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We propose a deep-learning-based illumination analysis and efficient local imaging
method. Based on the wavefield forward modeling, seismic illumination can intuitively
express the energy propagation of direct waves, reflected waves, and transmitted waves,
while it requires high calculation costs. We use a series of convolution operations in deep
learning to establish the nonlinear relationship between the model and the illuminations to
realize single-shot illumination result of the model. Stacking the single shot illumination
results obtained by the network prediction can further help determine the target area. For
the target area, we use a deep learning method to obtain the low illumination area of the
geological model. Each shot has contribution to the low illuminated area; single shot is
selected based on the contribution of the shot being greater than the average illuminance,
and the low illumination area is imaged by reverse time migration on the selected shot
gather. The trained convolutional neural network can help us quickly obtain the single shot
illumination result of the model, which is convenient to analyze the energy distribution of
various areas of geological model, and do further imaging for target areas. Using part of the
shot gathers to image a local area can recover the complex geological structure of the area
and improve the efficiency of reverse time migration especially for 3D problems. This
method has universal applicability and is suitable for local imaging of various complex
models such as subsalt areas and deep regions.
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1 INTRODUCTION

Seismic imaging is to return the reflected wave or the diffracted wave to the underground location
where it is generated. It mainly includes two parts: determining the spatial position of the reflection
or diffraction point, and reproducing its waveform and amplitude characteristics. As the main step of
seismic imaging, seismic migration is the process of moving the data signal from the receiver point to
the underground position. In the 1960s, without considering the waveform characteristics of the
reflected wave, seismic migration relied on manual operation to draw the spatial position of the
reflection point. Claerbout (1971) proposed the wave equation migration technique. They used the
finite difference method to solve the one-way wave equation, and reconstructed the wavefield
propagating in the subsurface through observed data recorded by the geophone on the surface. The
wavefield was extracted from the subsurface reflection interfaces to construct the migration profile.
In the late 1970s, Stolt (1978) solved the wave equation in the frequency-wavenumber domain and
extrapolated the seismic wavefield. The algorithm was called F-K domain migration. It had the
characteristics of simple calculation and high efficiency, and had been quickly promoted in industry.
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The reverse time migration method was developed by solving the
full wave equation for wavefield propagation (Baysal et al.,
1983; McMechan, 1983). Chang et al. (1990) extended the
reverse time migration method to the three-dimensional
situation, and came up with the challenge of improving the
accuracy and efficiency for 3D problems. Moreover, Wu et al.
(1996) used high-order finite difference operators to achieve
reverse time migration in three dimensions, and compared the
features of high-order and low-order schemes. To compensate
for poorly imaged areas, Chen and Jia (2014) proposed a
staining algorithm for seismic modeling and imaging. This
method performs dye marking on the target area and defines
the staining wavefield. By imaging the target area with the
staining wavefield, more accurate geology structures in the
target area can be obtained. The staining algorithm based on
reverse time migration establishes the connection between the
real geological structure and its related wavefield and reflection
data. Apart from reverse time migration, ray-based migration
(Gray, 1986; Hill, 1990; Albertin et al., 2002) and one-way
wave-equation-based migration (Ristow and Ruhl, 1994;
Mulder and Plessix, 2004) are also commonly used in
current practice.

Because of limited acquisition apertures, complex overburden
structures, and large dipping angles, seismic migration often
generates a distorted image of actual subsurface structures.
(Lecomte, 1998) proposed the method of calculating the
number of ground scattered wave coverage using ray tracing.
The ray tracing-based illumination analysis provided directional
illumination information, and the calculation speed was fast. The
method only allowed for the seismic wave kinematic
characteristics, and the calculation results are reliable when the
medium is not seriously heterogeneous. In order to avoid the
shortcomings of the ray-tracing based algorithm, wave theory is
introduced into illumination analysis and has been successively
applied to study illumination conditions under complex geology
(Wu et al, 1996; Xie et al., 2003; Chen et al., 2007). Furthermore,
Yang et al. (2008) put forward the idea of optimizing the design
and acquisition system parameters by means of illumination
analysis. Seismic illumination analysis can optimize the
observation system so that the energy in the subsurface
medium is evenly distributed (Xie et al., 2013). Moreover, Sun
et al. (2018) proposed the multiple-wave-based illumination
analysis method which is more powerful in evaluating and
optimizing the observation system when dealing with complex
geological models, and can make preliminary predictions on the
imaging quality.

