insights on the estimation and forecast of water supply
and demand with minimum data requirements. For example,
simple regression techniques have been used to relate physical
and climate characteristics to hydrological signatures such as flow
duration curves and low flow statistics (Jehn et al., 2020). While
statistical models are limited in their interpretation of causality
among variables and rely on assumptions that cannot be
adequately tested, these simple models are widely used to
provide a general picture of ungauged watersheds’ responses to
climate change (Besaw et al., 2010; Razavi and Coulibaly, 2013;
Saadi et al., 2019), and informing water resources planning and
management. Further, regression models can capture implicit
relationships between runoff and explanatory variables for
which there is no theoretical explanation due to the co-
evolution of climate, geology, and topography (Blöschl et al., 2013).

Most assessments of water supply and demand management
focused on local areas across North America and only study
either supply or demand with regression or physically based
models (Balling and Gober, 2007; Breyer and Chang, 2014;
Shamir et al., 2015; Byun et al., 2019). Foti et al. (2012),
however, provided a comprehensive risk assessment of water
shortages for the contiguous US using regression and physically
based models. They projected annual water supply and
consumption in response to changes in temperature and
precipitation from three Global Climate Models (GCMs).
Areas such as Central California, Utah, Arizona, and Central
US were found to be most vulnerable to water shortages. A more
recent assessment of future changes in streamflow regimes across
the US found that the changes are expected to be most
pronounced for currently melt-dominated regimes in the
Rocky Mountains (Brunner et al., 2020). While five GCMs
were used in the study, very little agreement was found among
the GCM projections, pointing to a relatively large uncertainty
caused by the choice of GCMs. In terms of changes to water
consumption across the US, negligible changes were found when
the projections were based solely on population growth, income
growth, and changes in water-use efficiency, i.e., without
accounting for climate change (Rosegrant and Cai, 2002; Foti
et al., 2012). With climate change remaining a factor, however,
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water consumption was projected to substantially increase,
mainly due to expected increases in agricultural and landscape
irrigation in response to rising potential evapotranspiration (Foti
et al., 2012; Brown et al., 2013).

As the population and suburb-centered development continue
to grow in North America, many municipalities in arid and semi-
arid regions are acquiring water rights from agriculture in
anticipation of an uptick in municipal water demand
(MacDonald, 2010; Sabo et al., 2010; Maas et al., 2017). The
percent of water demand used for domestic purposes is set to
increase, thus the transfer of water resources from agricultural to
municipal use represents an additional stressor for rural
sustainability and food security (Rosegrant and Cai, 2002).
Thus, changes in municipal water use in response to climatic
and non-climatic factors are expected to have implications for
regional water consumption as a whole. In the US, residential
water use accounts for ∼60% of municipal water use (Dieter et al.,
2018), with 22–65% of the residential water use coming from
outdoor water use (DeOreo et al., 2016), which is shown to be
highly sensitive to changes in weather and climate (Gober et al.,
2016). This high sensitivity of outdoor water use to climatic
drivers has triggered the use of regression models to predict the
water consumption based on a combination of weather
predictors, such as air temperature, wind speed, precipitation,
and evapotranspiration (Wong et al., 2010; Adamowski et al.,
2012; Bakker et al., 2014; Chang et al., 2014). The models have
revealed a high spatial heterogeneity in the sensitivity of
municipal water consumption to changes in these predictors
(Opalinski et al., 2020). Maximum daily temperature was
found to be the predictor with the most explanatory power
across the region, with stronger predictive power in dry
regions (Opalinski et al., 2020). In the same study, dry regions
were found to have greater seasonality in municipal water use
perhaps due to increased seasonal climate variability, with the
peak use in summer when there is an increased need for irrigation
of the excising green urban landscapes.

Knowledge on the risks of municipal water shortages is
essential to inform science-based strategies and decision-
making tools for water security (Byun et al., 2019; Dilling
et al., 2019; Özerol et al., 2020). Current research has focused
on forecasting the magnitude and seasonality of water supply
(e.g., Chien and Knouft, 2013; Demaria et al., 2016; Mahat
et al., 2017; Byun et al., 2019; Brunner et al., 2020) as well as
magnitude of water demand (e.g., Ruth et al., 2007; DeOreo
et al., 2016; Maas et al., 2017; Opalinski et al., 2020;
Rasifaghihi et al., 2020). However, the magnitude and
seasonality of water shortages, as a combined effect of
water supply and water demand, are still relatively poorly
characterized and forecasted in most parts of the globe
including North America. Additionally, the forecast of
water shortages, similar to other types of forecasts in
environmental science, is prone to a wide range of
uncertainties, which are generally challenging and difficult
to quantify. Such uncertainties are mainly stemmed from
uncertainties in time-varying climatic attributes (Katz, 2002),
uncertainties associated with more static physical attributes
of watersheds such as geology, land cover, and soil (Nilsson

et al., 2007; Addor et al., 2017), and uncertainties
corresponding to future population growth and water use
(Yang et al., 2016; Hart and Halden, 2019; Keilman, 2020).
Furthermore, the more complex the modelling framework is,
often relying on heavily calibrated mechanistic models of
water supply and demand, the more difficult it is to track and
quantify its sources of uncertainties (e.g., Foti et al., 2012).
On the other hand, simple statistical models with low degrees
of freedom present more readily available tools for
quantifying these uncertainties. Characterizing and
quantifying the risks of future seasonal water shortages,
and their associated uncertainties, with the use of simple
statistical models were the main motivations of this study.

This study has two main goals: 1) to investigate the use of
simple statistical models, based on widely available climatic data,
in simulating present and future (end of the 21st century) water
shortages under a changing climate across North America (US
and Canada); and 2) to assess uncertainties in the projections of
water shortages originating from the uncertainties in climate
scenarios from the ensemble of GCMs. To address goal 1),
multivariate regression models for both supply and demand
are developed and calibrated with daily time series of
streamflow from river stations and daily time series of
municipal water consumption from cities across the region.
The models are forced by state-of-the-art climate reanalysis
data representing the present climate and weather attributes
(e.g., temperature, precipitation, windspeed,
evapotranspiration, and rainfall/snowfall characteristics), while
the future climate is represented by two emission scenarios from
the ensemble of five GCMs. To address goal 2), we use stochastic
weather generators as it is one of the recommended methods for
estimating uncertainties in climate change projections (Katz,
2002) and in hydrological forecasting (e.g., Caron et al., 2008;
Breinl, 2016). By combining the projections of water supply and
demand, we aim to provide a spatial pattern of seasonal
municipal water shortage risks, together with estimated
credibility in these risks across the whole region.

DATA

Streamflow Data
Observations of daily streamflow for Canada are collected from
the National Water Data Archive (Water Survey of Canada,
2019), while observations for the US are collected from the
United States Geological Survey (USGS) surface-water data for
the nation website (US Geological Survey, 2019). Only daily time
series that have no missing data from Jan 1, 1993 to Dec 31, 2012
are considered in the analysis, which left 4,290 gauges in total,
with 584 gauges in Canada and 3,706 in the US.

Climate Data
Present Climate
Surface weather data for the historical record is extracted from the
ERA5 climate reanalysis (0.25 × 0.25, hourly) dataset (Copernicus
Climate Change Service Climate Data Store, 2017), for the period
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1993–2012. Hourly time series of total precipitation, wind speed, air
temperature, dewpoint temperature, and incoming solar radiation
are extracted. Dewpoint temperature and air temperature are used to
estimate relative humidity with the August-Roche-Magnus
approximation (Lawrence, 2005). Cubic inverse distance
weighting interpolation is performed to obtain a single time
series of each weather variable at each streamflow station.
Interpolated precipitation totals that are below 1mm are set to
0 mm following (Islam and Cartwright, 2020) and (Tian et al., 2009).
Evapotranspiration is calculated from the Penman-Monteith
equations, as outlined by (Walter et al., 2000) using maximum
and minimum air temperature, maximum and minimum relative
humidity, wind speed, and incoming solar radiation at the surface.
Hourly time series of total precipitation, wind speed, and air
temperature at the surface are also extracted at the grid square
closest to each city with water consumption data.