Machine learning (ML) offers algorithms designed to learn the
features and relationships hidden in large datasets (Jia and Ma,
2017). As a branch of ML, deep learning has been widely applied
to seismic model building, e.g., a prior models building from
seismic images for full waveform inversion (Vigh et al., 2016),
building detection framework based on deep learning model (Liu
et al., 2018) and seismic tomography directly from shot gathers
(Mauricio et al., 2018). In this paper, we first use deep learning
method to establish the nonlinear relationship between the model
and the illuminations, after training, it can help us got single-shot
illumination result when inputting background velocity with shot

information. Then, illumination results obtained by the network
prediction can help us select the target area in which low
illumination occurs densely. We further determine the low
illumination area in target area of the geological model and
select partial shot sets to achieve high-resolution and high-
efficiency imaging in low illumination areas.

2 ALGORITHM

2.1 Illumination theory
The two-dimensional constant density time domain acoustic
wave equation has the form of:

FIGURE 1 | Randomly generated velocity model.

FIGURE 2 | Training dataset. (A) is the velocity model with shot
information and (B) is the corresponding illumination result calculated by
Eq. 2.2.
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1

v(x, z)2
z2u(x, z, t)

zt2
− ∇2u(x, z, t) � s(t) (2.1)

where v(x, z) is the seismic wave velocity, u(x, z, t) refers to the
wavefield, and s(t) is the source.

The illumination intensity at point (x, z) for a shot is defined as
(Chen et al.,2013):

I(i)s (x, z) � ∑
t

u(i)(x, z, t). u(i) (x, z, t), (2.2)

where I(i)s is the source illumination intensity for the i-th shot.
The source illuminance for N shots can be regarded as the sum

of the illuminance for singleshot:

Is(x, z) � ∑N
i�1

I(i)s (x, z). (2.3)

By obtaining the one-way (i.e., source-way) illumination
intensity of single shot or multiple shots, we can investigate the
distribution characteristics of the seismic wave energy
propagating in the subsurface region. It provides a reference
for redesigning the excitation position of the shot and the
receiving range of the geophone. Although the distribution of
subsurface energy can be seen through the one-way
illumination diagram, it only indicates that the source
energy can reach the specified subsurface location. Since not
all these energy can be received by the surface geophone, it is
necessary to consider factors such as the correspondence
between excitation and detection, and the distribution of
geophones on the surface.

As mentioned above, for a specified subsurface scattering
point (x, z), the energy intensity of the i-th shot is Is(x, z). We
assume the energy received by the surface geophone for this point
is I ’r(xr , 0) where xr is the receiver location. According to the
principle of wave reciprocity, the energy of the scattering
point to the detection point can be converted into the energy
Ir(x, z) received at (x, z) with the excitation point of (xr , 0).

We define the two-way illumination intensity of each source
for a space point (x, z) as:

Ii(x, z) �
��������������
I(i)s (x, z)I(i)r (x, z)

√
. (2.4)

The shots are independent of one another, and the same for
geophones. Therefore, the two-way illumination intensity of M
pairs of source and receiver can be regarded as the sum of each
source-receiver pair, namely

I(x, z) � ∑M
i�1

Ii(x, z). (2.5)

2.2 Illumination analysis based on deep
learning
For demonstration of combining deep learning and illumination
analysis, we employ a simple method (Equations 2.2-2.5) to
calculate the illumination, which costs little extra computational
time in migration. When the geological model is large and
complicated, it is necessary to adopt high-resolution illumination
analysis methods, e.g., the local directional approaches (Mao et al.,
2010; Yan & Xie, 2016), which require a lot of calculation time. The
deep learning method can build the nonlinear mapping between the
model and its corresponding single shot illumination result, and
therefore efficient illumination analysis can be realized.

FIGURE 3 | Constructed UNet network with 6 downsampling layers.

FIGURE 4 | Curve of loss function during training (black is training
dataset; red is validation dataset).
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2.2.1 Building dataset
Since our illumination analysis is for geological models, we need
to build a series of velocity models. In order to make the model
represent as many complex subsurface features as possible, we
randomly include flat layers, inclined formations, folds, faults,
and high-velocity anomalies in the model. Figure 1 shows an
example model generated by this means.

The desired output of the neural network is the single-shot source
illuminance. The position information of the shot is crucial to the
source illuminance. In order to include the shot information in the
input of the network, we add a Gaussian function of point source at
the shot position. For the shot position (x0, y0), a two-dimensional
Gaussian function is defined by

f (x, y) � 255pe
−((x−x0)2

2c12
+(y−y0)2

2c2
2
)
, (2.6)

where c1 and c2 are two variables in the x and y
directions empirically determined by the radius of source
illuminance.

In this way, we have the input of the neural network and
calculate its corresponding output, with an example shown in
Figure 2. From Figure 2A we see that the point source Gaussian

function simulates the propagation mode of the seismic source
very well. In the single-shot illumination result shown in
Figure 2B, the energy near the sharp edge and below the
high-velocity body is relatively weak. In this research, we built
a total of 1,000 velocity models and got 25,000 single shot
illumination results; therefore, the number of the training
dataset including input and output is 25,000*2. The data set

FIGURE 5 | (A) is SEG salt velocity model. (B) is the velocity with shot position information and (C) is the Network prediction of single shot illumination result. (D) is
the stack of multi-shot one-way illumination results.