Future Climate
Future climate scenarios are obtained from five GCMs from
Coupled Model Intercomparison Project phase five [CMIP5,
Table 1, (Taylor et al., 2012)], henceforward abbreviated as:
GFDL-CM3, HadGEM2-ES, INM-CM4, IPSL-CM5A-MR, and
CSIRO-Mk3.6.0. The data is downloaded from the Lawrence
Livermore National Laboratory’s World Climate Research
Programme database powered by the Earth System Grid
Federation (Taylor et al., 2012; Cinquini et al., 2014). The five
models are selected as they have the required variables in the
desired time period and their current or earlier versions have been
shown to have better performance relative to other CMIP5
models in simulating the past climate over North America
(Radić and Clarke, 2011). The following variables are extracted
as daily time series for each GCM: maximum and minimum air
temperature, maximum and minimum relative humidity, wind
speed, incoming solar radiation at surface, and total precipitation.
For the projection period (2080–2099), we retrieved GCM data
for two selected emission scenarios, referred to as Representative
Concentration Pathways (RCPs; Moss et al., 2010): RCP4.5 and
RCP8.5. The different scenarios indicate different amounts of
radiative forcing by 2100, where RCP4.5 (RCP8.5) indicates
4.5 W/m2 (8.5 W/m2). The RCP4.5 emissions scenario is
considered a medium stabilization emissions scenario and
RCP8.5 is considered a high emissions scenario (Van Vuuren
et al., 2011). To obtain the continuous GCM data for 1993–2012
for bias correcting, we use GCMhistorical runs from 1993 to 2005
and their RCP4.5 and RCP8.5 runs from 2006 to 2012.
Evapotranspiration is calculated using GCM data from the
Penman-Monteith equations as done with the reanalysis data.

For evapotranspiration, the bias between the present-climate
GCM and ERA5 is corrected according to the quantile
mismatches within the simulated cumulative distribution
function (CDF) using the empirical quantile matching
algorithm (Xu, 2015). This method has been shown to
outperform other bias correction algorithms when the
distribution of a climate variable is unknown or not gamma
(Teutschbein and Seibert, 2012; Chen et al., 2013). For
precipitation, the bias is corrected using the gamma quantile
mismatch between ERA5 and each GCM, with a precipitation
threshold of 1 mm, following the method in Xu (2015). Several
studies have shown that the gamma quantile matching is one of
the better methods for precipitation bias correction (Chen et al.,
2013; Lafon et al., 2013).

Water Use and Population Data
To our knowledge, there is no database of daily municipal
water use for cities across North America. To collect daily
and monthly time series, we directly contacted
municipalities. Each time series is at least 3 years in length
from the period 1990–2018. We initially collected the data
from 55 cities. The datasets from the cities that have strict
water consumption laws, large population increases during
summer months, or are not continuous or near continuous
(missing data with valid observations for previous and
subsequent entries) were removed. The gaps in the data
are filled with estimates based on linear interpolation,
resulting in a set of daily time series of continuous
municipal water use for 38 cities and monthly time series
of continuous municipal water use for nine cities for a total of
47 cities (Figure 1B). Though the data has high day-to-day
variability which may cause the gap filling to be inaccurate,
the gap filling causes little change in the results due to its
rareness and the data smoothing applied later. Monthly
datasets are converted to daily datasets by using the
monthly value for each day within the month.

For each city, we also downloaded its population estimates
from the US (United States Census Bureau, 2019) or Canadian
(Statistics Canada, 2019a) Census datasets for 1990–2018. Since
the datasets provide yearly population estimates, we used a
piecewise linear interpolation to derive daily population
estimates. County location data is derived from Hauer (2019)
and Ramey (2014) for US counties, and Statistics Canada (2019)
for Canadian census divisions (Canadian county equivalent). A
total of 3,425 counties or county equivalents were used, with 293
coming from Canada and 3,132 from the US.

TABLE 1 | Characteristics of the five GCMs used in this study for future forecasts.

Model name Modeling center Country of origin Spatial resolution
(Lat × Lon)

GFDL-CM3 Geophysical Fluid Dynamics Laboratory United States 2° × 2.5°

HadGEM2-ES Met Office Hadley Centre United Kingdom 1.25° × 1.875°

INM-CM4 Institute for Numerical Mathematics Russia 1.5° × 2°

IPSL-CM5A-MR Institut Pierre-Simon Laplace France 1.2676° × 2.5°

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization Australia 1.8653° × 1.875°
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METHODS

Our overall methodology can be summarized in the following steps:
first, we partition the study region into clusters based on similarity in
the observed seasonal streamflow and proximity. Second, multiple
linear regression (MLR) models, with climate predictors from the
ERA5 reanalysis dataset, are calibrated at each river station in order
to simulate its seasonal streamflow throughout the 1993–2012
period. Each MLR model is then used to predict the seasonal
streamflow regime for 2080–2099 at each station. To do so, the
models are forced by stochastically generated downscaled climate
scenarios from an ensemble of five GCMs. Third, the same climate
data (ERA5) is used to calibrate a set of MLRmodels to simulate the
seasonality inmunicipal water consumption over the present climate
for each of the 47 cities. The locally optimized regression coefficients
from the 47 cities are then statistically upscaled to represent the
coefficients for each county in the US and Canada. Future changes in
seasonal municipal water consumption are then simulated for each
county based on the stochastically generated GCM projections.
Finally, we aggregate the changes in water supply and demand
and assess the risk of water shortages for each region and each
season. Seasons are separated into winter (December, January, and
February—DJF), spring (March, April, and May—MAM), summer
(June, July, and August - JJA), and Fall (September, October, and
November—SON).

Clustering
While it is common to partition a large region into smaller
domains in order to summarize the results of regional

hydrological modelling, there is no consensus on how to
define these subregions through clustering (Sawicz et al.,
2011). The US Water Resources Council, for example,
clustered regions and subregions based on topography, which
is the method that has been adopted in assessments of water
shortages across the US (e.g., Foti et al., 2012; Mahat et al., 2017).
Another common clustering method in hydrological studies is
based on climate classification (e.g., Opalinski et al., 2020), or on a
combined set of climate and streamflow indices (e.g., Sawicz et al.,
2011).

As the objective of our paper is to predict seasonality of water
shortage and its uncertainty, we chose to partition the study
region into clusters on the basis of similarity in streamflow
seasonality or regime curves [similar to Brunner et al. (2020)].
For each stream gauge, we derive the average observed streamflow
regime over the 20-year current period for each station. The
regime curve consists of 366 days in order to account for the
measurements during leap years. For non-leap years, the average
value from Feb 28 and March 1 is used to fill in for Feb 29. The
regime curve of each station is standardized by subtracting it by
its mean and dividing it by its standard deviation such that the
clustering can focus on regime curve shape similarity rather than
on absolute values. We use hierarchical clustering with Ward’s
algorithm (Ward, 1963), and we determine the optimal number
of clusters by trial-and-error in a manner similar to (Knoben
et al., 2018). The resulting clusters are then visually inspected on
the map in order to further manually partition the clusters whose
gauges lie in multiple distinct geographical areas. For example,
streamflow regimes in the Pacific and South Atlantic regions were

FIGURE 1 |Map of localities with (A) streamflow data (4,290 gauges), and (B)water consumption data (47 cities). In (A) each station dot is colored according to the
cluster it belongs to (see Clustering section). In (B) blue and red indicate daily and monthly data, respectively. Some of the city officials asked to keep their cities
anonymous, so this map is meant to keep the city names anonymous while showing the spatial extent of the data.
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initially clustered together due to their similar streamflow regimes
but were subsequently separated due to their distinct geographical
locations. Stations that belong to a streamflow-regime cluster, but
are located far outside the cluster’s perimeter, are removed as
“outliers”. Similar to Ivancic and Shaw (2017), we hypothesize
that these spatially isolated outliers are present due to significant
human impact on the streamflow. Following the steps above, we
partitioned the study region into 14 clusters or sub-regions
(Figure 1A). The 4,290 original gauges are reduced to 3,852
due to the removal of outliers.

Streamflow Model
The MLR models are developed to predict the inter-annual
variability of streamflow for each gauge using local weather.
The MLR models are applied to the averaged streamflow and
averaged climate variables (ERA5) using a 30-day moving
window. In this way, the model is calibrated across the 20-
year present period in order to simulate an average value for
the same 30-day window (e.g., Jan 1 to Jan 30, Jan 2 to Jan 31, etc
. . . ) in each year and for each station. For each region, we validate
the model using a validation set of the last 3 years. To obtain the
streamflow projections at each station, the model is forced with
stochastically generated downscaled climate variables from the
ensemble of five GCMs. A well-known limiting assumption of
most stationary models is that the model developed over the
present climate is assumed valid under future climate conditions
(e.g., Ekström et al., 2015). This assumption can be considered
acceptable for multiple regressionmodels as long as the variability
in present variables (e.g., temperature, precipitation, streamflow)

is within the range of their variability in the future period. While
the constant variance of the response would be difficult to verify
due to the possible non-stationarity and the uncertainty of
hydrological conditions over such timescales, we may assume
each observation is independent as the observations are separated
by a full year such that longer processes including snowmelt and
groundwater flowwill not affect adjacent years. Below, we provide
details on the data smoothing procedure, calibration and
validation of the model, and the simulations of future
streamflow regimes (Figure 2).

Data Smoothing
For each station, we apply the MLR models using a selection of
weather variables from ERA5 as predictors and streamflow data
as the response. Prior to the model application, we apply
smoothing to both predictor and response data in the
following way: 30-day moving average is applied to the whole
daily time series (1993–2012), where the first window spans from
1 Jan to 30 Jan, and the last window spans from 31 Dec to 29 Jan
of the following year.

Calibration and Validation
The MLR models are applied for each of the 366 windows
separately, so that the regression is calculated across the 20
(19) points, where each point represents the average value
within the current window for the given year. The first model
is applied to the first window (1 Jan) across all the years
(1993–2012), the second model is applied to the second
window (2 Jan) across all the years, etc. In this way, we derive

FIGURE 2 | Workflow of methods for making predictions for each streamflow station and each window. Boxes indicate data matrices of streamflow (Q),
precipitation (P), evapotranspiration (E), or snow days (N). Each row of data represents a single year, and each column indicates a different day.
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366 MLR models in total, each one with its own regression
coefficients. The following variables are used as predictors:
average daily precipitation (P units in mm), average daily
evapotranspiration (ET, units in mm) and total number of
days with snowfall (N), where P and ET are derived as the
mean over the 30-day moving window, while N is calculated
as the sum of days with snowfall >1 mm over the same window.
We assume that when evapotranspiration is ≤0, temperature is
below or equal to 0°C; consequently, a wet day when
evapotranspiration is 0 indicates a snow day. For each
window, the modelled streamflow (Qi,j) (m

3/s) is derived from
the MLR model with optimized regression coefficients (least
squares method) as:

Qi,j � a0,i,j + a1,i,jPi,j + a2,i,jETi,j + a3,i,jNi,j + εi,j (1)

where a0,i,j–a3,i,j are the regression coefficients for station i and
window j.

Considering that the MLR models are built on a small sample
of 20 points (20 years of data), we use the first 17 years
(1993–2009) of data as a training set and 3 years (2010–2012)
of data as a test set to test the predictive skill of our methods. We
calibrate the model over this reduced sample and predict the
streamflow regime curve for the 3 years of left-out data. Similar to
Brunner et al. (2020), we then assess the model performance with
the Kling-Gupta Efficiency (KGE) between the observed and
modelled 3-year streamflow regime curves (Gupta et al., 2009).
As the procedure is repeated for each of the streamflow stations,
we summarize the model predictive skill by the first quantile,
median, and third quantile of the KGEs within each region. Kling
has stated that a threshold of 0.5 (0.75) can be used to differentiate
poor versus intermediate (good) simulation results using the
slightly modified KGE metric, thus we utilize these thresholds
to interpret our results (Kling et al., 2012; Thiemig et al., 2013).
KGE may be sensitive to outliers and non-normally distributed
streamflow (Pool et al., 2018), however, the widespread use of the
KGE metric as well as its clear interpretation makes it a strong
performance metric.

Postprocessing of Global Climate Model Data
To facilitate the assessment of uncertainties stemming from the
GCMs, we input the downscaled precipitation and
evapotranspiration time series into a stochastic weather
generator so that 2,000 time series of each variable are
generated (100 for each of the 20 years). Streamflow for
2080–2099 is then simulated by the MLR models using each
of the 2,000 generated time series. For each window, the final
simulation is calculated through Monte-Carlo simulations by
randomly sampling 1,000 observations from the 100 predicted
values from each year to get a large, bootstrapped sample of
possible 20-year long time series; then, the values are averaged
across the 20 years. In this way, we project 1,000 values of the
average seasonal streamflow regime for 2080–2099 for each
station and window. Final results are then compressed by
representing each day with a mean and standard deviation.

The stochastic weather generator used in this study is
developed similarly to the framework illustrated by Wilks and
Wilby (1999). The output is generated separately for the two RCP

scenarios and for each of the 20 years in 2080–2099. The key steps
are summarized as follows: First, for each 30-day window, we have
a 5-GCM x 30-day block of data for both evapotranspiration and
precipitation. For evapotranspiration, we assume a normal
distribution conditioned on the day being wet or dry and derive
its mean and standard deviation from the data points for each day
type. Second, a transition matrix is calculated from the
precipitation data by calculating the four transition probabilities
(wet-wet, wet-dry, dry-wet, dry-dry). Then, a two-state Markov
chain is created, where p < 1 mm is considered a dry day, and a wet
day is assumed otherwise. One hundred 30-day time series of
precipitation are generated using the Markov chain to determine
wet-dry day occurrences, while the magnitude on wet days is
determined by randomly sampling from the precipitation
observations greater than 1 mm. The simulation of precipitation
magnitude is robust, as no distribution needs to be estimated, so
precipitation can be generated non-parametrically. The robust
generation of evapotranspiration can be done parametrically
because a large set of well-behaved daily data is available for
parameter estimation (Semenov et al., 1998; Ababaei, 2014).
Finally, evapotranspiration (ET) is derived by randomly
generating data from either of the two normal distributions
derived earlier dependent on if the Markov chain generated a
wet or a dry day. This process generates 100 30-day time series of
precipitation and evapotranspiration for each year in 2080–2099
for each 30-day window.

Water Use Model
Daily urban water consumption can be separated into three
components that include: long-term (decadal) base water use,
calendrical (weekly) water use, and seasonal water use (Wong
et al., 2010). The seasonal variability in outdoor water use, which
explains a relatively large fraction of variability in municipal
water use (DeOreo et al., 2016), can be successfully simulated as a
function of weather and climate attributes (Gober et al., 2016;
Opalinski et al., 2020). Thus, our working assumption is that the
seasonal component of municipal water use, represented by daily
time series, needs to be decomposed into its long-term, seasonal,
and short-term signal. After the signal decomposition, the model
is developed for the seasonal signal only.