FIGURE 6 | The location of target area which is artificially selected
according to the illumination result.
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needs to be normalized before being applied to the network
model. After data normalization, the process of searching for the
best parameters of the network model will become smoother, and
the normalization effectively prevents the local value from being
too large, which will be easier to correctly converge to the optimal
solution.

2.2.2 Network Construction
The UNet network takes the feature information of different scales
into account and combines them with each other, so that more
features, especially some detailed features are better preserved
(Ronneberger et al., 2015). As the illumination is closely related
to the subsurface structure, the UNet network was chosen to retain
more background geological features. Based on the traditional
UNet network, we constructed a network architecture with 6
downsampling layers and upsampling layers. The stride of the
pooling layer is 2, and the stride of the convolutional layer is 1. The

convolution kernels of the entire network are all the same size as
3x3. The UNet network is show in Figure 3. The final single shot
illumination result is obtained through the input of the model with
the shot position information at the leftmost.

2.2.3 Training of UNet
In training process, we set the batchsize as 32, and the learning
rate lr�0.001 which decreases with the number of training epoch.
The data in the constructed dataset is divided into the training
dataset and the validation dataset at a ratio of 17:3. The mean
square error function is selected as the loss function. The loss
function of training dataset is shown in black line of Figure 4.
According to the curve trend in Figure 4, the network matches
the constructed dataset well, and the parameter selection in
training is relatively correct. The abscissa of the graph is the
number of training. With the training number increases, the loss
value of the validation dataset in red of Figure 4 initially decreases
quickly, mainly caused by the mean square error function, and
then slowly decreases. For the test dataset, after epoch reaches 30,
the value of the loss function tends to be stable.

3 RESULT

We perform trial calculations on the SEG salt dome model with
the trained network. The resampled sources start with the
location of 1050 m on the surface, and the shot interval is 50
m. The shot is on the right end of the spread. The spread length is
1000 m, and the receiver spacing is 10 m. As shown in Figure 5A,
the SEG salt dome model contains a large high-velocity anomaly.
Underneath the anomaly, there are complex structures such as
folds and faults. It is difficult for the traditional reverse time
migration method to obtain a clear geological image globally.

The one-way illumination of the seismic source is shown in
Figure 5. Figure 5B is the input of the network, and Figure 5C is the
single shot illumination result predicted by the network. The average
time of calculating a single illumination result by using the regular
theory and the deep learning method is 10s and 0.4s, respectively.
From Figure 5C, most of the energy propagated from the seismic

FIGURE 7 | Determination of the low illumination area. (A) The
illumination results as network input. (B) The picked low illumination area as
network output.

FIGURE 8 | Constructed UNet network with 3 downsampling layers.
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source is blocked by the high-velocity salt dome. There is a low-
energy area below the salt dome. The source has better
illumination results above the salt dome. Therefore, it can be

preliminarily predicted that the artillery source has strong
illumination energy above the salt dome and near the seismic
source, and the imaging results also have relatively high
resolution in these areas.

Single-shot illumination result can hardly show the overall
energy distribution, so we stack all the shots to get full shots
illumination in Figure 5D. The overlying stratum above the high-
velocity salt dome has strong illumination, and the energy
distribution is relatively uniform in the lower left and lower
right of the model. The illumination is significantly weak below
the high-velocity salt dome. The size of the low illumination area
decreases with the distance from the salt dome, and the
existence of the salt dome has a key impact on the
illumination of the structure below it. According to these
predicted illumination results, we believe that the imaging
results below the salt dome will have relatively poor quality
and low resolution. Without considering whether the geophone
can receive the wavefield propagated from the seismic source,
the one-way illumination of the seismic source energy does not
fit the complete situation of data acquisition well. It is necessary
to allow for the receiver impact on the illumination analysis by
using Eq. 2.4.

FIGURE 9 | Curves of loss function during training (black—training
dataset; red—validation dataset).

FIGURE 10 | The location of low illumination area predicted by the network under the guidance of one-way and two-way illumination. (A) is the target area and (B) is
the weak illumination area of one-way illumination. (C) is the target area and (D) is the weak illumination area of two-way illumination.
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3.1 Determining low illumination area from
the target area
According to the one-way illumination result of Figure 5d, we
can see the distribution of the low illumination area is relatively
wide below the salt body. To be more specified, we manually
select an area in Figure 5D as the target area. For example, the
box position in Figure 6 is defined as the research area. This area
contains fault structures, and it is a challenge for migration to
obtain a clear image of this region.