While the models are calibrated for selected cities, the
objective is to model water use in each county. To do so, the
model coefficients are upscaled from city-specific values to values
representing each county. Finally, the model is forced by
stochastically generated climate scenarios from the five GCMs
for both the present and future periods. Below we provide details
on the signal decomposition, model calibration, coefficient
upscaling, and model projections.

Signal Decomposition
To focus on the seasonal signal in the municipal water use for
each city, we remove the calendrical and long-term signals from
the city’s original time series. Though it may slightly contribute to
the violation of observation independence, it is unlikely to distort
our results, and removing the calendrical signal is necessary, thus
we smooth our time series with a 15-day moving median. This
will remove the effects of persistence, holidays, measurement
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errors, and the day-of-the-week. Long-term variability is mainly
driven by population and water efficiency (Wong et al., 2010). To
remove the population effects, the smoothed water-use time
series are divided by the daily population time series, yielding
a daily time series of water efficiency.

Each city’s water efficiency time series is normalized to be
between 0 and 1. A common feature of these time series is their
long-term decline that best resembles an exponential decay signal
(Supplementary Figure S1). It has been shown that municipal
water use per capita in the US has tended to decrease due to
government actions that forced manufactures to make water-
efficiency improvements for the bathroom and household
appliances (Donnelly and Cooley, 2015). These changes were
mainly established in the 1990s, so they can be expected to have
diminishing returns as time goes on (Donnelly and Cooley, 2015).
Empirically, we chose to represent this long-term decline in water
use with an exponential decay function that is fitted to the
normalized annual water-use time series of each city
(Supplementary Figure S1c). Finally, the fitted function,
interpolated from annual to daily values, is subtracted from
the normalized water efficiency time series (Supplementary
Figure S1). The residual daily time series for each city
represents the characteristic seasonal municipal water use per
capita.

Calibration, Validation, and Upscaling
Each city’s remaining time series of daily water consumption per
capita represents the response variable in an MLR model, while a
set of weather variables from ERA5 data are used as predictors.
Prior to training the MLR model, each response variable is
standardized (subtracted by its mean and divided by its
standard deviation) in order to facilitate the inter-comparison
of regression coefficients across cities. After testing different
combinations of predictors, we settled with the following list:
maximum daily temperature (T, units in °C), daily mean wind
speed (U, units in m/s), a binary variable for rain (R, wet/dry day
for rain) and a binary variable for snow (W, wet/dry day for
snow). Rain and snow days are differentiated using a maximum
temperature threshold of 5°C, which is reasonable considering
thresholds for mean temperatures are often between −5°C and 5°C
(Rajagopal and Harpold, 2016). Standardized per-capita water
consumption (C) is modeled with:

Ck � b0,k + b1,kTk + b2,kUk + b3,kRk + b4,kWk (2)

where b0,k-b4,k are the regression coefficients for city k, and R(W)
is the binary variable for rainfall (snowfall) which equals 1 if
rainfall (snowfall) exceeds 1 mm and 0 otherwise. The model is
calibrated for each city, yielding 47 sets of city-specific regression
coefficients (Figure 3).

FIGURE 3 |Map of regression coefficient values from 47 MLR models for municipal water consumption: (A) coefficient that multiplies maximum temperature (b1),
(B) coefficient that multiplies wind speed (b2), (C) coefficient that multiplies the binary variable for rain (b3), and (D) coefficient that multiplies the binary variable for snow
(b4). The model is calibrated over the available observational record (at least 3 years within 1990–2018) for each city, yielding 47 sets of city-specific regression
coefficients.
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Finally, the model coefficients need to be upscaled from their
city-specific values to values representing each county. A study
with a similar modelling approach to ours found that climatic
regression coefficients are correlated in space, with nearby cities
yielding more similar regression coefficients than the cities
further apart (Opalinski et al., 2020). Thus, we assume that by
spatially interpolating the regression coefficients from 47 cities
unevenly distributed over the map to the grid of counties, we can
obtain a first-order approximation for regression coefficients at
each county. We choose to apply smoothed optimal inverse
distance weighting with weights set as 1/(1 + d)p, where d is
the distance from the county’s geographical centre (latitude,
longitude) to the city’s location, and p is the parameter that
needs to be optimized.

We optimized p by maximizing the correlation between
interpolated and observed Cmod using the following procedure:
one out of 47 cities is left out from the sample of known regression
coefficients, and its regression coefficients are instead derived
from the interpolation method with each possible p. This
procedure is iterated until all 47 cities are removed once from
the original sample. The final value of p is the one that yields the
largest mean correlation between interpolated and observed C
across all the cities. The optimization yielded p � 2.1
(Supplementary Figure S2).

Post-processing of Climate Data
Time series of normalized water consumption per capita (C) for
each county for both the present (1993–2012) and future
(2080–2099) periods are simulated by the MLR model forced
by stochastically generated climate data. Similar to the supply
model, data from the five GCMs and two RCP scenarios are used
as inputs to the stochastic weather generator. Present climate data
is patched from the GCM historical runs from 1993 to 2005 and
their RCP4.5 runs from 2006 to 2012. Because changes in the
water use per county are assessed as a difference between
modelled future and modelled present water use, from the
same ensemble of GCMs, no bias-correcting is applied.

The predictors in the model (Equation 2) are stochastically
generated in the following way: precipitation wet/dry days are
derived from a two-state Markov chain where the transition
probabilities are estimated from a 31-day moving window of
GCM precipitation time series. For temperature, using the same
31-day moving window, we assume a normal distribution and
derive its means and standard deviations conditioned on the
presence of precipitation. For wind speed, a Weibull distribution
is chosen following previous studies (e.g., Seguro and Lambert,
2000; Alizadeh et al., 2019), and we also assume that the wind
speed is conditioned on the day being wet or dry. As a result of
this assumption, two sets of two-parameter Weibull distributions
are estimated using maximum likelihood estimation. The
differentiation between snowfall and rainfall is determined by
a maximum temperature threshold of 5°C as was done in the
calibration phase.

One hundred time series of each weather variable is generated
for each year (100 × 20 sets of 365-day time series). Each of the
2,000 generated sets of weather time series are then used to
predict a 365-day time series of C. To obtain the uncertainty

estimate for C for each day, we randomly select 1,000 outcomes
from each of the 100 time series of each year. Like with the water-
supply model, we take the average C across the 20 years, so a total
of 1,000 20-year average time series of normalized water
consumption per capita for each county are simulated. The
final results are presented as the mean ± a standard deviation
of C for each day in the present period, and the mean ± a standard
deviation of C for each day in the future period for both RCP4.5
and RCP8.5.

Risk Scores
Defining vulnerability or risk of water shortages is difficult to do
so precisely while also being implementable (Foti et al., 2012).
Due to this limitation, each previous assessment of water shortage
risk has developed their own risk assessment score (Hurd et al.,
1999; Foti et al., 2012; Roy et al., 2012; Dickson and Dzombak,
2019). For example, Foti et al. (2012) defined vulnerability as the
probability that demand will be less than supply in a region, while
Dickson and Dzombak (2019) defines an overall risk index from
five components of risk including 1) annual proportion of use of
local water supply, 2) summer proportion of use of local water
supply, 3) projected increase in demand, 4) summer proportion
of use of local water demand, and 5) proportion of groundwater
withdrawal to total withdrawal.

Building on previously proposed risk scores, we introduce a
metric as a proxy for the risk imposed by climate change on water
resources for each subregion in the study domain. The metric,
defined as the risk score (RS), combines the projected changes in
water supply for each station with the projected changes in water
demand for each county, and congregates them by sub-region in
the following way:

RS � D + CD + S + SC, (3)

where D is the probability of a water demand increase from 1993-
2012 to 2080–2099, CD is the normalized demand, S is the
probability of a supply decrease from 1993-2012 to 2080–2099,
and SC is one minus the normalized supply. Each river station is
already assigned a sub-region (Figure 1), while each county is
assigned to the sub-region to which the closest river station
belongs. The probability D is calculated by forming a new
normal random variable, X, for each RCP scenario with the
mean determined by the projected demand in 2080–2099
subtracted by the estimated demand in 1993–2012 and
variance set as the sum of the variances of projected demand
and estimated current demand. S is calculated in the same way as
D, but using the projected streamflow in 2080–2099 and the
streamflow regime curve from 1993–2012 to form a random
variable Y. In summary, for day i, region j, county k and
streamflow station l:

Di,j � meank(P(Xi,j,k ≥ 0)) (4)

Si,j � meanl(P(Yi,j,l ≤ 0)) (5)

D and S become a 365-day x 14-region matrix with values
between 0 and 1. To compute CD and SC, the demand and supply
regime curves for 1993–2012 are scaled to be between 0 and 1 by
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subtracting by their minimums and dividing by the difference of
their maximums and minimums. For each subregion, final CD is
calculated as the mean CD across all stations belonging to the
region, while final SC is calculated as the mean SC across all
counties belonging to the region. Thus, each final CD and SC is a
365-day x 14-region matrix with values between 0 and 1. RS is
thus a 365-day x 14-region matrix with values between 0 and 4,
where 0 implies no risk and 4 implies maximum risk of water
shortages.

RESULTS

Regional Clusters
The clustering of streamflow data across the region yielded 14
clusters or subregions (Figure 4). Below we describe the main
characteristics of the average streamflow regime and some general
climatic attributes for each cluster:

1) The first cluster, which we name “the West Coast”, is
characterized by high winter streamflow and minimum

flows in late August. The cluster includes Vancouver
Island, western half of Washington, Oregon, and
California. The climate in these areas is characterized by
high frequency of precipitation events in winter that are
predominately rainfall rather than snowfall. Thus, relative to
other clusters, the streamflow is mainly driven by rainfall.

2) The “Southwest” cluster is comprised of the desert areas of
California and Arizona. Although very little precipitation is
available in these areas, precipitation may occur
periodically in winter months. These rainfall events are
usually of high intensity, potentially causing infiltration-
excess overland flow. Thus, these catchments are rainfall
dominated and have relatively quick responses to
precipitation input.

3) The “Deep South” cluster includes Louisiana, Mississippi,
Alabama, Georgia, Tennessee, and South Carolina. These
states are known to have warm and humid summers with
some precipitation. Winter and spring have the highest
precipitation. The landscape is covered by forests which
implies overland flow is less likely compared to the
Southwest cluster. With such active storage, the streams’

FIGURE 4 | Clusters with their average normalized streamflow regime curve. The clusters are: 1) West Coast, 2) Southwest, 3) Deep South, 4) Mid-Atlantic, 5)
South-Central US, 6) Florida, 7) Hawaii, 8) Rockies, 9) Alaska, 10) Midwest, 11) Northeast, 12) West, 13) Central US, 14) Eastern Canada. The colors of the regime curve
indicate the regime categories where red, black, and blue indicate rain dominated, rain-on-snow dominated, and snowmelt dominated regimes respectively. Vertical
dashed curves in the graphs are placed at the transition of seasons (winter, spring, summer, fall).
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response to precipitation may be slower despite being a rain-
dominated region with a peak in the late winter months and
low flows in late-summer.

4) The “Mid-Atlantic” cluster includes North Carolina,
Kentucky, Virginia, West Virginia, Ohio, Pennsylvania,
Maryland, Delaware, New Jersey, southern New York,
Connecticut, and Southern Ontario. Mostly covered in
forest, this region is known for its hot summers and very
cold winters, where winter temperatures are often at or below
freezing. Precipitation is often high, with precipitation being
fairly evenly distributed throughout the year. This region
may be hydrologically dominated by rain-on-snow events in
winter, with all snowmelting by early spring. The streamflow
regime curve in this region has a peak in early spring and a
low in mid-summer.

5) The “South-Central US” consists of Northeast Texas,
Southeastern Oklahoma, Arkansas, and northern
Louisiana. These areas are covered by grass, shrubs, with
some forested areas further east. Precipitation is usually
highest in the spring in these areas, with little to no
snowfall, leading to highest streamflow in the spring with
a seasonal drought in mid-summer.

6) The “Florida” cluster is largely covered by wetlands in the
southern half and forest in the north. Since Florida is
subtropical and tropical in some areas, precipitation
occurs throughout the year. Summers are slightly wetter
and more humid than are winters. The regime curve in this
region has little variance, with highs in the late summer and
lows in early summer.

7) The “Hawaii” cluster is in the tropics with precipitation and
warm, humid weather throughout the year. The streamflow
regime curve in this region has extremely low variability,
with no clear high or low.

8) The “Rockies” cluster consists of Northern Wyoming, Idaho,
Montana, Eastern Washington, and parts of British Columbia
and the Yukon. This region is extremely cold in winters, often
with extensive snow cover. The streamflow stations are in
snow-dominated catchments, so the hydrographs are
characterized by low streamflow in winter when no
snowmelt is present, followed by peak streamflow in late
spring to early summer as snowmelt intensifies.

9) The “Alaska” cluster, similarly to the Rockies, is a snow-
dominated region; however, in Alaska, the colder climate and
extensive snow cover, as well as glacierized terrain, allows for
the snowmelt and/or glacier runoff to last throughout the
summer; thus, giving hydrographs with a wide peak
throughout the summer.

10) The “Midwest” cluster contains Illinois, Wisconsin, Iowa,
Minnesota, North and South Dakota, as well as Southern
Alberta and Saskatchewan. This region’s land use mainly
consists of agricultural areas and grasslands. This region is
fairly dry; nevertheless, snow cover persists throughout
much of the winter, with melt occurring in the spring
leading to the peak in streamflow.

11) The “Northeast” cluster consists of New York, Vermont,
New Hampshire, Maine, Southern Quebec, New Brunswick,
Nova Scotia, Prince Edward Island, and Southern

Newfoundland. This region is covered by forest and has
very cold winters; hence, snow builds in the winter and then
snowmelt generates peak streamflow in April.

12) The “West” cluster includes parts of British Columbia,
Alberta, Idaho, Montana, Utah, Nevada, California, and
Arizona. The hydrographs in this region peak in spring as
a result of snowmelt.

13) The “Central US” cluster consists of Southern Minnesota,
Iowa, Nebraska, Missouri, Kansas, and Oklahoma. The
hydrographs in this region peak in spring.

14) The “Eastern Canada” cluster includes northern
Newfoundland, Quebec, Ontario, and Manitoba. The
hydrographs in this region peak in spring. Winters are
cold and snow cover is prevalent, so runoff is driven by
spring snowmelt.

According to these characteristics we can group the 14 subregions
into three general regime categories: rainfall dominated streamflow
regime (West Coast, Southwest, Deep South, South-Central US,
Florida, and Hawaii), rain-on-snow dominated regime (Mid-
Atlantic, Midwest, and Central US), and snow dominated regions
(Rockies, Alaska, Northeast, West, and Eastern Canada).

Simulations of Water Supply
Model Performance
The KGE is estimated for all streamflow stations within each region
for the 3-year test set (Table 2). The West Coast (0.82) and Alaska
(0.89) have high median KGEs. Predictions for the Southwest
(0.61), Deep South (0.73), Mid-Atlantic (0.73), Rockies (0.73),
South-Central US (0.65), Hawaii (0.59), Northeast (0.70), West
(0.71), Midwest (0.59), and Eastern Canada (0.52) are also fairly
reliable. On the other hand, our simulations perform poorly in
Central US (0.46) and Florida (0.37).