In order to further extract the specific location of the low
illuminated area in the target area, deep learning can be used to
identify the low illuminated area. The dataset used for this model is
shown in Figure 7A,B. The upper panel shows the energy
illumination of the target area, and the lower one illustrates the
marked low illumination area. The marked low illumination area is
selected based on the relative average strength in the target area. The
total number of training datasets is 1,000*2.

In order to fast identify the contour of the low illuminated area
in the local area of the picture, a UNet network with three layers
of downsampling and three layers of upsampling is constructed.
The stride of the pooling layer is 2, and the stride of the
convolutional layer is 1. The convolution kernels of the entire
network are all the same size as 3*3. The UNet network is show

in Figure 8. Considering that the network only needs to further
filter the pixel values in the selected target area, it is similar to
the recognition of medical images. The input of the network is
only the illumination result of the target area, and the output of
the network is the position of the identified low
illuminated area.

During network training, the loss function is defined by the root
mean square error function. Figure 9 is the loss function curve for
network training. It can be seen that the losses of the training and
testing are both rapidly decline at the beginning, and after the epoch
reaches 20, the value of the loss function tends to be stable.

The stack energy map of one-way or two-way
illumination in the target area is input into the trained
network model. The result obtained by edge smoothing is
shown in the Figure 10A,B (one-way illumination) and
Figure 10C,D (two-way illumination), respectively. It can
be seen that the weak illumination area is a part of the
target area.

3.2 Selection of shot based on low
illumination area
Based on single-shot illumination results, when its energy
intensity of the low illumination area is greater than average,

FIGURE 11 | (A) is the image result for the target area with shots selected by the one-way illumination. (B) is the image result for the target area with shots selected
by the two-way illumination. (C) is the image result for the target area with all shots.
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the shot will be kept. By this means we only retain the shots
which have dominant contributions on the illumination of
the area. The selected shots are successively distributed, and
only a few shots are selected separately. For the shot
selection results obtained under the two-way illumination
situation, the shots are evenly distributed directly above the
target area. The shot range is wider, with only one separate
shot near the right end. On the whole, the selected shots is
about half of the total shot.

3.3 Local imaging based on shot selection
We perform regular reverse time migration for the selected
shots above in the target area. In the partial imaging results
with one-way illumination in Figure 11A, most of the
interface information can be obtained for the restoration of
subsurface structures. Due to the constraint of one-way
illumination-based shot selection, the results of geological
structure imaging in low-illumination areas are clear, while
the imaging results of other locations in the target area are
relatively poor.

Similarly, the shot gathers selected by the two-way
illumination are employed for reverse time migration. In
the partial imaging results with two-way illumination in
Figure 11B, most of the interface information can be
obtained for the restoration of subsurface structures.
Compared with Figure 11A, the overall imaging result of
the target area is clearer in the non-low illumination area.

We compare the imaging results based on one-way and two-way
illumination analysis with the normal all-shots local imaging result
as shown in Figure 11C. The approaches with one-way and two-
way illumination constraints can recover the subsurface structures
very well. The result with one-way illumination is relatively poor in
interface continuity, while two-way illumination can overcome this
and its imaging result has almost the same accuracy as the all-shots
result. The two-way illumination strategy can achieve a balance
between accuracy and computational cost.

By comparing the calculation efficiency as shown in Table
1, we see that the local imaging algorithms based on shot
selection greatly save the calculation time, and the imaging
quality is equivalent to the integrated image results of
all shots.

4 DISCUSSION

The illumination analysis based on deep learning provides a
preliminary prediction for subsurface seismic energy
distribution. According to this, the acquisition system can be
optimized to obtain seismic data related to difficult subsurface
regions. This method considers various of structures in the
training of the network, and can be applied to complex models.

Based on the results of deep learning illumination, we can
select the target area to be studied, and further use neural network
for the target area to quickly pick out the low illumination area.

By applying the principle of energy intensity filtering to
select shot at low illumination area and implement local
imaging, the subsurface structures can be imaged well, and
the calculation efficiency has also been significantly improved.
In the case of 3D model, the number of shots selected by the 3D
illumination will be further reduced, and employing the shot
selection results for 3D imaging will have a dramatic
improvement in computational efficiency compared with
regular all-shots imaging.

5 CONCLUSION

The illumination analysis method with deep learning allows us to
efficiently compute single-shot illumination results to be
employed for shot selection. Compared with the regular wave
equation illumination method, the calculation efficiency is
significantly improved. By dumping less related shots to the
weakly illuminated area, the computational time is reduced
furthermore without affecting the imaging quality.
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Table 1 | Calculation efficiency comparison.

Strategies Calculation time for
local imaging

One-way illumination selection 2, 478s
Two-way illumination selection 2, 786s
Allshots 4, 410s
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