Projections of Streamflow
An example of modelled future (2080–2099) versus present
(1993–2012) streamflow regime curves are shown in Figure 5
for a streamflow station in California. The streamflow at this
station is expected to substantially increase in late winter and

TABLE 2 | The first quantile, median, and third quantile of KGE values for predicted
water supply regime curves for each region.

Region number Region name Q1 Median Q3

1 West Coast 0.62 0.82 0.89
2 Southwest 0.11 0.61 0.74
3 Deep South 0.57 0.73 0.80
4 Mid-Atlantic 0.62 0.73 0.81
5 South-Central US 0.55 0.65 0.77
6 Florida 0.09 0.37 0.61
7 Hawaii 0.54 0.59 0.68
8 Rockies 0.60 0.73 0.85
9 Alaska 0.82 0.89 0.93
10 Midwest 0.37 0.59 0.71
11 Northeast 0.55 0.70 0.81
12 West 0.51 0.71 0.83
13 Central US 0.18 0.46 0.60
14 Eastern Canada 0.12 0.52 0.75
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early spring, while the streamflow will remain almost unchanged
throughout the rest of the year. The uncertainty interval for both
RCP scenarios is large, especially for the time window with the
largest projected increase in streamflow. We estimate the water-
supply components of the risk score for this station (Equation 3):
on a seasonal scale, the largest CS is in the fall (median CS � 1.00)
and the smallest is in the winter (CS � 0.26), while the likely
decrease in streamflow is projected for the summer (S � 1.00 for
RCP4.5; S � 1.00 for RCP8.5), and the least likely decrease is
projected for the winter (S � 0.27 for RCP4.5; S � 0.27 for
RCP8.5).

Next, we summarize the results of regional streamflow
projections for each season, with more focus on subregions
where the model has higher predictive capabilities (larger
KGE) relative to other subregions: Results for winter
streamflow (DJF; Figure 6) reveal that the likelihood of a
downward change in streamflow is linked to latitude.
Specifically, for low-latitude regions (Hawaii, Southwest,
Florida, Central US), streamflow is projected to decrease for
one or both RCP scenarios. For these regions, the average S is
0.56 (0.68) for RCP4.5 (RCP8.5) scenario, while the average CS is
0.70. Out of these regions, only Central US and Florida have KGE
<0.5 implying a low confidence in the projections. The probability
of a decrease in Hawaii is certain with the interquartile range
(IQR) of 0 for both RCP4.5 and RCP8.5 scenarios. The IQRs for
Southwest, Florida, and Central US are much larger, ranging from
0.35 for Southwest’s RCP8.5 scenario to 0.95 for Florida’s RCP4.5
scenario. Streamflow is projected to increase in Alaska, the
Rockies, the Midwest, the West Coast, and the Northeast.
According the KGE values, however, we have higher
confidence in the projections for the West Coast (KGE �
0.82), Alaska (KGE � 0.89) and less certain for Rockies (KGE
� 0.73), Midwest (KGE � 0.59), and Northeast (KGE � 0.70).

In simulating the streamflow in spring (MAM), under the
RCP4.5 scenario, Hawaii and the West Coast will experience
decreases in streamflow (their average S is 0.76 and there IQRs are
0 and 0.48), whereas the Deep South, East Coast, Southern
Central US, Central US, Northeast, and the Midwest will
experience increases (their average S is 0.13 and their IQRs are
0.19, 0.11, 0.25, 0.17, 0.38, and 0.10 respectively). Like the RCP4.5
scenario, RCP8.5 will lead to decreases in streamflow in Hawaii,
West Coast, Florida, and the Southwest (their average S is 0.75
and their IQRs are 0, 0.59, 0.12, and 0.38 respectively). These
results are particularly of note for Hawaii, the Southwest, and
Florida as these regions experience low present water supply in
the spring relative to other seasons (their average CS is 0.64).

Projections of summer (JJA) streamflow reveal that water
resources will experience strain across most of North America
(Figure 6). According to the RCP4.5 scenario, theWest Coast, the
Southwest, South Central US, Florida, the Deep South, Central
US, and the Midwest will all likely experience decreased water
supply (their average S is 0.80). Following the RCP8.5 scenario, in
addition to the regions affected by the RCP4.5 scenario, Hawaii,
the East Coast, the Northeast, and Eastern Canada will see
decreases in summer streamflow (their average S is 0.81). The
IQRs of decrease probabilities are small for the West Coast (0 for
RCP4.5, 0 for RCP8.5), Southwest (0.18, 0), Florida (0.08, 0), and
Central US (0.18, 0).

For the projections of autumn (SON) streamflow, regardless of
the RCP scenario followed, eastern regions are most likely going
to be affected by decreases in their streamflow, including the Deep
South, the East Coast, Southern Central US, Florida, Midwest,
Northeast, and Central US (their average S is 0.73 and 0.69 for
RCP4.5 and RCP8.5, respectively). The IQRs of decrease
probabilities are small for the Southern Central US (0.05 for
RCP4.5, 0 for RCP8.5) and the Deep South (0.20, 0.10).

FIGURE 5 |Modelled seasonal streamflow (measured in m3/sec) regime curves for 1993–2012 (black), and 2080–2099 according to RCP4.5 (green) and RCP8.5
(red) scenarios for a station in California (34.35, −119.31). The shading indicates the uncertainty (±one standard deviation).
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Simulations of Water Demand
Model Performance
Supplementary Figure S2 shows the mean correlation (0.69)
between predicted and observed daily water efficiency with
optimal inverse distance weighting calculated using leave-one-
out cross validation. All locations have at least 1,000 observations
of daily water use efficiency, so this correlation is significant
(average p-value < 0.01), and the predictions are representative of
the observations.

Projections of Municipal Water Use
An example of modelled future versus present water
consumption per capita is shown in Supplementary Figure
S3 for a county in Alabama. As illustrated in the figure, there is
a pronounced seasonal cycle in the water consumption, with
the highest consumption during the summer months. The
changes in water demand are projected to occur in all
seasons, with the largest increases in summer, and the
lowest in winter. These results are reflected in the water-use
components of the risk score (Equation 3): the largest CD is in
summer (CD � 0.95) and the smallest CD is winter (CD � 0.08).

The likelihood that this county will experience an increase in
demand is also the largest in summer (D � 0.97 for RCP4.5; D �
1.00 for RCP8.5), and the smallest in winter (D � 0.86 for
RCP4.5; D � 0.98 for RCP8.5).

Projections for each subregion and each season reveal that the
changes in water consumption are relatively uniform across
seasons, with the main difference being between winter and
summer water consumption (Figure 7). For all regions, the
current water demand is the largest in summer and lowest in
winter (their average CD is winter is 0.07, and their average CD in
summer is 0.92). In all regions, RCP4.5 will substantially increase
the annual water demand (average D � 0.93 for RCP4.5), while
more increase is expected for RCP8.5 (average D � 0.99 for
RCP8.5). Most of this increase is expected in the summer season
(average summer D � 0.95 for RCP4.5; D � 1.00 for RCP8.5). The
top three subregions with the highest projected increase in
demand in summer given the RCP4.5 and RCP8.5 scenarios
are Hawaii and Florida, and their average summer D is 0.99 and
1.00, respectively. The top three subregions with the highest
projected increase in demand for RCP4.5 (RCP8.5) in winter
are: Hawaii, Southwest, and West Coast (Hawaii, Southwest, and

FIGURE 6 | Boxplots of water-supply components of the risk score (equation 3) for each subregion in winter (A) and summer (B). The left panel for each region
includes: the probability of an increase in streamflow in winter given the RCP4.5 (RCP8.5) emission scenario, and one minus the present (1993–2012) winter freshwater
supply, normalized to be between 0 and 1 (CS). The right panel for each region shows the same components of the risk score, but for summer. The thick black lines of the
boxplots indicate the median value while the box shows the range between the first and third quantiles. The points outside the range of the whiskers can be
considered as outliers. The clusters are: 1)West Coast, 2) Southwest, 3) Deep South, 4) Mid-Atlantic, 5) South-Central US, 6) Florida, 7) Hawaii, 8) Rockies, 9) Alaska, 10)
Midwest, 11) Northeast, 12) West, 13) Central US, 14) Eastern Canada.
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Eastern Canada), and their average winter D � 0.96 (1.00). During
all seasons and in all regions, increases in municipal water
demand are expected, regardless of the RCP scenario followed,
however the increases are more certain under RCP8.5 compared
to RCP4.5. The interquartile range of all regions and seasons
given the RCP4.5 scenario ranges from 0 to 0.1, whereas the IQRs
given RCP8.5 remain at 0.

Risk Assessment
Risk scores (RS) for each region and RCP scenario are quantified
for each season. Because of consistently higher demand in
summer (Figure 7), total risk is consistently highest in the
summer, so only summer risk scores are shown (Figure 8).
According to the RCP4.5 scenario, the region with the highest
risk of freshwater shortage in the summer (highest median RS) is
the Southwest (region 2), followed by the West Coast (region 1)
and the Deep South (region 3). The West Coast and Southwest
both have low uncertainty (IQRs of 0.30 and 0.10), but the Deep
South has high uncertainty (IQR � 0.55) stemming from high
uncertainty of streamflow projections in this region. According to
the RCP8.5 scenario, the regions with the highest risk are:

Southern Central United States (region 5), the Deep South
(region 3), and Northeast (region 11). The IQRs of these risk
scores are low for Southern Central US (0.40) and the Deep
South (0.37).

DISCUSSION

Summary of Results
GCMs generally agree that the entirety of North America will
experience temperature increases throughout this century, while
precipitation will change over time as a function of latitude, where
southern areas will see decreases in precipitation, and northern
areas will experience increases (Roy et al., 2012; Forster et al.,
2020). This will likely lead to decreases in the fraction of
precipitation falling as snow, increases in evapotranspiration,
and changes in available water. But how this change in climate
will alter the supply and demand of freshwater is poorly
understood. Here we aimed at building a better understanding
of these uncertainties while obtaining a general overview of where
and when the risk of supply deficits is greatest.

FIGURE 7 | Boxplots of water-demand components of the risk score for each subregion in winter and summer. (A) for each region includes: 4.5D (8.5D)—the
probability of an increase in water demand in winter given the RCP4.5 (RCP8.5) emission scenario, and CD—the present (1993–2012) freshwater demand, normalized to
be between 0 and 1. (B) shows the same components (4.5D, 8.5D, and CD) but calculated for summer. The thick black lines of the boxplots indicate the median value
while the box shows the range between the first and third quantiles. The points outside the range of the whiskers can be considered as outliers. Names of
subregions are given in Figure 5.
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We focused our paper on two objectives: First, we aimed to
determine the viability of using simple regression models to
capture the variability in streamflow and water consumption
using globally available climate reanalysis data while assessing
the risk of water shortage in multiple regions across North
America. The viability of simple regression models for the use
of modeling streamflow varied by region, as measured by the
validation phase KGE. Florida and Central US had the lowest
median KGEs. The other regions had highly acceptable KGEs,
especially when the regime curves do not change much from
year to year, as is the case in Alaska. Further, the correlation
between simulated and observed water use was high. This
result means that urban water use in a city can robustly be
estimated from population data and climate data in
conjunction with water use data from surrounding cities.
We found that demand is consistently highest in the
summer, thus making water shortage risks consistently
highest in the summer. In summer, the highest risk scores
are in the Southwest (Southern Central US), West Coast (Deep
South), and Deep South (Northeast) given the RCP4.5
(RCP8.5) scenario.

As a second objective, we sought to quantify the uncertainties
in predicting streamflow and water consumption and therefore
water shortage stemming from GCM climate projections. We
found that almost all of the risk score uncertainty is derived from
the uncertainty of streamflow projections from GCM data, while
there is little-to-no uncertainty in demand projections fromGCM
data. This occurs because the supply is driven by precipitation
while demand is driven by maximum temperature, and GCM
projections of temperature have a narrower spread of projections
from the weather generator compared to precipitation.

Comparison With Previous Works
Similar to previous studies that used regression models for
predicting streamflow (e.g., Barbarossa et al., 2017; Mendoza
et al., 2017), we found the MLR models to be reliable in most of
our 14 subregions. However, in some regions (e.g., Florida and
Central US), the model performance was relatively poor. The
poor performance in these regions is not limited to simple
regression models. Brunner et al. (2020), using physically
based models, also found that Central US was the most
difficult region to reliably simulate water supply.

For the US, our projections of streamflow generally agree with
the previous findings that the annual streamflowwill substantially
decrease in South and Western US (Hurd et al., 1999; Foti et al.,
2012; Chien and Knouft, 2013; Mahat et al., 2017). Throughout
the region, summer streamflow was shown to be more susceptible
to decreases (Maurer and Duffy, 2005; Chien and Knouft, 2013)
than streamflow in other seasons. In particular, under the RCP4.5
scenario, we projected that Florida may experience significant
streamflow decreases in the summer, corroborating previous
findings in (Mahat et al., 2017). Furthermore, under the
RCP8.5 scenario, our results also agree with Mahat et al.
(2017) that the Southwest, Southern Central US, and Florida
will experience substantial drops in streamflow. These projections
are relatively consistent across the climate projections
stochastically generated from the five GCMs.

Our projections of water use agree with those is Foti et al.
(2012), showing that climate-driven water use will increase across
the United States, as well as Canada, and uncertainties around
these projections will decrease as temperatures rise further. Since
maximum temperature is the dominant driver of water
consumption (Opalinski et al., 2020), and all CMIP5 models

FIGURE 8 | Box plot of risk scores (RS) derived for the summer for each of the 14 subregions. Green box plot is for the RCP4.5 emissions scenario, and blue is for
the RCP8.5 emissions scenario. The list of regions is as follows: 1)West Coast, 2) Southwest, 3) Deep South, 4) Mid-Atlantic, 5) South-Central US, 6) Florida, 7) Hawaii, 8)
Rockies, 9) Alaska, 10) Midwest, 11) Northeast, 12) West, 13) Central US, and 14) Eastern Canada. The thick black lines of the boxplots indicate the median value while
the box shows the range between the first and third quantiles. The points outside the range of the whiskers can be considered as outliers.
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agree that temperatures are projected to rise across the entire
United States (Mahat et al., 2017), this is in-line with
expectations. The MLR modeling of municipal water demand
showed that most of our city-specific regression coefficients are
highly spatially dependent as previously found in (Opalinski et al.,
2020). The regression coefficient that shows the contribution of
the number of snowy days to water demand is negatively
correlated with latitude, implying that the impacts of snowy
days on water demand is greater in lower latitude areas. For
example, at low latitudes, the snowfall-day coefficient is between
0.6 and 1.4, while in Canada, the coefficient drops to 0.2. The
regression coefficient that shows the contribution of the
maximum temperature is also spatially varying, with the
highest values in western and southern areas (0.08–0.19), and
the lowestin northern and eastern areas (0.03–0.08). In the West
Coast, southwest US, and Florida regions, the coefficient
multiplying the wind speed is normally positive (0–0.15),
while in other places, the coefficient of wind is normally
negative (−0.15–0), implying that warm winds could raise
water demand, while colder winds could decrease demand.
However, the coefficient in Texas is negative, so this
hypothesis should be tested further. Rain-day coefficients seem
to not be spatially dependent. We compared our spatially
distributed coefficient values with those derived in Opalinski
et al. (2020) and found general agreement for the coefficient
multiplying the maximum temperature. In Opalinski et al. (2020),
however, the link with the latitude is not as clear as in our case
which is likely because we extended the assessment to Canadian
cities while their study only provides the results for the
contiguous US. Regarding precipitation, Opalinski et al. (2020)
found that the increase in precipitation in cold regions was
associated with an increase in water consumption. One
interpretation for this finding is that the increased snowfall is
linked to increased water use, which is also consistent with our
results.

To our knowledge, there have been relatively few up-to-date
assessments of water resource vulnerabilities and shortage risks due
to climate change across the entire US or North America. Dickson
and Dzombak (2019) as well as Foti et al. (2012) used physically
based models to project streamflow, while Roy et al. (2012)
calculated available precipitation (precipitation minus
evaporation) instead of streamflow. Previously, urban water-
demand projections have been made based on changes in
population and electricity production (Roy et al., 2012; Dickson
and Dzombak, 2019), or climate regression techniques combined
with the effects of income, population, and efficiency (Foti et al.,
2012). Our study is the first that focused on both the US and
Canada, and the first to combine the use of regression models for
both supply and demand projections.

Our results generally agree with those in the previous studies for
the regions where the previous projections of risks have been
assessed. For example, the probability of water shortage was
calculated across the U.S. by Foti et al. (2012) and probabilities
were highest in the same areas as our study indicated, namely the
southwesternUnited States and the coast of California, though they
showed a high risk for the central US as well. Roy et al. (2012) found
that the southwest and central US as well as Florida will have the

highest risk index in 2050. The latest assessment of risk showed that
central California, and parts of Nevada have the highest risk of
water shortage (Dickson and Dzombak, 2019). Regardless of the
methods, data, or scenario chosen, all of these studies agree that
California and the US Southwest have the most troubling futures,
relative to other parts of North America, when it comes to the
effects of climate change on water resources.

Limitations
Though we used an expansive collection of streamflow data,
continuous, long-term hydrologic data is often limited to large
rivers and our conclusions may not accurately extrapolate to
smaller basins (Kovach et al., 2019). In a similar fashion, the water
use data is mostly limited tomedium-sized cities and the captured
relationships between water use and weather may not extrapolate
to extremely large cities or small towns. Although some
hydrological extremes are included in the 20-year period of
analysis used in this paper (e.g., the 2000–2004 drought in
western North America), the length of time used may be seen
as too modest as the full extent of climate extremes in all areas
may not be present and therefore learnable in our data (Schwalm
et al., 2012). Rather than developing the best possible prediction
model, we aimed at exploring how well a relatively simple model
(MLR) can explain interannual and seasonal variability in water
consumption and streamflow. Likewise, our water shortage
vulnerability framework is relatively narrow in scope. For a
more complete risk assessment, one would have to consider
biological and ecological sensitivity as well as adaptive capacity
(Kovach et al., 2019). Though we utilized stochastic weather
generators to increase the number of cases in our ensemble of
future scenarios, we only included five GCMs as a baseline, so the
results could be sensitive to our choice in GCMs.

Due to the number of models included for projecting
streamflow, the assumptions of linear behavior and constant
variance over the long period of study could not be verified.
The least success in terms of MLR performance among the
streamflow models is found for Central US and Florida. One of
the key reasons for the poor performance is the fact that runoff
could be controlled by non-linear threshold-like belowground
hydrologic processes (Jones et al., 2019). In some catchments,
precipitation can fall and either quickly flood the surface when
the soil is saturated or recharge the groundwater system. Thus,
water from similar sized precipitation events may be
transferred toward the stream immediately or a few months
to several decades later. The “memory” in the hydrological
system, which acts on multiple time scales, is not possible to be
captured by the linear regression model used in our paper. In
deforested, arid, urbanized, or agricultural areas with little
snowfall and little interactions between precipitation and
belowground attributes, streamflow response to
precipitation is relatively fast. In these regions, as well as in
regions with similar year-to-year regimes, our ensemble of
regression models is deemed acceptable to forecast future
water shortage and its uncertainty.

With regards to our projections of water use, unlike previous
studies, we did not consider water use from sectors such as
agriculture or thermoelectric power which admittedly take up
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a large portion of water (Foti et al., 2012; Roy et al., 2012; Dickson
and Dzombak, 2019). Climate successfully explained a large
portion of the variability in our urban water use data, and
climate change will likely explain much of the future changes
in use, however, non-climatic changes can also be substantial
factors. For instance, age of the population, household size, and
other sociodemographic attributes can explain some water use
behavior (March and Saurí, 2010). While the effects of
population, income, and technological efficiency growth have
been shown to negate overall, individual regions or cities may
experience outsized effects of one or another (Rosegrant and Cai,
2002). City or building specific attributes related to water use such
as building type, tree fraction, building age, impervious surface
percentage, and population density can also change over time and
should be seriously considered (Stoker and Rothfeder, 2014;
Chang et al., 2017). General attitudes towards conservation
and lawn upkeep are yet other examples of features that may
change in tandem with water use (Hong and Chang, 2014).
Further, we assumed that spatially interpolating our estimated
regression coefficients from cities with data to the grid of counties
gives a good enough first-order approximation of the effects of
climate on water use in each county. Though the validation
provides some confidence that interpolating the regression
coefficients yielded optimal results for the purpose of our
study, some subregions had little-to-no data (e.g., Hawaii and
the Deep South), and therefore uncertainty in their results
remains unaccounted for.

CONCLUSION

Here we presented a new method for quantifying future risks
of municipal water shortages across North America in
response to climate change. We applied a set of multiple
regression models to project the changes in streamflow
regimes (water-supply) and urban water use regimes
(water-demand) in response to climate scenarios
stochastically generated from an ensemble of five GCMs,
for the RCP4.5 and RCP8.5 emission scenarios. The
models were calibrated over the present period
(1993–2012) and then used for projections over the
2080–2099 period. The results were analyzed for each of
14 identified clusters or subregions across the original
domain (the US and Canada).

Results show that risk scores are considerably higher in the
summer compared to the rest of the year, since urban water
demand is high regardless of the location chosen. The
resulting risk scores for water shortages by the end of the
21st century under the RCP4.5 emissions scenario, indicate a
high risk for the West Coast, the Deep South, and the
Southwestern US. Under the RCP8.5 scenario, the regions
with the highest risk are Southern Central US, the Deep South,
and Northeast, while the regions with the lowest risk are
Alaska, Rockies, and Hawaii. The high risk scores are due
to high and increasing demand concurrently happening with
low and decreasing supply. Almost all uncertainty in the risk
scores is rooted in the uncertainty of streamflow projections

from GCM data, while there is little-to-no uncertainty in
water-demand projections from GCM data. Overall, the
predictive power of our streamflow model is shown to be
sufficient in most subregions, while for Florida and Central
US, the model yielded low predictive power. Our study reveals
that simple statistical models can produce projections of water
shortages that agree with those derived from more complex
methods used in previous studies. Nevertheless, more work is
needed to identify and implement mitigation strategies to
prevent water resource shortages. In particular, the regions
that we identified as those with high risk scores, should be
examined in more detail so that their water resources can be
analyzed at the community level. Future research should also
aim to employ more complex methods, especially in those
regions shown with our simple method to have high risk and
relatively large uncertainty in predicted water shortages. To
capture the long-term ‘memory’ and non-linear threshold-like
behavior of hydrologic systems, due to snowmelt
characteristics or differing geological water partitioning
systems, more complex and computationally expensive
methods are needed, such as Long-Short-Term Memory
models (e.g., Shen, 2018), as well as diverse climatic and
physical data.
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